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Ricardo J. Caballero and Adam B. Jaffe 
MIT AND NBER, AND HARVARD UNIVERSITY AND NBER 

How High Are the Giants' 

Shoulders: An Empirical 
Assessment of Knowledge 

Spillovers and Creative 

Destruction in a Model of 
Economic Growth* 

1. Introduction and Summary 
There has been a rapid growth in recent years in the theoretical litera- 
ture on industrial research as an engine of economic growth.' At a gross 
level, two key concepts are at the heart of the growth process in this 
literature. First, profit-seeking firms try to achieve market power by 
producing a better good than their competitors. Over time, new goods 
displace old ones, earn profits for some period of time, and are then 

displaced in turn. This process of "creative destruction" generates the 

*This paper was prepared for the NBER Macroeconomic Annual Meeting, March 14, 1993. 
We thank Philippe Aghion, Roland Benabou, Andrew Bernard, Olivier Blanchard, Zvi 
Griliches, Charles Jones, Paul Joskow, Boyan Jovanovic, Sam Kortum, Michael Kremer, 
Ariel Pakes, Michael Piore, Manuel Trajtenberg, and seminar participants at MIT, NYU, 
Georgetown, the Productivity group at the NBER, and the NBER Macroeconomic Annual 
1993 meeting for their comments. Caballero thanks the National Science and Sloan Foun- 
dations for financial support; Jaffe thanks the National Science Foundation. Sam Kortum 
graciously shared his data on U.S. priority patents. We are particularly indebted to Manuel 
Trajtenberg, who created the patent citation data extract used in Section 3.2, and did so 
under extreme time pressure. We thank Olivier Blanchard for instigating our collabo- 
ration. 
1. See Grossman and Helpman (1991a) and the references therein, in particular, Romer 

(1990), Grossman and Helpman (1991b), Aghion and Howitt (1992), Segerstrom (1991). 
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incentive for and limits the private value of industrial innovation: 

... The fundamental impulse that sets and keeps the capitalist engine in motion 
comes from the new consumers' goods, the new methods of production or 
transportation, the new markets, the new forms of industrial organization that 
capitalist enterprises creates .... [examples] ... [these examples] illustrate the 
same process of industrial mutation that incessantly revolutionizes the economic 
structure from within, incessantly destroying the old one, incessantly creating a 
new one. This process of Creative Destruction is the essential fact about capital- 
ism. . . . (Joseph Schumpeter, 1942) 

Thus, Schumpeter recognized that innovation was the engine of 
growth, and that innovation is endogenously generated by competing 
profit-seeking firms. The second key feature of models of this process is 
that public-good aspects of knowledge create economywide increasing 
returns. In the process of creating new goods, inventors rely and build 
on the insights embodied in previous ideas; they achieve their success 
at least partly by "standing upon the shoulders of giants."2 The public 
stock of knowledge that accumulates from the spillovers of previous 
inventions is thus a fundamental input in the technology to generate 
new ideas. This is clearly reflected in Schmookler's (1966) description 
of the inventor's problem: 

. . . the joint determinants of inventions are (a) the wants which inventions 
satisfy, and (b) the intellectual ingredients of which they are made. The inven- 
tor's problem arises in a world of work and play, rest and action, frustration 
and satisfaction, health and sickness, and so on. . .. [I]n order to analzye the 
problem, to imagine possible solutions to it, to estimate their relative cost and 
difficulty, and to reduce one or more to practice, the inventor must use the 
science and technology bequeathed by the past . . . 

The rich theoretical development of the growth literature can thus 
be seen as combining the insights of Schumpeter and Schmookler and 

embedding them in a general equilibrium framework. This modeling 
advance has not, however, been accompanied by the development of a 
parallel empirical literature.3 While there has been significant empirical 
work on different aspects of the microeconomics of technological 
change, there has been relatively little attempt to integrate individual 
micro empirical results into an overall framework for understanding 
growth. Our aim in this paper is to create a framework for incorporating 

2. "If I have seen further (than you and Descartes) it is by standing upon the shoulders 
of Giants." Sir Isaac Newton, letter to Robert Hook, February 5, 1675. Newton's apho- 
rism was popularized by Robert K. Merton, On the Shoulders of Giants, New York (1965). 

3. A notable exception is Kortum (1993). 
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the microeconomics of creative destruction and knowledge spillovers 
into a model of growth, and to do so in such a way that we can begin 
to measure them and untangle the forces that determine their intensity 
and impact on growth. 

We develop a model in the spirit of Grossman and Helpman (1992) 
and Aghion and Howitt (1992) that gives a simple relationship for the 
effect of new products on the value of existing ones. At any given time, 
the economy consists of a continuum of monopolistically competitive 
goods indexed by their quality, q E (-w0, Nt]. The newest goods are 

always the best, i.e., the process of research advances the frontier by 
increasing Nt. Because of the quality ranking implicit in this process, 
constant marginal cost producers see their profits-relative to those 
of the (new) leader-decline over time. The rate of decline depends 
(positively) on the degree of substitutability between new and old goods 
and on the pace at which new goods are introduced. This captures the 

endogenous process of creative destruction described earlier and, after 
a few algebraic steps, yields intuitive equations relating the rate of 

growth in a firm's value relative to that of the industry to the firm's 
number of new ideas relative to the industry average. By relating the 

concept of new ideas to that of new patents, it is possible to use these 

equations to gauge the empirical magnitude of creative destruction. 
In order to estimate these equations, we use market value and patents 

data on 567 large U.S firms. The data are annual for the period 1965- 
1981, and the firms are assigned to 21 technological sectors. We estimate 
21 sectoral panels and find that, on average (over time and sectors), 
creative destruction is about 4% per year. That is, in an average sector 
at an average year a firm that does not invent sees its value relative to 
that of the industry erode by about 4%. This number varies widely 
across sectors; drugs has the largest average creative destruction, with 
about 25% per year.4 Because of both the endogenous variation in cre- 
ative destruction and changes in estimated parameters, we also find a 

sharp decline in average (across sectors) creative destruction over our 

sample period, from a high of 7% per year in the mid-1960s to a low of 
2% in the late 1970s. 

Turning from Schumpeter to Schmookler, we focus on the technology 
by which new ideas are produced, using as inputs private research 

4. We argue that, at least in part, this dispersion is due to the difficulties in measuring 
ideas, because patents play different roles in protecting innovation in different sectors. 
In other industries other mechanisms of appropriations, such as secrecy, learning curve 
advantages, and marketing and product support efforts are more important than pat- 
ents as means of securing rents (Levin et al., 1987). 
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effort and the public stock of existing ideas. We focus particularly on 
this ideas-stock, the process by which it accumulates, and the way in 
which it conditions the production of new ideas. 

It is well known that the standard form of the kind of "quality ladder" 
model that we are using embodies a strong form of research spillovers, 
because the same amount of resources are consumed producing the 

blueprint for product q = Nt at time t as were consumed producing the 

blueprint for product q = Nt_dt at time t - dt, even though the former 
is strictly superior to the latter. To pursue Newton's metaphor, today's 
inventors stand on the shoulders of giants that keep getting taller and 
never get old and weak. In order to move to a spillover formulation 
that can be implemented empirically, we specify how the height of the 
shoulders is endogenously determined by the path of previous in- 
vention. 

We postulate a simple linear technology at the firm level, mapping 
research inputs into new ideas. This mapping changes over time as a 
function of the stock of public knowledge. That is, the productivity of 
private inputs in research varies as a function of aggregate knowledge, 
which is outside the control of any individual firm. We proceed to spec- 
ify in some detail the process by which previous knowledge accumu- 
lates and feeds into the generation of new ideas. We postulate that it 
takes time for additional knowledge to diffuse sufficiently to be of use 
to other inventors; this tends to limit the usefulness of very recent 
knowledge in generating new knowledge. On the other hand, old 
knowledge eventually is made obsolete by the emergence of newer, 
superior knowledge. We call this phenomenon "knowledge" or "tech- 

nological" obsolescence, and distinguish it from the obsolescence in 
value represented by creative destruction. That is, new ideas have two 
distinct effects on the current stock of ideas. They make the products 
represented by those ideas less valuable (creative destruction or value 
obsolescence), and they make the knowledge represented by those 
ideas less relevant in the production of new knowledge (knowledge or 
technological obsolescence). The strength of knowledge spillovers, and 
hence the growth of the economy, will depend on the parameters of 
the processes of knowledge diffusion and knowledge obsolescence. 

At any point in time, we define the stock of knowledge available to 
the production of new ideas as the sum of the contribution of all previ- 
ous ideas. These contributions are the product of the number of ideas 
in each cohort and the usefulness of the average idea in that cohort to 
current inventions. We describe the usefulness of an idea generated at 
time s for the production of new knowledge at time t (t > s) in terms 
of a citation function. In order to capture knowledge obsolescence, this 
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function declines with the distance between t and s in ideas-space-i.e., 
with the number of inventions that occur between the recipient and 
source cohorts. In order to capture gradual knowledge diffusion, the 
usefulness of old ideas increases with the calendar time between these 
two cohorts. We also allow for a source-cohort specific multiplicative 
constant that indexes the potency of the spillovers emanating from the 

average idea in the given cohort. 
In order to estimate the citation function, we use a 1 in 100 random 

sample of all patents granted in the United States from 1975 to 1992, 
and track all their citations to previous patents back to 1900. We assume 
that patents are proportional to ideas and that citations are proportional 
to ideas used, and we estimate time-varying proportionality factors for 
each along with the model parameters. Our sample contains 12,592 
patents and over 80,000 citations. 

Several interesting findings emerge from estimating the citation func- 
tion and from constructing the stock of public knowledge implied by 
this function. First, we find that ideas diffuse quite rapidly, with a mean 

lag between one and two years, which is consistent with previous esti- 
mates by Mansfield (1985) derived from survey results. Second, as pos- 
tulated, knowledge obsolescence is clearly an endogenous function of 
the number of new ideas, rather than an exogenous function of time. 
The sum of squared residuals falls by about 30% when straight time 

depreciation is replaced by endogenous obsolescence linked to the num- 
ber of new ideas. Third, the average annual rate of knowledge or tech- 

nological obsolescence over the century is about 7%, but both its secular 
and high-frequency (endogenous) changes are quite large. It rises from 
about 3% at the beginning of the century to about 10-12% in 1990, with 
a noticeable plateau during the 1970s. Fourth, the average size of pat- 
ents (measured in terms of the average number of new ideas embodied 
in each of these) increased over the century until the 1960s or 1970s and 
has declined since then. A patent in 1990 seems to contain about three 
times more ideas than a patent in 1900, but about 10% less than a patent 
in 1970. Fifth, the potency of the spillovers emanating from each cohort 
seems to have declined dramatically over the century: Controlling for 
obsolescence, we estimate that the average idea at the beginning of the 

century generated about five times the level of spillovers as the average 
recent idea. Finally, as a result of this decline in spillover potency, we 
estimate that the effective (or marginal) public knowledge stock declined 
by about 30% from 1960 to 1990, suggesting that private research pro- 
ductivity should have fallen by that amount. 

