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The General Statistical
Framework

An analysis of the long-period movements that are the subject of this
volume requires freeing the data so far as possible from the effects of the
shorter-term movements we call business cycles. These are brief com-
pared to the more than a century covered by our data, averaging about
four years in length for the twenty-six full reference cycles (from peak to
peak) in the United States, about five years for the nineteen full reference
cycles in the United Kingdom. Yet, though brief, the cyclical fluctuations
are often large relative to the more gradual long-period changes. Hence
temporal comparisons can be seriously distorted if the initial and terminal
dates refer to different stages of the business cycle, even though the dates
are separated by decades.

The method generally followed in cyclical studies of the NBER is to use
the average value of a series over a full specific or reference cycle as the
elementary unit of observation in studying secular movements.1 That
method gives two sets of secular observations: one constructed from
trough-to-trough cycles—that is, the period between successive specific
or reference cycle troughs—the other, from peak-to-peak cycles—that is,
the period between successive specific or reference cycle peaks.

3.1 The Reference Phase Base as the Unit of Observation

The method we use is a slight variant: instead of a full cycle as the basic
unit, we use a cycle phase. There are two kinds of phases: an expansion

1. Arthur F. Burns and Wesley C. Mitchell, in Measuring Business Cycles (New York:
NBER, 1946), pp. 28,141-44, use specific-cycle bases as the elementary unit of observation
in studying secular movements. Moses Abramovitz uses reference-cycle bases (for sources,
see chap. 11, note 1). R. C. Bird, M. J. Desai, J. J. Enzler, and P. J. Taubman find
specific-cycle bases superior to reference cycle bases for accurately determining long-cycle
turning points (" 'Kuznets Cycles' in Growth Rates: The Meaning," International Eco-
nomic Review 6 [May 1965]: 237-39).
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74 The General Statistical Framework

phase running from a cycle trough to a cycle peak; and a contraction
phase running from a cycle peak to a cycle trough. For regularly recurring
cycles, the average over a cycle phase is clearly as free from cyclical
effects as is the average over a full cycle composed of two successive
phases. In practice, of course, neither is entirely free from cyclical effects:
there is no way of eliminating by simple averaging the effects of an
unusually large cyclical movement like the great contraction from 1929 to
1933.

We use the phase base rather than the cycle base because it gives us a
larger number of observations on secular movements and greater flexibil-
ity. A two-period moving average of phase bases, weighted by the dura-
tion of the phases, gives the more usual cycle bases, trough-to-trough
bases alternating with peak-to-peak bases.

As between specific and reference cycle phases, we have chosen to use
the reference phases. The reason is that we want to compare different
series with one another, and it is much easier to do so if the same
chronology is used for all.

3.1.1 Phase Reference Dates

For the United States, we adopted the NBER's annual reference cycle
chronology, which currently ends with a trough in 1975,2 except that for
our purposes we added turns in 1966 (peak) and 1967 (trough) that are
not recognized in the official NBER chronology.3

For the United Kingdom, after reexamining the evidence, we revised
some of the turning dates listed in the NBER reference chronology
available through 1938.4 We also extended the chronology through 1975
by examining a small collection of economic indicators as well as the
turning points selected by others.5

2. A list of the dates ending with a trough in 1970 is given in United States Bureau of
Economic Analysis, Long-Term Economic Growth, 1860-1970 (Washington, D.C.: Gov-
ernment Printing Office, 1973), p. 64. G. H. Moore, Business Cycles, Inflation, and
Forecasting (Cambridge, Mass.: Ballinger for NBER 1980), table A-l, pp. 438-39, gives
monthly, quarterly, and calendar year dates ending with a trough in 1975.

Since this study was completed, the NBER has added a monthly reference cycle peak in
January 1980 and a trough in July 1980, corresponding to an annual peak in 1979 and a
trough in 1980.

3. See the discussion of the "pause" of 1966-67 in Solomon Fabricant, "The 'Recession'
of 1969-1970," in The Business Cycle Today, ed. Victor Zarnowitz, NBER Fiftieth
Anniversary Colloquium (New York: NBER, 1972), pp. 116-17.

4. Burns and Mitchell, Measuring Business Cycles, p. 79. The revisions through 1938
were to omit 1901 (trough) and 1903 (peak), and shift the 1917 peak to 1918.

5. Monthly turns in British business for the 1950s in C. Drakatos, "Leading Indicators for
the British Economy," National Institute Economic Review, no. 24 (May 1963), p. 43,
confirm our selection. Monthly turns in British growth cycles are given in Phillip A. Klein,
"Postwar Growth Cycles in the United Kingdom: An Interim Report," Explorations in
Economic Research 3, no. 1 (winter 1976): 110. The United Kingdom Central Statistical



75 The Reference Phase Base as the Unit of Observation

Table 3.1 gives for each phase the initial and terminal years, the
midpoint date, the duration of the phase in years, and the kind of phase
(E for expansion, C for contraction)—in part 1 for the United States, in
part 2 for the United Kingdom. Each phase is numbered consecutively to
permit easy identification of subperiods that we use later. The phase
numbered 1 for each country is the first phase for which data on the
money stock are available (see chap. 4). For the United Kingdom a
preceding phase numbered 0 is also shown, since we use data for some
other series for that phase.

3.1.2 Computation of Phase Base

We follow standard NBER procedure in computing the phase base as a
weighted average of all the observations during the phase, including both
the initial and terminal turning points. The initial and terminal turning
point observations are weighted one-half, the intervening observations,
unity. (See equation 1 below.) Since each turning point observation is
included in two successive phases, it would be given undue weight if
weighted as heavily as the intermediate observations.

The inclusion of the same observation in two successive phases intro-
duces serial correlation between successive phase bases that is considered
further below.

Throughout, we use logarithms of money, income, and prices and
construct phase bases by averaging logarithms, not absolute values. The
reason is both economic and statistical: economically, relative changes
are the main subject of interest; statistically, the logarithms are more
nearly homoskedastic over time than the absolute values; that is, they
have more nearly a random variability that is the same size over time. For
interest rates, we construct phase bases by averaging the absolute values.

3.1.3 Weighting of Phase Bases in Statistical Computations

Because phases differ in length, the bases are averages of different
numbers of observations. Hence, if the initial observations are statistical-
ly homogeneous in the sense that all are subject to the same error of
measurement, the bases will not be. This feature alone would be allowed
for by weighting each phase base by the number of observations from

Office has published monthly growth cycle turns for dates since 1958 in Economic Trends,
no. 257 (March 1975), pp. 95-109; no. 271 (May 1976), pp. 70-80; no. 282 (April 1977), pp.
66-68. D. J. O'Dea, Cyclical Indicators for the Postwar British Economy (Cambridge:
Cambridge University Press for NIESR, 1975), p. 39, also gives monthly turning points,
1951-72. Edward Shapiro, "Fluctuations in Prices and Output in the United Kingdom,
1921-71," Economic Journal 86 (December 1976): 746-58, gives quarterly turning points,
1921-38 and 1952-72. For the first period, the turns are for "classical" cycles, for the second
period, for "growth" cycles.
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78 The General Statistical Framework

which it is computed. However, the differential weighting of the initial
and terminal observations introduces an additional complication.

Let

n = duration of phase, where unit of time is interval
between observations (i.e., n is number of years
for annual data, number of quarters for quarterly
data, etc.).

Xi (i = 1, . . . , n + 1) = observations entering into
phase average, where X1 is observation at initial
turning point and Xn + 1, at terminal turning
point.

Y = phase average.
a2 = variance of variable indicated by subscript.

We then have

-X + i X +~X
(1) Y = 2— i = 2 ' 2

by the definition of the phase average. Assume that the X/s can be
regarded as statistically independent, and as all having the same variance
equal to <T|. We then have

2n2

Since the appropriate weight is inversely proportional to the variance, we
take as the weight of the phase:

2n2

(3) In - 1

The chief question about this derivation is the assumption of statistical
independence. This assumption is less stringent than it may at first
appear. Given the purpose for which we use the phase averages, namely,
to average out cyclical movements, the dependence that is relevant is that
which remains after we eliminate the cyclical effect. Most of the observed
fairly high serial correlation in annual data, which might be taken as
evidence against the assumption of independence, reflects the cyclical
movement. The serial correlation between deviations from the cyclical
pattern must be very much lower and, for annual data, may even be
negligible. Low serial correlation will not introduce much error into the
weights.



79 The Reference Phase Base as the Unit of Observation

We have neglected the serial correlation because evidence on the
question is lacking and because it would be different for different series,
whereas it is a great convenience to use the same weights for all series.