This last result is subject to a number of caveats relating to assump- 
tions about the exact nature of the relationship between spillovers and 
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citations. Its implications are, however, remarkably consonant with the 
data on the observed productivity of inputs in research. The observed 
decline in the productivity of private research, as measured by patent 
production, has been a subject of much research.5 The ratio of patents 
to research inputs has declined steadily since the 1950s, almost regard- 
less of the way research-input is measured (e.g., R&D expenditures, 
number of scientists and engineers engaged in research).6 It is certainly 
interesting, if not surprising, that our independent measure of research 

productivity, which is based on knowledge flows as measured by cita- 
tions, has about the same trend as directly measured productivity. Put 

differently, the fit of the aggregate innovation function-i.e., the func- 
tion that relates aggregate (private) research inputs to total innova- 

tions-improves markedly once we include our measure of the public 
stock of knowledge on the right-hand side. 

In the last step of the empirical section, we relate aggregate consump- 
tion growth to the rate of new idea creation. In effect, this amounts to 

finding the normalization constant that allows us to estimate the overall 

average size of a patent-a parameter that is not identified from the 
citation estimation alone. With this, we have empirical estimates of all 
of the important model parameters. Combining these estimates with a 
free-entry condition in the research sector and a labor market equilib- 
rium condition, we close the model and calibrate it to fit the average 
rate of growth of the United States during the postwar period. The 
model can then be used to perform several positive and normative ex- 
periments. Although we are uncomfortable making too much of results 
that depend on a long sequence of assumptions and approximations, we 
note that the model's behavior (1) is quite consistent with the aggregate 
productivity slowdown in the 1970s, (2) is also consistent with the stock 
market boom of the 1980s (because the estimated decline in the produc- 
tivity of research implies an increase in the value of existing ideas), and 
(3) suggests that the optimal subsidy to private R&D expenditures is 
around 30%. 

We do not view these specific results (which are perhaps better cate- 
gorized as provocative conjectures) as the main contribution of the pa- 
per. Rather, we have shown that it is possible to construct an overall 
modeling framework into which the key microeconomic pieces of the 
processes of industrial innovation and growth can be fit, and empirical 
estimates of the model parameters do allow the model to mimic the 
economy's gross growth behavior. 

5. See Griliches (1989 and 1990), Kortum (1993), and Evenson (1991). 
6. See Kortum (1993). Schmookler (1966) suggests that patents per research effort has 

been declining throughout the century. 
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The next pages describe the details behind this summary. We begin 
in Section 2 with the complete presentation of the model itself. Section 
3 presents the empirical methodology and results; for reasons explained 
therein it is organized in a different order than this summary and the 
model presentation, beginning with the citation function and ending 
with the creative destruction equation. Section 4 calibrates the model 
and studies the impact of different policy and structural changes on 

growth and research incentives. Section 5 concludes the paper with a 
discussion of the overall significance of the results and suggestions for 
future work. 

2. The Model 

2.1 GOODS MARKETS 

There is a representative agent endowed with a stock of ideas, L units 
of labor, which have no direct utility value; an instantaneous utility 
function that is logarithmic in an aggregate consumption index, Ct; and 
a discount factor, p. Using aggregate consumption as numeraire and 

letting rt represent the real interest rate, we obtain the standard condi- 
tion on the growth rate of consumption, Ct: 

t = rt - p. (1) 

At any point in time, the aggregate consumption index is a composite 
of the quality weighted output of a continuum of monopolistic competi- 
tors, which produce goods indexed by their quality: xt(q) for q E (-00, 
Nt].Quality rises monotonically over time, so newer goods are better:7 

~- - l/a 
rNt 

Ct= f{xt(q)eq}dq Oa 1. (2) 
_f[oc 

Given aggregate consumption and the prices of each of the compo- 
nents of it, pt(q), consumers choose xt(q) so as to minimize the cost of 
that level of aggregate consumption: 

rNt 

J t 
t(q)xt(q)dq. 

7. It is important to realize that the quality ladder aspect is in addition to the monopolisti- 
cally competitive structure of the market. Stokey's (1992) elegant and general represen- 
tation of preferences includes a discrete state space version of ours. 
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The first-order condition for this problem yields the system of demands 
for goods of different qualities: 

xt(q) = p(q)-1/1-a)e(/1- )qC, (3) 

At each point in time, producers take these demand functions, as well 
as factor (labor) prices, wt, as given. For simplicity, let the production 
technology be linear and assume that process innovations have no dis- 
tributive impact:8 

xt(q) = 'qtLP(q), (4) 

where LP(q) is labor allocated to production of xt(q) and 't is labor pro- 
ductivity in the final goods sector at time t. More generally, this may 
be taken as the reduced form of a constant returns to scale technology 
including other factors of production. In the latter case the rental price 
of other factors would combine to add a multiplicative constant to the 
reduced form production function. 

The linearity of technology, together with the common level of pro- 
ductivity and elasticities of demand faced by the infinitesimal producers 
of the different qualities, determines that at any given point in time all 
prices are identical and obey a standard markup rule:9 

1 wt 
Pt(q) = 

oqt 

Replacing this expression in Equation (3) and the results of it in Equation 
(2), determines the consumption wage: 

Wt = (t O)t eNt 

Thus, the price can also be expressed in terms of labor's productivity 
in the goods sector, 'rt, and the quality level of the leading good, Nt: 

t) (q) ) "e 

8. That is, these innovations affect the technologies of goods of all qualities similarly. 
9. Because of their lower quality, older goods will have smaller market shares, but because 

of the assumed desire for variety they never disappear completely (except in the limiting 
case o = 1). 
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Profits accruing to a producer of a good of quality q can now be easily 
determined from the equilibrium values of xt(q), pt(q), and wt:10 

,Tt(q) = aoCte(-ll -)(Nt-q) 

It is interesting to notice that profits do not fall with increases in a 
for all levels of q. This is due to a scope effect. As goods become more 
substitutable, the profits generated by having a new-the best-good 
increase in spite of the reduced markup because the new product has 
a larger potential market. The other side of this is that goods become 
obsolete much faster (for a given rate of entry) because many newer 

goods can substitute them away: Simply put, a stronger creative de- 
struction environment-indexed by a-is better for those that are creat- 

ing and worse for those that have created in the past. 

2.2 VALUATION, INNOVATION, AND LABOR MARKET 

The fundamental value of a new market created at time t is: 

Vt = fT(Nt) e s ddr. 

Dividing both sides by aggregate consumption, letting Vt vt/Ct, differ- 

entiating this ratio with respect to time, and recalling Equation (1), 
yields a differential equation characterizing the dynamic behavior of the 
value of an innovation in terms of units of consumption: 

ot ]t Vt_-'_lTtt(Nt) Vt = (P + 1 - ot Ct 

Replacing the expression for profits in this equation yields: 

( a t) Vt - o-a, (5) 

which is to be compared with the change in the value (in terms of units 

10. Note that if the number of varieties is "small," as is the case in the standard variety 
model without quality ranking where q E [0, NJ], profits would be rt(q) = 
otCte(-a/i-)(Nt-9)l(1_ - e-a)/N). The ranking aspect of quality introduces a "dis- 
counting-like" component to the aggregators so we can work immediately with an 
"infinite-variety" model. This eliminates a host of short-run dynamics issues that are 
standard in variety models. Also see Stokey (1992). 



24 * CABALLERO & JAFFE 

of consumption) of the idea that has just been left behind the frontier, 
V?: 

V? = pV, - a. (6) 

Comparing Equations (5) and (6) shows that the "obsolescence" rate 
faced by owners of blueprints is (ox/1 - cx)Nt, which we call the rate of 
creative destruction. It is proportional to the rate of advancement of the 

knowledge frontier. It also depends on consumers' demand for variety; 
as a approaches unity, the market share of the newest product ap- 
proaches unity, so we truly have a "gale" of creative destruction. One 
focus of our empirical work will be to provide estimates of this term for 
different industries and periods. We return to this later. 

The other side of the value of an innovation is the cost of generating 
it. As is standard in the literature, we postulate a simple linear research 

technology at the firm level. A firm that invests Lr units of effort in the 
time interval dt generates OtLtdt new blueprints.ll These blueprints are 
worth OtL Vt Ctdt to the inventing firm; thus, free entry guarantees that: 

Wt 0tVtCt, 

with equality if there is positive innovation. 

Aggregating over all innovators yields the demand for labor by the 
research sector:12 

Lt = ' 
ot. 

Similarly, we can obtain the demand for labor by goods producers, 
LP: 

Nf t Xt(q)dq = taCt 
-oc It wt 

11. ot is assumed to be deterministic at the aggregate (sectoral) level; we will model it 
later as a function of past knowledge accumulation in the sector. We will assume that 
Ot is independent of current and previous actions by i, so the value of any particular 
firm is just the goods market value of its blueprints. In other words, firms do not 
have private stocks of past knowledge. We discuss this issue further in Section 3.2. 

12. Note that Ot may depend on aggregate quantities, including LT, although in the latter 
case the notation is less useful. 
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Full employment equilibrium in the labor market is then obtained by 
letting: 

Lp + Lr = L. (7) 

2.3 SPILLOVERS, KNOWLEDGE DIFFUSION, AND KNOWLEDGE 
OBSOLESCENCE 

The innovation function described in words above corresponds to the 
demand for labor in the research sector, rearranged: 

N1t = OL. (8) 

This equation hides in Ot most of what is of interest to economists. It is 
the average productivity of research in generating new blueprints; it 

may contain standard aggregate factors of production (e.g., capital and 

labor)13 as well as spillovers from past knowledge production. We will 
focus on the latter but discuss briefly the former in the empirical section. 

With few exceptions, the standard endogenous growth model treats 

Ot as an arbitrary given constant. Such a specification conveys a strong 
form of intertemporal spillover, where the quality of new goods builds 
one for one on the top of the quality of the previous generation of 

goods. Labor productivity in research-i.e., Ot-is independent of the 
level or pace at which ideas emerge, and is disconnected from the spill- 
over process itself. 