3.1.4 Possible Difficulties with Reference Phase Bases

Three major questions arise about this procedure of using reference
phase bases as the unit of observation. (1) If there are important systema-
tic differences between the cyclical timing of a series and the reference
dates, the phase bases may have a residual cyclical element. The brevity
of the phases may (2) leave too much random variation and (3) introduce
substantial serial correlation.

Residual Cyclical Element

The problem here is suggested by chart 3.1, which shows a regularly
recurring cycle that lags in timing behind the reference cycle by one-
quarter of a cycle. No problem arises for specific phase bases.

For the reference phase bases we use, however, there clearly is a
problem: reference contraction bases would tend to be larger, and refer-

Reference Peak Reference Peak

Reference
Contraction

Chart 3.1

Reference
Expansion

Reference Trough

Illustration of a one-quarter specific cycle lag behind the refer-
ence cycle.
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ence expansion bases smaller, than the relevant cycle-free average. Con-
versely, if the series leads in time, relevant contraction bases would tend
to be smaller, and reference expansion bases larger, than the relevant
cycle-free averages.

A lead or lag of one-quarter cycle maximizes the residual cyclical
element, but clearly a lesser error of the same kind is introduced by a
shorter systematic lead or lag.

One mitigating circumstance is that most of the series we use are
annual and tend to be fairly synchronous with the cycle (nominal income,
output, prices), so that any leads or lags are likely to be small relative to
the time unit of observation.

We have made a number of tests to be sure that the residual cyclical
element is negligible.

1. In the simple trend-free case pictured, each contraction base would
be higher than each expansion base. In the presence of trends, this
relation need not hold. To allow for trend, we have computed the average
value of deviations from trend for all expansion bases and all contraction
bases separately for a period chosen to begin and end with the same type
of phase, which is a further protection against contamination by trend.
The average values and standard deviations are shown in table 3.2. The
final column gives the ratio of the mean difference to its standard error.
Only one series for the United States, and only two for the United
Kingdom have mean differences that are even as large as the relevant
standard error, and no difference approaches statistical significance. It is
interesting that the largest differences relative to their standard error are
for interest rates, which are known in general to lag. As expected, the
average for these series is larger for contractions than for expansions—as
tends also to be true for the other series—but even for these the differ-
ence between expansion and contraction phases is clearly small enough to
be neglected for any but the most refined analysis.

Note that the consistent difference in sign between the means for
expansions and contractions (fifteen out of sixteen means negative for
expansions and positive for contractions) is not relevant evidence of a
systematic difference because the observations are not independent. All
the means are calculated for precisely the same set of contractions and
expansions. Given the high conformity among the series within cycles, if
the expansions happen to yield negative deviations and the contractions
positive deviations for one series, that is likely to be true also for others.
For the same reason, the entries in the final column of table 3.2 do not
provide sixteen independent bits of information, but a much smaller
number.

2. A different test is to compute the rate of change between successive
phases. If these are dominated by the cyclical element, they should
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display a negative serial correlation—in the hypothetical case pictured,
being alternatively positive and negative. Any constant percentage trend
will tend to show up in the average value and not affect the serial
correlation. The serial correlations obtained in this way are given in table
3.3 both for the period as a whole and for subperiods that we use in our
subsequent analysis. For the United States, thirty-nine out of the fifty
serial correlations are positive; for the United Kingdom, thirty-two out of
forty are positive, indicating that any residual cyclical element is dwarfed
by the long swings about the trends that show up in the phase bases. The
negative correlations are almost all for short-term interest rates, which
are highly volatile. Of these, only the postwar correlations differ signifi-
cantly from zero, even at a .10 percent confidence level. So even here
there is no evidence of a significant cyclical residual, only of the absence
of long swings of the kind that characterize the other series.

3. On a less formal basis, we have examined the series to see whether
they show many sawtooth sequences of ups and downs such as the
residual cyclical element might produce. Needless to say, such sequences
occasionally occur, but not frequently enough to give an impression of a
significant residual cyclical, which is why we have not formalized this test.

All in all, we conclude that our phase bases do eliminate the bulk of the
systematic cyclical fluctuation.