In this section we explicitly model several aspects of the process of 
diffusion of information that should influence Ot In particular, we con- 
sider three types of factors. First, there is the concept of endogenous 
obsolescence. Very old ideas are unlikely to contain much independent 
information that is useful for generating new ideas. Unlike the tradi- 
tional notion of "depreciation," the obsolescence of old ideas ought to 
be connected to the distance between ideas in the state rather than the 
time dimension. That is, it is not the passage of time that makes old 
ideas less useful, it is the accumulation of new ideas. Second, inventors 
take time in seeing others' inventions, which suggests that there are 
diffusion lags. Unlike obsolescence, we treat the diffusion of knowledge 
as a function of time rather than accumulated inventions.14 Third, the 

13. With either positive or negative coefficients, thus, with increasing or decreasing aggre- 
gate returns to scale in the research technology. 

14. Some state dependency of knowledge diffusion is likely, but it seems plausible that 
time would be the primary factor. 
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spillover intensity between cohorts of ideas may vary independent of 
the effect of obsolescence of old ideas. 

We capture these factors of the transmission mechanism by means of 
a "citations" function, a(t, s) for t - s. We assume that this function 

depends on the probability of seeing or knowing about an idea (t - s) 
years old, and the usefulness of old ideas in generating new ones. We 
take the probability of seeing an idea (t - s) years old to be (1 - 

e- (t-s)). As y -> oo, diffusion becomes instantaneous; -y = 0 means that 
all old blueprints are unavailable, so each inventor starts from scratch. 
In order to capture the first and last factors mentioned earlier, we as- 
sume an index of usefulness of the form be- (Nt-Ns). The term in the 

exponential reflects the notion that the usefulness of old ideas in the 

generation of new ideas depends on how far the technology has moved 
since the old idea. The parameter 8 could capture two distinct effects. 
It could represent the "potency" of the spillovers emanating from each 
cohort of ideas. It could also represent an "absorption" parameter, mea- 

suring the intensity of use of old ideas by new ideas. The former inter- 

pretation implies that 8 might vary over s; the latter interpretation 
suggests the possibility of variation over t. In principle, one could imag- 
ine interaction effects, i.e., variations over (s, t) pairs. In the empirical 
section, we focus on variation in 8 over s, i.e., variations in the potency 
of the spillovers emanating from different cohorts of old knowledge. 
There are a combination of conceptual and practical reasons for this, as 
will be discussed later. For now we simply treat 8 as a constant, because 
this simplifies the explanation of the basic elements of the process of 

knowledge accumulation. 
The citations function is the product of the usefulness of old ideas 

and the probability of having seen them:15 

a(t, s) = be-P(Nt-Ns) (1 - e-Y(t-s)) t s, (9) 

with y - 0, 3 - 0, and 0 - 8 < 1. 
We let Ot be the sum over all the potentially "citable" cohorts of 

ideas:16 

15. We have saved on notation by working with a single-sector model, but it would be 
straightforward (from a modeling perspective) to add multiple sectors, with differing 
rates of obsolescence and diffusion within and across sectors. Empirical implementa- 
tion of the multisector version would not be trivial. We will comment further on this 
in Section 5 later. 

16. It is easy to add other standard ingredients to O,, including, e.g., decreasing returns 
to current labor in research. See, e.g., Kortum (1993), Stokey (1992), Jones (1992). We 
also comment on this possibility in Section 3.3 below. 
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ot- a(t, s(q))dq = a(t,s)Nsds, 

which can be written as: 

= - - e -(iNt+ t) e~q+ys(q)dq. (10) 
oc 

This specification of the productivity of research effort, Ot, has several 
interesting features. First, as the speed of diffusion goes to infinity, Ot 

converges to a constant: 

lim O = - (11) 
y-?-- P' 

The insensitivity of the research productivity parameter to the rate of 
invention in this limiting case is the result of two offsetting factors. The 
increased obsolescence of the existing knowledge stock that is inherent 
in an economy moving (inventing) at a faster pace is exactly offset by 
the increased rate at which new knowledge is added to that stock. This 
is illustrated in Figure 1. There, we depict two economies-A and B- 

starting with the same level of knowledge (normalized to 0), but in A 
inventions occur at twice the rate of B (for reasons other than parameters 
of the innovation function). An inventor standing at t1 in A has a larger 
number of inventions behind her, but the more rapid rate of invention 
means that a larger fraction of that stock is now obsolete. Equation 
(11) says that these forces exactly cancel each other when information 
diffusion is instantaneous, so that the marginal productivity of research 
in the two economies would be the same.17 Put differently, with instan- 
taneous diffusion the right "clock" for spillovers is determined by the 
number of inventions: If the pace at which these occur increases, so does 
the speed of the economic clock, bringing about offsetting obsolescence, 
which leaves the amount of spillover unchanged at the margin. 

Second, for given {Ns}st, Ot is proportional to 8, which is the fraction 
of total knowledge that is of potential use for new inventions. Also, if 
diffusion is instantaneous, Ot is inversely proportional to the rate at 
which new ideas outdate old ones, P. Thus, putting aside diffusion 

lags, the strength of spillovers depends directly on the exogenous use- 

17. That is, a given amount of research labor would generate the same N in the two 
economies. 
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Figure 1 TWO ECONOMIES WITH DIFFERENT INVENTION RATES 
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fulness of old knowledge, 8, and inversely on the rate at which it is 
made obsolete, P. 

The third important feature of our formulation for 0t is that lags in 
the diffusion of information-i.e., y finite-change the relation between 
the pace of inventions and the productivity of labor in research by intro- 

ducing a form of dynamic decreasing returns. If we return to Figure 1, 
if y is finite it is no longer true that the marginal productivity of labor 
in research at tl is the same in economies A and B. Because of diffusion 

lags, an increase in the rate of innovation does not add to the stock of 

knowledge fast enough to offset the higher rate of obsolescence. The 
fraction of the stock of knowledge observed by inventors in an economy 
where the rate of inventions is relatively high is limited by the fact that 
a large amount of inventions have occurred only recently, when things 
are difficult to observe. In other words, in this case there is a second 
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and exogenous clock that anchors the economy.18 Thus, the productivity 
of research Ot decreases with the rate of invention. 

The next step in presenting the model is to describe the dynamic 
equilibrium behavior of the model. We postpone this until after estimat- 
ing the key parameters of the model, for then the examples used to 
characterize equilibrium can be made more meaningful. 

3. Empirical Analysis 
3.1 OVERVIEW 

The previous section presented a general equilibrium model of the pro- 
cesses of knowledge accumulation, research, innovation, product mar- 
ket competition, and economic growth. To estimate the parameters of 
the model and to test its predictions against economic experience re- 
quires finding measurable empirical constructs that correspond to the 
elements of the model. In this section, we plunge in and make attempts 
to estimate each of the important blocks of the model. We do not at- 
tempt to estimate the overall system of equations implied by the model 
as a whole, because the theoretical and empirical compromises that are 
necessary to find empirical counterparts to the model constructs cannot 
really be applied consistently across the different parts of the model. 
For example, the model has a highly stylized notion of "firms" who 
own no assets other than blueprints. The creative destruction Equation 
(5) describes the time path of the value of blueprints or ideas. To esti- 
mate this equation, we will use data on real firms.19 To do this, we will 
derive the model's implications for the value of a firm, conceived as a 
collection of blueprints. This will involve assumptions that we believe 
are reasonable, but we do not go back and work out the overall implica- 
tions of these assumptions for the model as a whole. Similarly, confront- 
ing the data will require us to allow for lags between invention and 
patent applications, patent applications and patent grants, invention 
and new product introduction, etc. We try to allow for these lags in 

18. Although the model makes a stark distinction between lags (which occur by the "time 
clock") and obsolescence (which occurs by the "invention clock"), the effects discussed 
here will occur as long as the speed of diffusion is less responsive to changes in the 
rate of innovation than is technological obsolescence. 

19. The closest thing to an empirical analogue of the value of an idea is the work of 
Schankerman and Pakes (1986), Pakes (1986), and Pakes and Simpson (1989) on the 
value of patents. As these authors emphasize, however, they are estimating the value 
of patent protection, i.e., the difference between the value of the idea if it is patented 
and its value if it is not. Pakes (1985) estimates the stock market response to the 
"news" represented by a new patent. Thus, his estimates of the value of a patent 
exclude the portion that was predictable based on past patents and R&D. 
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reasonable ways, but we do not formally incorporate them into the 
overall model. To say it differently, we recognize that the loose corre- 

spondence between the model and the data prevents us from interpret- 
ing the model too literally. 

In the following subsections we will discuss measurement issues in 
some detail. Overall, we will use patents as corresponding to ideas, 
implying the number of patents in a period, country, sector, etc. can 
be taken as proportional-sometime with lags-to the corresponding 
N. We treat firms as agglomerations of ideas, represented by their pat- 
ent holdings; we take their market value as representing the value of 
their idea portfolio. We use counts of Research Scientists and Engineers 
to represent research labor, although we explore the use of R&D expen- 
ditures as well. Finally, we use consumption expenditure from the Na- 
tional Income Accounts to measure total expenditure. 

We present the empirical results in approximately the reverse order 
from the model development. We begin with the construction of Ot, the 

productivity of labor in research. To do this, we use a random sample of 
all U.S. patents granted since 1975, and the complete history of previous 
patents cited by our sample patents. We take a citation as evidence that 
the earlier knowledge was used in the later invention, suggesting that 
the frequency of citation can be used to measure a(t, s) in Equation (9). 
Because we observe many (t, s) pairs, we can estimate the parameters 8 
and y of Equation (9), while at the same time estimating a (time-varying) 
proportionality factor between patents and 3N. From this estimation, 
we construct an estimate of Ot (up to additive and multiplicative factors). 

Next, we move to the innovation function, Equation (8). Using the 
constructed Ot from the citation distributions, we estimate the relation- 
ship between patents and corporate research at the aggregate level in 
the United States. We show that by converting patents to N using the 
parameter estimates from the first step, including Ot, and normalizing 
the research measures in the way implied by the model, we can improve 
the fit between patents and research, and shed light on the puzzle noted 
by many researchers of the falling patent/R&D ratio in the last several 
decades (Griliches, 1989; Kortum, 1993). In Section 3.4, we look at the 
aggregate U.S. relationship between N and the growth rate of consump- 
tion, and compare it to the prediction of Equation (21). We find that the 
low-frequency movements in consumption follow a pattern very similar 
to those in N, although displaced in time by a few years. We conjecture 
that this is consistent with the model if there is a lag (not in the model) 
between the act of invention and the product market introduction of 
new goods. Finally, we return to the value side of the model. We esti- 
mate a version of Equation (5), the "creative destruction" equation, 
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using data on firms assigned to technological sectors. We construct esti- 
mates of the rates of endogenous obsolescence or creative destruction 
for these sectors during the decade of the 1970s. 