Brevity of Phases

Individual phases are often very brief. This is particularly serious for
annual data. According to the annual reference dates,6 nearly half of all
phases in the United States since 1867 and more than one-quarter of all
phases in the United Kingdom since 1874 have been only a year in
duration (table 3.4). Phase averages for short phases do not average out
much of the random movement. In addition, successive phase averages
have substantial serial correlation because turning-point observations
enter more than one phase.7

The effect of the turning-point observation is, of course, greater for
annual than for monthly or quarterly data. Hence one test of the serious-
ness of this problem is to compare phase bases for the same series from
monthly, quarterly, and annual data. For the periods for which our data
permit such a comparison, the differences are always minor and mostly

6. The NBER has estimated separate sets of dates for data reported for different time
units: for annual calendar year data, annual fiscal year data, quarterly data, and monthly
data. See Business Cycle Indicators, ed. G. H. Moore, 1:670.

7. If the observations are annual, and the phase one year in length, there are no
intervening observations; hence the phase average is based on values for only two years, and
each of these values is used also in computing another phase average.
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84 The General Statistical Framework

Table 3.3 Serial
Bases:

Series

Nominal income
Real income
Prices
Money
Velocity
Population
Call money rate
Commercial paper rate
Basic yield
Bond rate

Nominal income
Real income
Prices
Money
Velocity
Population
Short rate
Consol rate

Correlations of Rates of Change between Successive Phase
United States, 1869-1975;

Full
Period

Peacetime ]
Phases ^

United States
.42
.19
.65
.52
.30
.87

- .13
-.28

.55

.48

.44

.18

.61

.52

.44

.94
-.20
-.35

.55

.46

United Kingdom

.62

.52

.66

.72

.44

.76
-.18

.29

.67

.08

.69

.80

.59

.88
-.26

.28

United Kingdom, 1874-1975

Pre-World
War I

.31

.10

.51

.40

.08

.72
-.36
-.63

.47

.04

.48
-.45

.51

.63
-.37

.67

.05

.76

Post-World
Interwar War II

.33

.24

.15

.37

.11

.90

.02
-.24
-.37
-.29

.38

.14

.33

.33

.40

.75
-.47
-.53

.57

.20

.86

.80

.74

.95
-.70
-.58

.28

.23

.81

.36

.93

.94

.86

.71
-.71
-.03

Note: Basic observations correlated are first differences of phase bases divided by interval
between successive bases. See chapter 4 below for a description of the series. See chapter 5,
note 34 for designation of wartime phases.

negligible, indicating that this effect of the overlap is not serious even for
annual data.8

Serial Correlation

The serial correlation introduced by overlap can be readily estimated
theoretically. Combining equation (10) below, which gives the covar-

8. For example, the average value of the United States money stock is as follows during
the four United States reference phases, 1908-14, based on:

United States
Phase

Number

21
22
23
24

Annual
Reference Dates:

Annual Data

Quarterly
Reference Dates:
Quarterly Data

(billions of dollars)
12.52
13.72
15.02
16.06

12.40
13.77
15.15
16.08

Monthly
Reference Dates:

Monthly Data

12.42
13.79
15.20
16.08

The monthly and quarterly data are given in Friedman and Schwartz, Monetary Statistics of
the United States, pp. 9-15, 65-66. For the annual data, see the appendix to chapter 4.
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Table 3.4

Duration
(in Years)

1
2
3
4
4 +

Total

Mean duration

Distribution of Annual Reference Phases in the United States from
1867 to 1975 and in the United Kingdom from

United States

Number of
Expansions

3
11
6
3
3

26

2.73

Number of
Contractions

20
3
2
0
1

26

1.42

Total

23
14
8
3
4

52

4.15

1874 to 1975

United Kingdom

Number of
Expansions

3
3
4
3
5

18

3.39

Number of
Contractions

7
5
5
1
1

19

2.11

Total

10
8
9
4
6

37

5.50

iance of successive phase bases, with equation (2) above, which gives the
variance of a phase base, we have

(4) '12 4 —

where r12 is the serial correlation between successive phase bases that
would be produced by overlapping if the bases were otherwise statisti-
cally independent, n^ is the duration of one of the two phases, and n2 is
the duration of the other. Some idea of the possible significance of this
effect can be gained by tabulating the value of r for a number of special
cases:

h
1
1
1
1
2

n2

1
2
3
4
2

'12

0.50
0.29
0.22
0.19
0.17

For the United States data, out of fifty-one successive pairs of phases,
only four have nx = n2 = 1, and another twenty have n1 = 1, n2 = 2 or
n1 = 2,n2 = l. Hence, while the problem of serial correlation as a result
of overlap is clearly present, equally clearly it is not of major moment: a
correlation coefficient of 0.29 means that only 9 percent of the variance of
one phase is accounted for by its correlation with the prior phase.