3.2 KNOWLEDGE DIFFUSION, TECHNOLOGICAL OBSOLESCENCE, AND 
PATENT CITATIONS 

As discussed in Section 2.3, the limiting form of the model has a strong 
form of spillovers in which the incremental innovation always comes at 
the same cost, regardless of how far knowledge has advanced. More 

realistically, inventors can build on the existing stock of knowledge, but 
there are limits on its usefulness in creating the next idea. Equation 
(10) captures the more general case in which the research productivity 
parameter Ot depends on the stock of existing ideas, with each existing 
idea weighted by the probability that it is useful in generating new 

knowledge at time t. These probabilities are, in turn, dependent on the 
likelihood that the previous idea is known to a current inventor, and 
the likelihood that it is useful. 

To implement this approach, we use patents as an indicator of the 
creation of new ideas, and the "citations" (also called references) that 

patents make to previous patents as an indicator of "existing ideas used 
in the creation of new ideas." There is a vast literature on the virtues and 
vices of patent data, which addresses such issues as the large number of 
inventions that are never patented; variations in the "propensity to pat- 
ent" of different institutions, different industries and over time; and the 

large variability in the "size" or importance of individual patents.20 For 
our purposes, we will simply assume that Nt is proportional to the 
rate of patenting at time t, with the proportionality factor treated as a 

(time-varying) parameter to be estimated. 
When a patent is granted, the patent document identifies a list of 

references or citations, which are previous patents upon which the cur- 
rent patent builds.21 The citations serve the legal function of identifying 
previous patents that delimit the property right conveyed by the patent. 
Because citations indicate that a current invention builds on an older 
one, we will use the total number of citations from patents issued in 

year t to patents issued in year s as an indicator of the use of knowledge 
of vintage s in the production of new ideas at time t. Of course, not all 
citations represent spillovers; it is possible, e.g., that the inventor was 

20. For a recent survey, see Griliches (1990). 
21. References are also made to nonpatent materials such as scientific articles; we are not 

using this information. For an application that does, see Trajtenberg, Henderson, and 
Jaffe (1992). 
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not even aware of the earlier work at the time the invention was made.22 
As with variations in the number of new ideas represented by the aver- 

age patent, we will deal with variations in the relationship between 
citations and spillovers by allowing a (time-varying) proportionality fac- 
tor between "ideas used" and citations, and estimating this factor as a 
parameter. Not surprisingly, the need to allow for this "slippage" be- 
tween citations and spillovers will limit to some extent the conclusions 
that we can draw; we return to this issue later. 

Thus, the empirical strategy of this subsection is to collect citation 

frequencies between patent cohorts, and use these to estimate a(t, s) for 

many t and s. We then estimate econometrically a version of Equation 
(9), obtaining estimates of the parameters 6 and y, the "potency" of old 
ideas, and the diffusion rate of knowledge, as well as the proportionality 
factors that map patents into ideas and citations into "ideas used." 

Producing these estimates allows us to do two things. First, we can use 
our estimates of the proportionality factor between patents and ideas 
to construct a time series for Nt from the patent series. Second, we use 
the estimates of the parameters from the citation function, combined 
with the Nt series, to construct Ot, the predicted contribution of old 
knowledge to the production of new ideas. 

Our data consist of a 1 in 100 random sample of all patents in the 
United States granted between the beginning of 1975 and the fall of 
1992.23 Simple statistics on these data are shown in Table 1. They consist 

22. The final decision as to what citations must appear belongs with the patent examiner, 
but it is the result of an interactive process involving the inventor, the inventor's 
attorneys, and the examiner. All of these parties can identify potential citations by 
searching the relevant "prior art." Until the late 1970s, this was done by hand, using 
as a guide the Patent Office classification of the patent. Today, all parties have access 
to on-line text-search capabilities. The incentives faced by each of these parties are 
complicated. First, the applicant bears a legal obligation to disclose any prior art of 
which she has knowledge; the primary sanction for nonperformance appears to be 
the danger of losing the good will of the examiner (who also makes the decisions as 
to whether the patent will issue, what claims will be permitted, and so forth). Second, 
the applicant would, in a sense, prefer fewer citations, because citations may limit the 
scope of the property right. On the other hand, omission of important references can 
be grounds for invalidation of the patent, giving the applicant an incentive to make 
sure that citations appear. For the examiner, identifying citations not provided by the 
applicant is time-consuming. It appears that it is just as common for applicants and 
their attorneys to press for the inclusion of additional references as it is for them to 
resist inclusion of references (personal communication, Ms. Jane Myers, U.S. Patent 
Office). For more discussion on the interpretation of citations as evidence of knowl- 
edge flows, see Trajtenberg, Henderson, and Jaffe (1992), and Jaffe, Trajtenberg, and 
Henderson (1993). 

23. Inventors from every country in the world take out patents in the United States. Of 
course, other countries also grant patents. We will use the phrase "patents in the 
United States" to refer to patents issued by the U.S. patent office, regardless of the 



Table 1 PATENT STATISTICS BY CITING COHORT 

Number Average Modal 
of Total Citations Average Median lag Average Median 

Citing sample sample made per lag in lag in in lag in lag in 
year patents citations patent years years years patents patents 

1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
All yrs. 

694 
689 
650 
651 
443 
648 
650 
571 
550 
662 
706 
700 
821 
766 
932 
928 
935 
596 

12,592 

3,493 
3,352 
3,322 
3,385 
2,391 
3,690 
4,044 
3,716 
3,520 
4,058 
4,733 
4,801 
5,665 
5,487 
7,130 
7,458 
7,017 
4,515 

81,777 

5.03 
4.87 
5.11 
5.20 
5.40 
5.69 
6.22 
6.51 
6.40 
6.13 
6.70 
6.86 
6.90 
7.16 
7.65 
8.04 
7.50 
7.58 

15.30 
14.67 
15.21 
14.93 
15.65 
15.67 
16.12 
16.22 
15.99 
15.39 
16.10 
16.31 
16.39 
15.77 
16.43 
15.35 
16.39 
16.46 

9 
8 
8 
8 
9 
9 
9 

10 
10 
10 
10 
11 
11 
10 
11 
10 
10 
10 

2 
2 
2 
3 
3 
4 
3 
4 
5 
3 
3 
2 
2 
3 
2 
3 
3 
3 

838,442 
820,938 
857,036 
846,948 
891,220 
883,639 
908,679 
927,214 
914,550 
887,513 
924,547 
952,094 
970,055 
958,933 

1,003,940 
986,169 

1,056,534 
1,082,150 

631,512 
569,471 
580,613 
578,342 
644,482 
624,897 
611,175 
677,083 
658,850 
641,609 
632,644 
704,355 
703,255 
650,782 
728,840 
713,108 
737,182 
761,274 
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of 12,592 patents containing 81,777 citations. The sample varies (because 
of variations in the overall grant rate) from a low of 443 patents in 1979 
to a high of 935 in 1991. We have valid citations going as far back as 
1871.24 Thus, we have observations over "t" from 1975 to 1992 and "s" 
from 1871 to 1992. As can be seen from Table 1, the distributions over 
(t - s) have extremely long tails. The mean lag in years is about 16 

years; the median is about 10, and the mode is about 3. 
We want to use these citation frequencies to estimate a(t, s). Let Ct, 

be the observed citations in the sample from patents in year t to patents 
in year s.25 Let St be the number of sample patents in year t, and Ps be 
the number of total patents in the United States in year s. Define 

a*(t, s) =_ C. 

Thus, a*(t, s) is an estimate of the probability that a patent in year t 
cites a patent in year s. Panel (a) in Figure 2a shows the distribution of 
a*(t, s) over s from 1900 for each t. We restrict ourselves to the distribu- 
tions since 1900; before that date the citation frequencies are often zero 
or one, and hence are very noisy estimates of the true frequency.26 
Panel (b) shows the function a*(t, s) for an arbitrary year (1985). The 
distributions shown in Figure 2a have the expected "double exponen- 
tial" shape. Moreover, the increasing part is quite short, suggesting that 

speed of diffusion is fast. We return to this below. 

nationality of the inventor or other considerations. In this subsection, we utilize a 
sample of all such patents. In the next subsection, we will use the phrase "U.S. 
patents" to mean patents (in the United States) that derive from research in the United 
States. 

24. The citations are identified by patent number in a commercial database produced by 
Micropatent, Inc. Patent numbers can be used to assign grant years for the patents, 
because numbers are used sequentially; the patent number of the first patent issued 
each year back to 1836 is published in the Historical Statistics of the U.S. The Micropatent 
data contain a small but significant number (about .3%) of five-digit cited patents, 
which if correct would be patents issued before 1871. On inspection of the actual 
patent documents, we determined that many of these are, in fact, not patent numbers 
at all but "reissue" numbers. Thus, without manual inspection there is no way to 
know if any of these five-digit citations are actually valid early patents. Thus, we have 
simply dropped them from the dataset summarized in Table 1. Citations with six-digit 
or greater patent numbers appear to all be valid. Because patent number 100,000 was 
issued in 1870, we treat all citations 1871 or later as valid. 

25. Patents are dated here by the time of grant. We will discuss timing issues further 
later. 

26. We could, of course, estimate the variance of a*(t, s) and weight accordingly, but these 
estimations take very long to run as is. We decided that any additional information 
present in the noisy early years was not worth the increase in computational time 
necessary to include them. 
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Figure 2a a*[t, s1*1,000 

Figure 2b a*[85,sI*1,O000 
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To go from a*(t, s) to a(t, s), we must be explicit about the relationships 
between (1) citations and "used ideas" and (2) patents and N. We as- 
sume that citations are proportional to "used ideas" with a proportional- 
ity factor (t. That is, the patent office and its examiners have a set of 
rules and practices that determine what patents actually get cited. These 
do not affect the actual use of old knowledge in the generation of new, 
but they do affect the number of citations. Further, these practices can 

change over time. We also assume that PN is proportional to patents, 
with proportionality factor it.27 We can think of 4i/p as the "average 
size" of a patent.28 Many interpretations can be given to this "size" and 
its variation over time. One can think of each patent as encompassing 
a set of distinct ideas. Alternatively, because not all ideas are patented, 
one can think of il// as the reciprocal of the probability that any given 
idea is patented. Because we care about Ij only to the extent it lets us 
use patents for N, we will consider these different interpretations only 
to the extent that they help us think about the plausibility of the esti- 
mates. Using Ct,,/4t for "ideas used" and (4I/)P for N, we can write 
an expression for a(t, s) in terms of observables and parameters: 

~~~~ca(t, s 
s 

(12/t) a(t, s) = 
(4 2)'S,p =(2/) 1la*(t, s). (12) 

Because 4t is purely a measurement parameter, we will absorb 1/42 
into it and simply write (<t from now on. This gets us almost to the 
point of being able to rewrite Equation (9) (the expression for the proba- 
bility than an idea will be used as a function of elapsed time and elapsed 
N) in term of observables. The only additional step is to note that (Nt 
- Ns)-the number of ideas between s and t-is, under our assump- 
tions, just the number of patents granted between s and t, weighted by 
the appropriate tIs/p. Equation (9) can be rewritten: 

a*(t, s) = 
(t,ts,Ss exp(- PxPE Px (1 - e- (t-)), t . (13) 

x=s P 

Equation (13) is the key empirical construct of the paper. Because of 
the multiplicity of parameters and unfamiliarity of this sort of data, it 
requires several comments before we proceed to the results. First, be- 

27. We choose this parameterization to emphasize that the parameter P is not identified 
by the patent equation. We will identify it using the growth equation below. 

28. The inverse of the "propensity to patent" (Griliches, 1990). 
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cause of the need to estimate the proportionality factor between patents 
and N, we cannot estimate p from the citation data. That is, we can use 

Equation (13) to recover from the citation data the relative size of patents 
in different cohorts in terms of ideas, but we cannot estimate the overall 

average size without bringing in additional information.29 (We will use 
the relationship between N and growth for this purpose.) Second, be- 
cause we have multiple observations over both s and t, the parameters 
in this equation are all identified in principle, up to a normalization that 
sets one 8s.30 

Third, although the parameters pt and 8s appear symmetrically in 

Equation (13), we interpret them very differently. We treat 4(t-the pro- 
portionality factor between "ideas used" and citations-as a pure nui- 
sance parameter, because the citations process holds no interest for us 
other than as a window on the spillover process. We need to allow + 

to vary over t because citations per patent have been rising rapidly, and 
there are good reasons to believe that institutional changes are the rea- 
son. On the other hand, 8s is a key model parameter; its variation over 
time captures changes in the potency of knowledge spillovers. As al- 

ready mentioned, we find a significant fall in this potency over the 

century, and associate this fall with the observed reduced productivity 
of private research. 

It is, of course, crucial for identification that we do not have parame- 
ters 8t and bs, or 8st and (bst. That is, we do not allow the potency 
of spillovers to depend on the receiving cohort, we do not allow the 

proportionality factor between citations and "ideas used" to vary with 
the cited or "used" cohort, and we do not allow "interaction terms" in 
either. Each of these restrictions requires comment. By not allowing 8 
to vary over t or st, we are saying that new-invention cohorts do not 

vary in their ability to use the knowledge of the past, and that the 

potency of a given historic cohort in generating spillovers is a once-and- 
for-all attribute that does not vary over the succeeding cohorts. In other 
words, today's inventors may have available to them more or less 

knowledge than was available to yesterday's inventors, but there is 

nothing intrinsic about the nature of today's inventions or inventive 

process that makes previous knowledge more or less useful to today's 
inventors than yesterday's knowledge was to yesterday's inventors. 
Further, (holding obsolescence constant) the potency of, e.g., 1920 in- 

29. Equivalently, we can estimate pN but not N. 
30. To see this, it is important to understand that 15 and t are not different parameters; 

for any given year we have the same "propensity to patent" whether we are looking 
at that year as a citing or cited year. 
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ventions for facilitating new inventions was the same in 1960 as it is 

today. In our model, in which quality is a unidimensional attribute so 
that the "nature" of inventions never really changes, these seem like 
natural restrictions. In a richer model, in which there were multiple 
quality dimensions, then one might imagine that the focus of invention 

today might be more or less similar to that of 1920 than the focus of 
invention was in 1960, suggesting that potency would vary with t and/ 
or st. Of course, to the extent that variations in citation practices make 
it necessary to allow for variations in )t, it is not clear how variations 
in 8 across t could be identified. 

The restriction on <, although not empty, seems more innocuous. 
What we are saying is that the "propensity to cite" past patents does 
not vary over the different historic cohorts, and that patent office prac- 
tices may change over time, and this may change the number of cita- 
tions (holding spillovers constant), but that these changes do not affect 

past cohorts differentially. Both of these propositions seem to be consis- 
tent with our impressions of the examining process. The biggest 
changes have been computerization of the patent data base, allowing 
on-line text searches to facilitate identification of citations, changes in 
the procedures for bringing citations to the examiners' attention that 
have made it easier to include citations in the patent document, and a 

perceived increase in the enforcement of the legal obligation on inven- 
tors to disclose knowledge of prior art.31 

A fourth observation of Equation (13) relates to the way the parameter 
t--number of ideas per patent over time-enters the equation. Because 

the flow of new ideas is not observed, any attempt to pin down varia- 
tions in the propensity to patent requires having a second indicator 
(besides the rate of patenting) of the rate of knowledge generation.32 In 
this case, our second indicator is the rate of decline in the citation of 
old knowledge. That is, if the patents during some historical period 
were unusually large, in the sense of incorporating many ideas in each 

patent, then they should have made previous knowledge obsolete to a 
greater extent than would be expected based on the number of patents. 
This will be reflected in the data in the form of a reduced number of 
citations to these previous periods. Of course, a period with larger than 

average patents would also receive more citations itself, and that is 

captured by the presence of is in front of the exponential.33 Because of 

31. Personal communication, Jane Meyers, U.S. Patent Office. 
32. See Pakes and Griliches (1984). 
33. Similarly, if a period's patents are bigger than average, they will make more citations; 

this is captured by the presence of it out front. 
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the presence of the 8 and 4 parameters, however, this effect probably 
contributes less to the estimation of the t4s than the exponential term.34 

Thus, the model has two distinct parameters that relate to the average 
"importance," broadly speaking, of patents of a given cohort.35 The 
variation over time in the parameter 4 captures any differences in the 
number of new ideas embedded in the average patent. The variation 
over time in the parameter 8 captures variations in the potency (in terms 
of spillover generation) of the ideas themselves. 

Finally, we note that the diffusion of knowledge is assumed to occur 
at a rate that is measured in time rather than elapsed inventions. This 
seems natural. It is less obvious that the diffusion parameter y need be 
constant over time, but we did not explore its variation. 

We estimated variations of Equation (13) by nonlinear least squares 
on the set of observations consisting of (s, t) pairs with t varying be- 
tween 1975 and 1992 and s varying between 1900 and t.36 Although a 
model in which all of the bs and ijs are allowed to vary over all s and t 
is identified in principle, we did not attempt to estimate it. Rather, we 
followed a strategy of (1) always allowing a full set of multiplicative 
constants (t, to control for changes in citation practices, and (2) using 
a combination of dummies over longer time periods and polynomial 
functions of time to capture variations in both 8 and J over time. 

The results are presented in Table 2. The first column shows the 

simplest model one could imagine estimating, in which we ignore the 
"two clocks" and estimate both diffusion and depreciation off of the lag 
in years between s and t. Not surprisingly (having seen Fig. 1), this 
model fits the data reasonably well. We get an estimate for y of about 
.8, and an estimate for the "obsolescence" rate of about .075 per year. 
As would be expected from the rising average citations made per patent 
shown in Table 1, the estimates of (t rise from 1975 to 1992. This is a 
result that is apparent in all specifications. Next, we substitute elapsed 
patents for time in the depreciation term, while still maintaining con- 

34. If we estimated the model with a free and complete set of the parameters 85, there 
would be no contribution to the estimation of the time pattern of i from its presence 
out front. Because, however, we constrain the bs to follow particular functional forms, 
this is not the case. 

35. Note that the "size" of ideas themselves, in terms of the product quality improvement 
they allow, does not vary except in the specific way defined by the exponential form 
in which q enters the aggregate consumption good (Equation (2)). 

36. Because the a*(t, s) are estimated and the frequencies differ greatly, the model is 
heteroskedastic. We did not deal with this problem explicitly, but dropping the early 
observations can be interpreted as limiting ourselves to that part of the data in which 
the heteroskedasticity is likely to be less. The standard errors reported are hetero- 
skedasticity consistent, however. 
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Table 2 CITATION FUNCTION REGRESSION RESULTS 

Parameter 1 2 3 4 

ry .816 .703 0.707 0.705 
(.019) (.015) (0.012) (0.016) 
.074 .062 a a 

(.001) (.001) 
41975 1.000 1.000 1.000 1.000 

(41992 1.244 1.444 1.495 2.066 
(.028) (.027) (0.012) (0.021) 

MSE 0.184 0.130 0.124 0.122 
2 (LLK-LLKpc) -537.6 70.6 15.0 

Notes: Dependent variable: Sample citations from year t to year s/((Sample patents)t-(total patents)s). 
Sample: t from 1975 to 1992; s from 1900 to t. 
"See Figure 2. 
Estimates of )1976 - 01991 are omitted to conserve space. (LLK-LLKpc): log-likelihood minus the log- 