3.2 Rates of Change Computed from Phase Bases

To examine in greater detail the movements in the various series over
periods that are short relative to the whole period covered, though longer
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than the cycle phase, it is helpful to eliminate long-period trends. One
way to do this is to compute trend lines and direct attention to the
undulations about the trends (see charts 5.1 and 5.2). A different and
frequently preferable technique is to compute rates of change between
successive observations. This technique has the advantage that (1) it does
not require choosing the period to cover or a specific mathematical form
for the trend; (2) the observations for any one period do not depend on
the far distant observations for other periods that affect fitted trends; and
(3) the series can be extended either backward or forward without either
recomputing or extrapolating trends. It has the disadvantages that it gives
full play to measurement errors and it introduces negative serial
correlation.9

For phase bases, the importance of measurement errors is reduced by
the averaging of observations in constructing the phase average. How-
ever, as noted earlier, for annual data often only a few observations are
averaged, and the overlap between successive phases introduces positive
serial correlation. To reduce the measurement error, we calculate rates of
change from groups of three successive phase bases. For each triplet, we
calculate the slope of a least squares line, weighting each observation
inversely to its variance (sec. 3.1.3). We treat this slope as the rate of
change at the midpoint of the central phase of the three phases covered. It
turns out that this procedure is arithmetically nearly the same as comput-
ing rates of change from overlapping cycle bases (see sec. 3.2.2).

Since a phase for the United States is on the average about 2 years in
duration, and for the United Kingdom, about 2.8 years, our rates of
change on the average refer to a time span of about 4 years for the United
States from the midpoint of the initial phase to the midpoint of the third,
and about 5.6 years for the United Kingdom. Of course the actual time
span varies from date to date—from a minimum of 2 years for the United
States for the triplet of phases centered on the expansion of 1919-20, to a
maximum of 8.5 years for the triplet centered on the contraction of
1873-78; and from a minimum of 2 years for the United Kingdom for the
triplet of phases centered on the expansion of 1919-20 or the contraction

9. Let Yj, y2 , . . . Yn, . . . be observations at time tx, t2, . . . tn, . . . . Rates of change
between successive observations are then given by

h-h h-h u-h
If the random components of the Y, are independent of one another, then the variance of the
random component of the first difference will be the sum of the variance of the random
components of the two observations differenced. As the first two sample observations show,
Y2 enters positively into the first, negatively into the second; hence the random components
of the two will have a negative correlation, and similarly with the second and third.
However, the serial correlation will be zero under these assumptioms for observations
separated by one or more other observations (e.g., first and third, etc.)
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of 1927-28, to a maximum of 10.5 years for the triplet centered on the
expansion of 1893-1900.

A slightly different procedure has been used extensively by Moses
Abramovitz (see footnote 1, above) in his studies of long swings. He has
generally computed rates of change between successive trough-to-trough
cycles and also between successive peak-to-peak cycles, and then has
interwoven the two sets of rates of change into a single series. His method
makes each rate of change depend on four successive phases. After some
experimentation, we concluded that our method gives greater sensitivity
in tracing the movements in our series, with little if any loss in reliability.

3.2.1 Weights for Rates of Change

The statistical error associated with a rate of change computed in this
way clearly depends on the length of the phases entering into its computa-
tion. To allow for this effect, we have weighted the rates of change in
regression and similar calculations. The derivation of the weights follows.

Let
Hi = duration of phase i,
Yt = average value of phase /,
wt = weight given by equation (3) for phase i.

For rates of change computed from successive triplets of phases, i will
take the values 1, 2, and 3. The time coordinates for the three phases
measured from the midpoint of the first observation in phase 1 are

r

n2
(5) T2= nx + —

«3

T3 = nx + n2 + — .

Using the weights from equation (3), we have the mean time as

(6) T = ¥&,
where the sums run throughout from i = 1 to i = 3. The slope of the
regression fitted to the three phase averages, which we interpret as the
rate of change at time T2, is
(7) b- Z

X wt(Ti - T)2
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The variance of this slope is given by

oi = x-
(8) [ZwM-T)2]2

+ 2.2 WiwfTt - T){Tj - T)<JYiYj\ •

By the definition of the weights

( 9 ) 0^. = ^ .

Under the assumption that the X's are independent, the covariance of the
Ys differs from zero only because of common elements. Yx and Y2

share the common element ^ Xn +1 , Y2 and Y3 the common element
1
i ^ n i + M 2 + 1, and Y1 and Y3 have no common element. It follows that

(10) <jY = J

1

(11) <Jyy =~ Ojc
An2n3

(12) <rYly3 = 0.

Substituting equations (9), (10), (11), and (12) in equation (8), we have

(13) ai= ° ^ _ 2 {!+•

w1 _ w3

n\ n3

(T3-T\}.

If «x = n3, then T2 = T, and the term in the curly brackets is unity. For
simplicity, we proceed as if this were the case, and so take as our weights
for the rate of change:

(14) w^tw^-T)2 .

For any given ratio — -̂ > 1, the error made by setting the curly

bracket equal to unity will be greatest for nx = n2 = 1, and for these values
of nx and n2, it will increase with n3; and the error for any triplet of n's is
the same if nx and n3 are interchanged. Accordingly, we can get some idea
of the maximum possible error by calculations for a few cases, as follows:
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1
1
1
1
1

n2

1
1
1
1
1

n3

1
2
3
4
5

Error m Weight
(percentage)

0
2.0
4.8
7.1
9.0

For our United States data, there is only one triplet for which the n's are
1,1,3, and no other triplet with so large a ratio of n3 to nx (or nx to n3). For
our United Kingdom data, there is only one triplet for which the n's are 4,
1,1, and no other triplet with so large a ratio of nx to n3 (or n3 to rii).
Hence the maximum error made for the United States by setting the curly
bracket equal to unity is 5 percent, and for the United Kingdom, 7
percent. This may well be less than the error involved in assuming the
original observations independent. In any event the error is negligible
compared with the variation in the weights computed from equation (14),
which have a range of almost 37 to 1 (i.e., the largest weight is nearly 37
times the smallest) for the United States and more than 56 to 1 for the
United Kingdom.

The special case of nx = n3, for which the calculated weights are cor-
rect, has some other features of interest. In that special case, the mean
time, T, equals the middate of the second phase, the calculated slope is

(15) XX
rii + n2

that is, the difference between the first and third phase divided by the
time interval between them. The weight for the slope is given by

3)

2nx-\

3.2.2 Relation between Rates of Change Computed from
Successive Triplets of Phase Averages and from
Overlapping Cycle Bases

Let Zx and Z2 be two successive overlapping cycle bases. Then, by
definition,

(17) Z i =

_
2 n2 + n3
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where, if phase 1 is an expansion phase, Zx will run from trough to trough,
and Z2 from peak to peak, whereas, if phase 1 is a contraction phase, Zx

will run from peak to peak and Z2 from trough to trough.
The time coordinates of these two cycle bases measured from the

midpoint of the first observation in phase 1 are:

(19)

n1 + ,

so the difference between the two time coordinates is

(20) T(Z2)-T(Z1)=^ + ^ .

Hence the rate of change between them is

n2Y2 +
 n?Y^ n\Y\ + n2Y2

(21) Z2 — Zx n2 + n3 «x + n2

T(Z2) - T{Z{) rii + n3

2

which can be reduced to

2 wi(w2 + n3)Y1 + n2(nx - n3)Y2 + n ^ + n2)Y3

(
Consider now the slope of a least squares line fitted to Yx, Y2, and y3,

where the phase averages are weighted by nt instead of wh as given by
equation (3). This would be the correct weight if successive phase aver-
ages had no items in common but were constructed as a straight average
of the relevant number of observations rather than by giving half-weight
to the initial and terminal observations.

The slope of such a regression would be given by

( 2 3 ) b'=

where Tt are given by equation (5), and

f24) T = ^ HiTi = Hl +

so that
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(25) T2-T= Hl "3

T.-T = n2

2

Substituting equations (25) in equation (23) and simplifying gives

(26) b' = 2 - " i ( n 2 + n3)Y1 + n2(nx - n3)Y2 + ft3(fti + n2)Y3

( + )( + )( + )
which is identical with equation (22).

It follows that the rates of change we compute would be identical with
the rates of change computed from two overlapping cycle bases if we used
nt instead of wt as weights.

3.2.3 Possible Difficulties with Rates of Change
Computed from Phase Bases

The same difficulties that were considered for the phase bases are
relevant for the rates of change. It turns out that a residual cyclical
element is a less serious problem, while spurious serial correlation may be
a more serious one.