likelihood of the previous column. 

stancy over time in bs and 4s. To facilitate interpretation of the results, 
we use for the terms in the summation in Equation (13) the number of 

patents in each year divided by the average (over the whole sample, 
1900-1992) number of patents per year. This makes the parameter in 
front of the term (Nt - Ns) the average annual obsolescence rate; it is 
therefore directly comparable to the time-obsolescence rate estimated in 
Column 1. Estimating obsolescence based on patents rather than time 

improves the fit markedly,37 and also reduces the average obsolescence 
rate to just over 6% per year. Because the number of patents is greater 
in recent years, the observed prevalence of early citations is consistent 
with a lower average annual obsolescence rate than when the rate is 
held constant over time. 

The third column of Table 2 "frees up" the parameter ij to vary over 
both t and s, i.e., it allows for variations in the propensity to patent 
over time (while still keeping the spillover potency of ideas constant 
over time). Needless to say, there are many different ways to represent 
the movement in tit. We explored a number of these, and they generally 
give similar overall results. The version reported in Column 3 of Table 
2 models /tt with a single dummy for the years 1900-1919, a second 
dummy for 1920-1939, a third dummy for 1940-1959, and a cubic equa- 
tion in the log of t for the period 1960-1992. This improves the fit fur- 
ther, and the parameter estimates are quite significant. The time path 
of 4' implied by these estimates can be seen in Figure 3a. Generally 

37. The sum of squared residuals is reduced by about 30%. 
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speaking, the path rises over the century, reaching a peak somewhere 
during the 1970s, and then begins to decline. Again, the patent counts 
have been divided by the average patents per year so that the magni- 
tude of f can be interpreted as the annual rate of obsolescence created 
by an average year's worth of patents.38 

Column 4 builds on Column 3 by freeing up 8s. The parameterization 
of bs is parallel to that for ts, with dummies for long periods early in 
the century and a cubic equation in t for the period 1960-1992. This 
yields a similar pattern for tit to what we had before, except in the very 
beginning of the century. But 8s moves significantly in the opposite 
direction, as shown in Figure 3b, falling significantly from the start of 
the century until about 1960, and then leveling off into a slower decline. 
As we will see later, the decline in 8s shown in Figure 3b translates into 
a secular decline in the predicted productivity of research, Ot. In other 
words, knowledge from successive patent cohorts over the century is 
being incorporated in current patents at rates that imply that the po- 
tency of later cohorts in facilitating new knowledge generation is mark- 

38. The number of patents per year also changes over time, of course, causing the varia- 
tion in the yearly rate of obsolescence to be much greater than the variation in ipt. See 
Figure 4. 
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Figure 4: TECHNOLOGICAL OBSOLESCENCE 
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edly less than the potency of earlier cohorts. Because more recent 
cohorts get more weight (they are less obsolete) in current knowledge, 
the predicted effective spillover rate (and hence research productivity) 
falls over the century.39 

As noted earlier, the estimate of the diffusion parameter y is not very 
sensitive to these specification issues. It is consistently about .7 to .8, 
suggesting an average lag until knowledge has diffused of between one 
and two years. 

For obsolescence, it is not 4t that matters, but rather itP,, which is 

equal to N'' -= . Figure 4 shows different estimates of N', compared 
to the overall patent series itself. What the picture shows is that first, 
the variations in ti over time are small relative to the movements in 
patents. Nonetheless, the "corrected" series does show a noticeably 
different pattern, particularly at the beginning of the century and from 
the end of World War II until the late 1970s. In this latter period, our 
estimate of N' increases almost 40% more than the patent series itself. 
After the early 1970s, 4Jt begins to decline, exacerbating the fall in the 

39. One manifestation of this phenomenon is the presence of fat tails in the distribution 
of the a*(t, s)'s. This is not enough, however: allowing for fat tails in estimation 
improves the fit but it leaves-to a large extent-unaffected the declining path of 85. 

0 

6 1900 



Knowledge Spillovers and Creative Destruction * 43 

rate of patenting itself that occurs between 1970 and the early 1980s. 
Then patenting picks up again, and although it is still falling, N' picks 
up as well. It in the next subsection, we turn to a more detailed analysis 
of trends in N' versus trends in patents. 

The last output of the citations analysis is the construction of the 
series Ot, our estimate of the productivity of labor in research. From 

Equation (10), Ot is the integral over all past ideas q of a(t, s(q)). We do 
not observe a(t, s), but the estimated citation equation can be used to 
construct predicted values of a(t, s), using the parameters y, as, and 4's 
and the data series Pt. This is easily done by replacing Equation (13) in 

(12). 
Our estimate of Ot (up to a constant) is then easily obtained from a 

discrete representation of the definition of Ot:40 

ot E a(t, s),sPs. s=o 

In the formulation described previously, in which %t enters the rela- 

tionship between a(t, s) and a*(t, s) but does not affect a(t, s) itself, the 

parameters (t do not enter into the construction of a(t, s) or Ot. We also 

explore a variation in which we interpret the parameters ,t as represent- 
ing something real about the use of knowledge rather than a citation 
artifact. This will change the estimated path of Ot after 1975. 

Two potential estimates of Ot from the citation function are plotted in 

Figure 5. The solid line corresponds to Column 4 of Table 2, in which 

as is allowed to vary over time. It shows a dramatic fall in the predicted 
productivity of research labor, very rapid from the 1950s to the early 
1970s, and then somewhat slower than that. The heavy dashed line in 

Figure 5 corresponds to Column 2 of Table 2, i.e., it holds 8b constant 
over time. It shows a much flatter pattern of research productivity. In 
the next subsection, we will relate the estimated Ot to the observed 

productivity of research in the United States. For now, it is important 
to emphasize that this time series is not generated from data on the 

productivity of research. Rather, it is the model's prediction about the 

path of research productivity, based on the pattern of old knowledge 
used, as represented by citations, in the production of new knowledge. 
What is driving the trend is the path of 6,. In a nutshell, the citations 
data show that recent cohorts of patents are less cited than older ones 

40. The fact that the summation starts from 0 rather than minus infinity is empirically 
irrelevant because the first t we study is sufficiently large (60) so the value of the 
excluded a(t, s)N, is negligible. 
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Figure 5: THE STOCK OF PUBLIC KNOWLEDGE (0) 
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(controlling for obsolescence), suggesting that they are less potent in 
generating spillovers. Because obsolescence makes recent patents more 
important in the overall stock, the current stock is less potent overall 
than the stock that was available to previous inventors. With shorter 
shoulders to stand on, current inventors have to spend more on tele- 
scopes in order to see as far as their predecessors did. 

Note that the estimated decline in Ot is conditional on our assumption 
that the parameter 4t captures only citation behavior and not any change 
in the actual use of old knowledge. If, on the other hand, one believed 
that the increase in the raw citation rate that can be seen in the data is 
a real (exogenous) increase in the use of old knowledge, then we would 
expect this increase to feed through into rising research productivity. It 
seems likely, a priori, that the large increase in citation intensities re- 
flects primarily a change in citation practices. In addition, as we will 
show later, actual research productivity shows no evidence of increasing 
after 1975 as would be predicted if 0t were rising steeply. 

3.3 THE INNOVATION PRODUCTION FUNCTION 

Equation (8) describes the production of innovations as a function of 
the research labor force L[ and a research productivity function or pa- 
rameter Ot. In the previous subsection we have developed a method for 
constructing an estimate of Ot based on the "use," as evidenced by 
citations, of older knowledge. In this subsection we will incorporate this 
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estimate into estimates of the innovation function itself.41 We estimate 
the innovation function on aggregate time series for patents and two 
measures of research inputs-R&D spending and research scientists 
and engineers-for the period 1957-1989. If the data and model are 

interpreted literally, Equation (8) leaves large serially correlated distur- 
bances unexplained. One possibility is to correct for serial correlation, 
leaving this dynamic pattern in the disturbance unexplained. Another 

possibility is to modify the theory so innovations are a direct function 
of current and lagged research. Doing the latter modifies our model 

only slightly if the lagged research that matters is the aggregate one, 
while it makes the theory more cumbersome if lagged research is pri- 
vate. From the point of view of estimation in this section, however, 
this distinction does not matter. Moreover, this common specification is 

indistinguishable from a third explanation where the serially correlated 
disturbance is attributed to the timing of research, innovation, and pat- 
enting. We explain and adopt the latter, but it should be clear that we 
have no strong position on the relative importance of these sources of 
serial correlation. 

We will treat the fundamental innovation equation (8) as holding with 

respect to unobserved new ideas. These ideas do not, however, lead 

instantaneously to patent applications. Rather, patent applications Pt 
are given by: 

(1 - p) 
tpt 

= pI;ob = 1 pL t 

Thus, as previously, we allow for a time-varying propensity to patent 
or proportionality constant between ideas and patents; we call this it, 
and we will use the estimates from the previous subsection to convert 

Pt to Ntb. In addition, however, we allow for lags in the conversion of 
ideas into patent applications. We will estimate these lags, parameter- 
ized by p, from the innovation function itself. We take the actual produc- 
tivity parameter, 0t, to depend on the Ot estimated earlier and exogenous 
research productivity: Ot = q0 + -T10t. The parameters q0o and -1 will also 
be estimated from the innovation function. 

Note that patents are not actually granted until some later date, usu- 

ally within two to three years of application but occasionally much later. 

41. We will also use the estimates of 4t from the previous subsection to convert patents 
to N'. Given the large inflow of foreign patents, this is likely to underestimate the 
change in size of U.S. patents, for on average there will be more inventions in between 
subsequent U.S. patents. 
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Because this second lag is variable and results from the vagaries of the 

patent office, we estimate the innovation function using patents by year 
of application.42 This is in contrast to our construction of Ot, and the 

knowledge diffusion analysis more generally, which used patents by 
grant year. This was predicated on the assumption that knowledge does 
not begin to spread until the patent is actually granted. This seems 

plausible, because patent applications are secret. Only when the patent 
is granted is the technical knowledge contained in it published. We 
should note, however, that we will look below at the response of firms' 
market value to (ultimately successful) patent applications. We are im- 

plicitly assuming that, at the time of application, the market knows that 