Residual Cyclical Element

The rates of change can be divided into two classes: those computed
from a contraction, an expansion, and a contraction (CEC rates) and
those computed from an expansion, a contraction, and an expansion
(ECE rates). Even if the original phases have a residual cyclical element,
the rates of change should reflect this residual cyclical element in greatly
diluted form. For example, if n^ = n3, then the rate of change depends
only on the two end phases, both of which are the same kind and hence
subject to the same bias, if any. That is not completely true when nx + n3,
but presumably is largely so.

However, to make sure that this conclusion is correct, we compared
CEC and ECE rates for a considerable number of our series. For eigh-
teen United States series and sixteen United Kingdom series, we clas-
sified the rates according to whether they were above (+) or below ( - )
the mean. The results, for all series combined, are as shown in table 3.5

The chi-square value for the United States contingency table is .004,
for the United Kingdom table, .35. The United States value would be
exceeded by chance over 95 percent of the time, the United Kingdom
value, over 40 percent of the time.

Similar tables for smaller groups of series yielded the same result.
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Table 3.5 Number of Rates of Change above or below the Mean,
by Kind of Rate, for Selected Series

United States United Kingdom

K i n d Number of Rates Number of Rates
of
Rate + - Total + - Total

CEC
ECE

Total

221
229

450

229
213

442

450
442

892

126
133

259

162
147

309

288
280

568

In addition, we calculated t tests for the difference between the means
of the CEC and ECE rates for individual series. These were uniformly
not statistically significant.

Accordingly, we have concluded that our rates of change are not
affected by the kind of triplet of phases from which they are computed.

Spurious Serial Correlation

The possibility of spurious serial correlation arises from two sources:
(1) the serial correlation between successive phase bases arising from the
turning-point observation common to them; (2) the phase bases com-
mon to different rates of change. Two consecutive rates of change are
based on triplets of phases that have two phases in common; two noncon-
secutive rates of change separated by one rate are based on triplets that
have one phase in common. Only every third rate is based on nonoverlap-
ping triplets, and even that is contaminated by effect 1 arising from the
turning point common to the terminal phase of the first triplet and the
initial phase of the second triplet.

A full examination of the size of these spurious correlations would be
inordinately complex. However, we can gain an impression of their
possible magnitude by considering the special case examined earlier, that
in which nx = n3. For that case, it is reasonably straightforward to derive
mathematically the spurious serial correlation.

We shall consider separately three cases: (1) consecutive rates of
change; (2) rates of change separated by one rate; (3) rates of change
separated by two rates. More distant rates should be independent of any
spurious correlation arising from common elements. We shall then
(4) present some empirical evidence on the actual serial correlations in
our computed rates of change.

1. Consecutive rates of change. Let

b13 = rate of change computed from phases 1,2, and 3,
b24 = rate of change computed from phases 2, 3, and 4.
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Assume that

(27) «i = »3 ,

(28) n2 = n4 ,

so that from equation (15)

(30) b2

We have that

(31) rt

3 nx + n2 '

V V

Eb'13b24
>13 2 4 ^ 1 3 ^ 2 4

where primes represent deviations of the slopes from their mean values,
and E stands for expected value. The standard deviations are given by the
square root of the reciprocal of wb times <JX or, by equation (16), by

rr
bn =

"2(^2 + "3)

To estimate the covariance of the slope, multiply b'13 by b'24, and take
expected values. This gives

(34) Eb'13b24 =

Equations (10) and (11) plus the counterpart of equation (10) for
phases 3 and 4 and of equation (12) for phases 1 and 4 give the covar-
iances. Substituting, and using equations (27) and (28), we get

1

(35) Eb[3b'24 =
«! + n2)(n2 + n3)

Substituting equations (32), (33), and (35) into equation (31), we have

(36) rbub24 = 1

1 V2M2 - 1
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This correlation reaches its maximum value for n± = 1, n2 = 1, or, by
equations (27) and (28), for four successive phases all one year in length.
For that extreme case, of which there is none in either our United States
or United Kingdom record, the serial correlation is 0.25. For nx = 1 and
«2 = 2, or four phases lasting 1, 2, 1, 2 years respectively, the serial
correlation is 0.14. There are three such quadruplets of phases in the
United States record, none in the United Kingdom record. All other
quadruplets involve more uneven numbers. We conclude that this source
of serial correlation can readily be neglected.

2. Nonconsecutive rates of change separated by one rate. For our
special case, for which

(37) («! = n3 = n5) ,

the slopes are given by

(29) b13 =_Y3-

n\ + n2

and

(38) b35 =
n1 + n4

If the initial Z's are all statistically independent, then so are Y1? Y3, and
Y5, since they contain no common elements. The slopes are not, how-
ever, statistically independent, since Y3 enters positively into one and
negatively into the other. The correlation between b13 and b35 will be
precisely the same as that between successive first differences of a series
of statistically independent observations, which is well known to be

(39)10

10. A formal proof for this special case is readily given. We have

£(Y3'-Y1')(Y5'-Y3')

(a)
_EYa \ 2n\

+ "4) ("l + «2)(«1 + n4)

by equations (2), (12), and (37). The standard deviations are given by equation (32), and a
comparable equation for bi5, so

+ n4)
a?
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A serial correlation so large in absolute value clearly presents a poten-
tially troublesome problem. While it does not bias correlation results
between different series, it does introduce serial correlation of residuals
and affects the validity of tests of statistical significance. How serious such
a serial correlation is in practice depends on the size of the random
element in the variability compared with the systematic element. The
spurious negative correlation introduced into the rates of change con-
taminates our results less than a similar correlation would for first differ-
ences between temporally consecutive items for a number of reasons.
First, it affects only alternate items. Second, the items affected are
separated more widely in time—the average interval between two alter-
nate rates of change is four years for the United States and five and a half
years for the United Kingdom, which raises the importance of the sys-
tematic component relative to the random component.

3. Nonconsecutive rates of change separated by two rates. The relevant
slopes for this case are given by

(29) b13 = -
nx + n2

and

(40) b46 =
_ Y6-

n4 + n5

The only source of serial correlation is the turning-point observation
common to Y3 and Y4. We have that

Of the terms in the numerator, all are zero (on the assumption that the
original X's are statistically independent) except for EY'3Y'4 which, by

equation (10), has the value —j v2
x. It follows that, using the

relevant counterparts of equations (31), (32), and (33) and the assump-
tion rii = n3 ,

1

An3n4{n3 + n2)(n4 + n5)

x / - x ajn3(n3 + n2) n4(n4 + n5)

(42) = l-



I
j
1

& o oo

« CO

a ^
co

•c

oo </•> o f - co
t-- oo o i <n ~
O H N n

I I I I I

T—( TJ- o i—i »r>o m rr o\ (S

OO
oo (N

I I I I

r^ H CM <r> o ui
CO 00 CN VO CM Q
N<t O MO *

l l l I

I I

I I

NO • *
CO H
CO CO

<S CN

CN ON <r>
Ifl 00 H
NO • * ON

.S E

S" " —< to
_ ca o 3 t: ii

<L> 0 0

a
2 °°•S ^



97 Rates of Change Computed from Phase Bases

This correlation is clearly a maximum when n3 = n4 = 1, when it has the
value — 0.25. This correlation is opposite in sign but numerically equal to
that for successive rates of change involving the same duration of the
phases with the overlapping turning point. As for that case, it seems clear
that this source of serial correlation is so trivial that it can readily be
neglected.

4. Some empirical evidence on serial correlation. Table 3.6 gives serial
correlations for rates of change of our main United States and United
Kingdom annual series. If the spurious correlation were the only source
of correlation, we would observe positive correlations for consecutive
rates, all less than .25 and generally much less so; for rates separated by
one, we would observe negative correlations, all around - .5; for rates
separated by two, we would observe negative correlations, all less than
.25 in absolute value and generally much less so; for rates separated by
three, we would observe serial correlations of zero. Clearly, the serial
correlations in table 3.6 do not correspond to this picture, either in detail
or in general, except for the substantial number of insignificant correla-
tions for rates separated by three. Any spurious correlation has appar-
ently been eliminated by the systematic relations between the rates of
change, a relation that reflects the existence of the long swings that have
by now been so widely recognized, and that we analyze in chapter 11.

It is worth emphasizing that serial correlations do not introduce any
bias into correlations among statistically independent series. They do
affect the precise validity of tests of statistical significance, and they do
affect the serial independence of residuals. On the whole, both the
theoretical analysis and the empirical evidence in table 3.6 justify the
conclusion that the "noise" introduced by the serial correlations is suf-
ficiently small relative to the systematic variation we are trying to de-
scribe that it can for the most part be neglected.