an idea has been generated, and responds to that knowledge, even 

though its technical content is still secret. 
We estimate the innovation function using measures of U.S. research 

inputs, and a measure of U.S. patents. Again, this differs from the 

previous subsection where, though we are using "patents in the United 
States," we include patents granted in the United States to foreigners 
in N. This means that, in estimating the relationship between U.S. re- 
search and U.S. patents, we include in the spillover function Ot all pat- 
ents, not just U.S. patents. Thus, we are assuming that U.S. research 

produces U.S. inventions, but it draws upon (and is made obsolete by) 
worldwide inventions. 

It is well known that the productivity of research, as measured by 
patent output, shows a long-term decline from the 1950s until the mid- 
1980s (Griliches, 1989; Kortum, 1993). This is shown in Figure 6. The 

top panel shows the ratio of patents to several measures of research 

input; the bottom panel plots N', i.e., 4t times patents. The patent series 
is total "U.S. priority" patents,43 by year of application. The research 

input measures include real nongovernment R&D expenditures and to- 
tal research scientists and engineers, as well as each of these scaled by 
U.S. population,44 and nominal R&D scaled by nominal expenditure. 
Explanations that have been put forward for the downward trend in 

patent productivity include (1) an exogenous fall in "technological op- 
portunity," (2) aggregate decreasing returns to research, producing a 
fall in average productivity because research has risen significantly, and 

(3) a decline in the propensity to patent (Kortum, 1993). 

42. This is the standard practice in the patent literature. See, e.g., Hausman, Hall, and 
Griliches (1984). 

43. This means that the patent was applied for in the United States before being applied 
for anywhere else in the world. 

44. Civilian population over the age of 16 (1991 Economic Report of the President). 
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Figure 6a: PATENTS/RESEARCH 
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Our estimates from the previous section shed significant light on 
these issues. First, as can be seen from Figure 6 (as well as Fig. 4), 
correcting for patent size using the estimated /t does mitigate the fall 
in productivity up until 1970. Thereafter, unfortunately, the estimated 

/t begins to fall, aggravating the apparent fall in productivity. Our esti- 
mates for Ot do, however, provide an explanation for much of the overall 
trend in patent productivity. This can be seen from Figure 6, in which 
the estimated Ot is plotted along with the observed productivity. In both 

panels, it is clear that the overall downward movement in Ot is quite 
consistent with the fall in research productivity, although it does not 

explain the high-frequency movements, including the precipitous drop 
in the late 1970s and the rapid rise in very recent years. In the terms of 
the previously offered explanations for the fall in patent productivity, 
our estimates suggest that "technological opportunity" has indeed 
fallen. In our model, this takes the form of decreased usefulness of the 
stock of existing knowledge in generating new ideas.45 The previous 
section shows that this fall can be observed in the pattern of actual use 
of older knowledge, as evidenced by patent citations. 

Figure 6 suggests that the estimated 0t explains much of the observed 
trend in patent productivity. To push this a little further, we estimate 
the equation:46 

1N?b = o + (1 
- 

p)0tRt + pNl;l, 

with Rt a measure of research input and 

t = q0 + Tl 0t 

The parameter estimates are presented in Table 3. The columns corre- 
spond to different measures of research input. In column 1, we use 
research scientists and engineers. The fit is quite good, and the esti- 

45. Note that the Ot shown in Figure 6 is the one that results when we treat the increase 
in 4t as an artifact of citation practices rather than a real phenomenon. On the one 
hand, the close correspondence of the resulting Ot to measured productivity provides 
further support to our conjecture that the movements in 4t are not "real." On the 
other hand, if this is wrong and the "abnormal" trend in citations corresponds to a 
true increase in spillovers, our measure of 0 exacerbates rather than eliminates the 
patent/R&D ratio puzzle, at least until 1986. 

46. We also estimated versions allowing for decreasing returns with respect to research 
input. The standard specification with decreasing returns but r = 0 was uniformly 
and very significantly outperformed by the linear model with rl unrestricted. Adding 
decreasing returns to the model with m1 unrestricted yielded unrealistically low and 
very imprecise estimates of the returns to scale parameter. 
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Table 3 INNOVATION FUNCTION RESULTS 

S-E S-E/Pop. R&D R&D/C R&D/Pop. 
Parameter 1 2 3 4 5 

OL -0.012 -0.013 0.002 -0.009 -0.013 
(0.008) (0.007) (0.009) (0.062) (0.007) 

p 0.953 0.934 0.887 0.912 0.934 
(0.069) (0.062) (0.076) (0.074) (0.062) 

'io -0.380 0.002 -0.133 -0.042 0.028 
(0.134) (0.056) (0.133) (0.052) (0.056) 

m1 0.759 0.259 0.188 0.207 0.254 
(0.223) (0.071) (0.189) (0.104) (0.071) 

LLK 180.0 182.4 176.6 177.9 178.6 

Notes: Dependent variable: 4t weighted aggregate U.S. priority patents by year of application. Sample: 
1958-1989. 

mates are all reasonable and statistically significant. As suggested ear- 
lier, Ot is highly significant. The next column uses research scientists 
and engineers as a fraction of the population. The fit is approximately 
the same, and the role of Ot is smaller but still positive and significant. 
In the next three columns, we report results for research input measured 
as real R&D expenditure, and R&D expenditure divided by consump- 
tion and population, respectively. Except for unscaled R&D (where the 

signs are correct but the coefficients are not significant), the results are 
similar to those obtained with scientists and engineers. 

Thus, the regression results confirm what can be seen in the pictures, 
that our estimated decline in Ot, inferred from patent citations, "ex- 
plains" much of the secular decline in measured patent productivity. In 

interpreting this, we must consider the factors determining the almost 
monotonic decline in Ot through our sample period. First, there is the 
decline in bs, indicating a reduction in the usefulness of successive co- 
horts of ideas in generating spillovers to the creation of new ideas.47 In 

principle, there is a second force potentially at work: Ot is constructed 

using all patents, not just U.S. patents. The fraction of U.S. patents 
going to foreigners rose from about 11% in 1957 to about 44 percent in 
1989. From the point of view of U.S. inventors, this increase in foreign 
patenting in the United States has the effect of speeding up the 

47. The empirical regularity is that the citations to early patents are more frequent than 
would be expected based on the estimated rate of exponential obsolescence. We inter- 
pret this in terms of s8 having been larger in the early years. Alternatively, one could 
say that the true obsolescence function is "slower" than exponential, i.e., the citation 
distributions have fatter tails than predicted by exponential obsolescence. Either way, 
the effect is similar; we would predict a decline in the effective spillover base as 
knowledge accumulates. 
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"N clock" without affecting the "time clock." New ideas are coming 
faster in the aggregate, making it harder for any inventor to take a step, 
and much of this new knowledge is too recent to have diffused and 

thereby spilled over to helping new invention. 
The top panel of Figure 7 shows that it is actually only the decline in 

bs that mattered. The solid line shows what 0t would have looked like 
if 86 had been constant; it is itself quite constant. Figure 7 also shows 

why the increase in N' caused by foreign patenting did not matter: The 
rate of knowledge diffusion is fast enough so that the spillovers from 
this influx roughly balanced the increased obsolescence. This can be 
seen from the dashed line, which shows what Ot would have looked 
like if y were much smaller, i.e., .001. In that case, we would have had 
a marked decline in Ot even if 8s had been constant. The bottom panel 
reproduces these two cases for the actual (declining) path of ,. It shows 
that, if y had been smaller, there would have been an additional down- 
ward effort on productivity from the influx of foreign patenting. But, 
given the actual y, this effect is small; diffusion is close enough to instan- 
taneous that we are, in effect, in the world described in Section 2.3 in 
which Ot does not depend on N. 

3.4 N AND GROWTH 

As shown in Equation (21), the theoretical model predicts an extremely 
simple linear relationship between the growth rate of consumption and 
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Figure 8a: GROWTH AND INNOVATION 
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N. Casual inspection of the data makes clear that such a relationship 
does not hold for annual data in the United States. The high-frequency 
movements in these series are not likely to be well explained by a 
growth model. Therefore, to explore whether we can find evidence of 
the predicted relationship, we smoothed both time series by using pre- 
dicted values from a regression of the actual series on a fifth-order poly- 
nominal in the log of time. The top panel of Figure 8 shows the resulting 
smoothed consumption growth rate and N, using the same U.S. priority 
patent series, corrected by the estimated 4i) from the citation data. The 
shapes are strikingly similar, especially considering that it is not clear 
that one can expect consumption, as actually measured in the National 
Income Accounts, to move as predicted by the model.48 

Given the previous discussion, it is not clear how seriously one 
should take precise timing issues. For completeness, however, we men- 
tion that the N series appears to be displaced forward by one or two 

48. The essence of technological change in this model is the introduction of new goods. 
As has been emphasized by Griliches (1979) and others, the extent to which the 
statistics capture the increase in consumption that occurs when new goods are intro- 
duced varies greatly across industries. The authorities measure revenues, not output, 
and convert revenues to output using price deflators that generally ignore the quality 
improvement associated with new goods. improvement associated with new goods. 
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years up until the early 1980s. This suggests either that new ideas are 
incorporated in new products even before the date of patent application, 
or, perhaps more likely, that both series are moved by other shocks but 
exhibit different dynamic responses to these. 

From Equations (2) and (4), it is possible to write: 

_ ~ ~~~~- -l/ot 

Ct= {Lt(q)eq}adq 
Tit oc - 

but because 

Nt NNt 
j Lt(q)dq = L , 

and 

LU(q) = LP(Nt)e("/l1-,)(q-Nt), 

we can express the rate of growth of consumption as:49 

Ct A t 
- + N t - t 

We estimated the following empirical version of this equation: 

= Ao + X1N; - 2A (?f). (14) 
~,OtJ 

The coefficient \2 was never significant, so we omit the last term in the 
regressions reported below in Table 4. Columns 1 and 2 present results 
for the growth rate of consumption, with and without a serial correla- 
tion correction. Columns 3 and 4 present the same results using the 
growth rate of labor productivity instead of consumption as the depen- 
dent variable. All versions tell a similar story. The coefficient on N' is 
about .5 to .6 and significant.5 

The bottom panel of Figure 8 shows the (smoothed) growth rate of 

49. For this we use the approximation A ln(1 - x) - -x, for x small. 
50. All coefficients appear significant, but our transformation introduces large biases in 

the standard errors, so these should not be taken too seriously. Again, we only empha- 
size the coincidence in the general shape of the curves in Figure 8. 
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Table 4 GROWTH EQUATION REGRESSION RESULTS 

Parameter 1 2 3 4 

ko -0.0092 -0.0098 -0.0248 -0.0311 
(0.0044) (0.0032) (0.0132) (0.0083) 

XI 0.6121 0.5999 0.5162 0.5440 
(0.0629) (0.0434) (0.1872) (0.1128) 

p 0.9037 -0.8993 
(0.042) - (0.0362) 

R2 
LLK 5.752 7.237 4.697 6.315 

Notes: Dependent variable: smoothed growth rate of U.S. consumption expenditure. Sample: 1958- 
1989. 

labor productivity (GNP over employment), and the "true" N that can 
be derived from Nob using the estimated parameters from the innovation 

equation. Again, the movements are very closely related. Although we 
stress that the lag we have incorporated between the true and observed 
N is something of a black box, the model does seem to do a good job 
at predicting the longer-term movements in the productivity series. 

3.5 CREATIVE DESTRUCTION 

All of the previous empirical subsections can be thought of as condi- 
tional on the path of research. In the model, the allocation of labor to 
research is determined by the value of new ideas, whose time path 
is given by Equation (5), the "creative destruction" equation. In this 
subsection, we present some empirical estimates of that equation. 

As noted earlier, estimation of this equation requires confronting the 
notion of firms. It also requires identifying the concept of sectors, which 
have not been explicitly described in the models but whose dynamic 
properties can be easily understood by extension of the results from the 

single-sector model. We will treat firms as agglomerations of blueprints, 
although we will not seek to explain why any particular firm holds the 

particular portfolio of blueprints that it does.51 We will assign firms to 
sectors, which will be defined as groups of firms whose research activi- 
ties have historically focused on similar areas. With these assumptions, 
we can derive a version of the creative destruction equation that relates 
the deviations from the sector mean in firms' value growth rates to the 
deviations from the mean of the firms' N. 

51. Although this definition of firms is consistent with the nonexcludability of knowledge 
implicit in the model, it is unlikely to hold true in reality. In other words, research 
know-how, organizational capital, and other forms of private knowledge must add 
value to a firm beyond the value of its patents. 
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Let Fit,, It and Is represent the value of a firm i in sector s, the value 
of the entire sector, and the value of the firms in sector s that are in- 
cluded in the sample; all of them at time t and in terms of units of 

consumption. Letting Ai(q) and (Ot(q) be indicator functions, we have: 

Nts 

Fits = 
At(q)Vt(q)dq, 

rNts 

Is t- (9) Vt(9)dq, 

Nts 
Its- J Vt(q) dq 

Differentiating these expressions with respect to time, using Equation 
(5), letting Nits Ai(Nts)Nts, and assuming wts(q) ots, we obtain our 
basic estimating equation:52 

Is Fit_.s 
Fits - Ist s ~ s Nt (15) 

its _ ts _ 

where 

ts o= 
-- ts Ots 

We estimate Equation (15) on an unbalanced panel of firms from the 
NBER R&D panel (Hall et al., 1988), which contains Compustat financial 
information and U.S. patent data. The assignment of these firms to 

technological sectors is described in Jaffe (1986). Briefly, the distribution 
of the firms' patents across patent classes for the period 1965-1972 was 
used in a multinomial clustering algorithm to identify groups of firms 
with "similar" patent class distributions. The 567 firms are assigned to 
a total of 21 sectors. Simple statistics for the sectors are presented in 
Table 5. In general the level of aggregation of the sectors is comparable 

52. An alternative derivation of the same equation can be obtained by letting At(Nts) be a 
random variable independent across i, so the best predictor of its realization is the 
share of the firm's value in the industry. Also, if one assumes that each sector is 
comprised of a large number of firms, the total number of new patents in the industry 
together with its change in value can be taken as known in advance (or at least 
uncertainty about these can be assumed to be negligible relative to the same concepts 
at the firm level). 



Table 5 STATISTICS FOR CREATIVE DESTRUCTION SAMPLE FIRMS 

Firm 
Average patents Average 

Average growth times estimated 
Number Total Average patents rate sectorl Average Average rate of 

of obser- firm per of firm sector sector creative 
Sector firms vations value firm value value value patents destruction 

1 30 441 542.23 5.7642 0.04455 352.45 14735.46 167.02 0.0145 
2 44 684 2351.03 67.0877 0.0743 3768.71 96900.08 2889.46 0.0318 
3 16 226 4070.11 78.0487 0.03546 4622.25 57903.42 1141.43 0.0129 
4 21 318 2652.53 45.1792 0.05299 1123.76 49921.29 907.29 0.2511 
5 16 239 706.93 16.841 0.05748 337.34 9956.7 255.97 0.0304 
6 20 303 8224.99 79.8119 0.05127 5477.57 146432.80 1544.65 0.0018 
7 24 341 208.75 5.0469 0.07579 143.5 4158.79 112.46 0.0411 
8 21 326 4530.83 58.7791 0.14140 3378.6 88065.11 1209.72 -0.0012 
9 33 489 1286.94 54.1984 0.09234 2063.89 38265.89 1708.56 0.1313 
10 27 418 1607.58 57.2847 0.12077 2159.74 39483.43 1508.15 0.0693 
11 27 393 1147.94 34.916 0.02499 1349.37 27557.81 877.26 0.0246 
12 34 511 1071.48 6.3053 0.03260 226.17 32952.44 205.77 0.0115 
13 31 451 502.24 14.6386 0.08774 695.64 13135.86 418.41 0.0056 
14 13 200 1726.71 15.34 0.08214 475.53 20197.74 195.03 0.0065 
15 33 493 1333.17 16.7728 0.04794 872.42 39768.57 525.17 0.0105 
16 23 342 547.36 9.462 0.07767 518.28 11241.32 207.74 0.0205 
17 49 757 2145.09 41.749 0.06716 3995.33 99554.18 2018.69 0.0205 
18 24 339 587.77 9.6962 0.04060 285.85 11881.87 208.21 0.0084 
19 29 425 751.29 12.4965 0.05136 931.02 19417.10 346.84 0.0101 
20 27 393 300.32 3.4122 0.10359 318.63 6767.87 85.57 0.0152 
21 25 368 632.95 15.9484 0.05136 653.64 13540.95 375.9 0.0297 
All sectors 567 8,457 1658.93 31.3948 0.06210 1712.52 43774.37 940.05 0.0355 

Notes: Sectors: 1. Adhesives and coatings; 2. Chemicals; 3. Electrochemistry; 4. Drugs; 5. Cleaning and abrading; 6. Petroleum and refining; 7. Machinery 
(non-elec.); 8. Computers and data processing; 9. Electrical equipment; 10. Electronic communications; 11. Stone, clay, and glass; 12. Food; 13. Instruments; 
14. Medical; 15. Primary metals; 16. Misc. consumer goods; 17. Automotive; 18. Paper and packaging; 19. Refrig. and heat exch.; 20. Static structures; 21. 
Farm and construction equipment. 
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to two- to three-digit SIC industries. The assignment is made, however, 
on the basis of areas of inventive activity rather than sales. 

To estimate Equation (15), we need to parameterize the variation in 
the parameter s,t over s and t. This parameter encompasses variations 
in the CES parameter a, in the share of the sector represented by the 
firms in the sample, and also variations in the proportionality factor 
between patents and new ideas. We treat it as the product of a sector- 

specific constant and a cubic polynominal in t. We constrain k to be 

positive by using an exponential time polynomial.53 Although Equation 
(13) implies that the two terms in square brackets are constrained to 
have the same coefficient kst, we allow a free parameter on the sector 

patent total Nts. We also allow for year- and sector-specific intercepts, 
leading to the equation actually estimated: 

s 
Fits - ts = ots + tXs Nit 

- 
t , (16) 

Fits _ 

The results of estimating this equation on 8,457 observations are pre- 
sented in Table 6. The coefficients Xs are generally positive, although 
many are not significant.54 The parameter ,, which should be unity if 
the proportionality (implied by the model) between value and patents 
holds, is about 1.4. This says that firm patents scaled by the ratio of 
firm to sector value averages less than sector patents. This is consistent 
with the general and intuitive finding that large firms have proportion- 
ally fewer patents than small firms.55 The parameters P1, P2, and P3 in 
the table are the coefficients of the cubic time polynomial for Xt. 

To interpret these results, we use the parameter estimates to calculate 
rates of creative destruction. The most straightforward way to do this 
is to multiply the estimated Xst times the estimated ,L times the number 
of patents in the sector in each year. Doing this yields estimates of the 
rate of creative destruction by sector by year. The average over the 

sample years of these numbers are presented in the last column of Table 
5. They range from essentially zero for a number of sectors, including 
computers, to a high of 25% per year for drugs. The (unweighted) aver- 
age across all sectors is about 3.5% per year. Some aspects of these 
results are quite consistent with previous findings. In particular, the 

53. If we do not constrain these estimates to be positive, we obtain negative estimates at 
the end of the sample, although these are insignificant. The overall fit was statistically 
unaffected by our nonnegativity constraint. 

54. The time and sector intercepts are not generally significant. 
55. See, e.g., Bound et al. (1984). 
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very high rate of creative destruction for drugs is consistent with the 

general view that this is a very progressive sector and one in which 

patents are a very good measure of technical advance (Mansfield, 1985; 
Levin et al., 1987). We also find relatively fast creative destruction as 
measured by patents in machinery, electrical equipment, and communi- 
cations equipment. These are all sectors where patents are reasonably 
important. In contrast, our inability to find creative destruction in com- 

puters is probably related to the relative unimportance of patents in that 
sector (Bound et al., 1984; Levin et al., 1987), rather than a low rate of 
technological change. 

We can also look at variations over time. Again, the most straightfor- 
ward way to do this is to simply multiply the estimated ,st and pu times 

Table 6 CREATIVE DESTRUCTION REGRESSION RESULTS 

Parameter Coefficient Standard error 

p. 1.383 .245 
K1 .318 .185 
K2 .037 .025 
\3 .040 .019 
k4 1.034 .297 
k5 .425 .420 
k6 .004 .009 
k7 1.397 .767 
k8 -.003 .030 
k9 .283 .089 
Kio .157 .046 
hll .098 .060 
X12 .187 .238 
X13 .045 .087 
X14 .135 .178 
h15 .072 .071 
K16 .376 .177 
K17 .038 .018 
X18 .146 .271 
K19 .108 .063 
K20 .695 .249 
K21 .316 .158 
P1 - .808 .206 
P2 .113 .034 
P3 - .0048 .0016 
R2 = .0366 
MSE = .1612 

Notes: Dependent variable: firm value growth rate minus sector value growth rate. Sample: 8,457 
observations on 567 firms, 1966-1981. 
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Figure 9: CREATIVE DESTRUCTION 
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the yearly sectoral patent total. If we do this, and average over sectors, 
we get the path shown in Figure 9. Beginning at a high of about 7% in 
1965, creative destruction falls quickly into the range of 3-4%, and then 
falls close to zero at the end of the sample period in 1981. There is, 
however, reason not to take the time variation in total patents in these 
data too seriously. First, it is affected by the changing firm composition 
in the unbalanced panel. In addition, total patents in this sample fell 

precipitously in 1980 and 1981, because of the way the data set was 
created.-6 For these reasons, the very low rates at the end of the sample 
period should probably be ignored. 

4. General Equilibrium, Calibration, and Implications of the 
Empirical Results 

In the previous section we used the basic structure of the growth model 
presented in Section 2 to guide our search for empirical manifestations 
of creative destruction and knowledge spillovers. In this section we go 
back to the model itself and examine its properties, using the estimates 

56. Recall that the data is patents by year of application. Because the data set was created 
in 1982, some ultimately successful applications from 1980 and 1981 had not yet been 
granted, leading to a systematic undercount in those years. 

O \ 

O \ 

? 1964 1968 1972 1976 1980 1984 
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obtained in the empirical section for the parameter values. The primary 
purpose of this section is simply to explore the static and dynamic be- 
havior of the model using reasonable parameter values. We will also, 
however, go a little further and examine some strong positive and nor- 
mative conjectures that arise from the behavior of the model when cali- 
brated with the empirical parameter values. 

In Section 2 we identified the following key parameters: p, a, 8, L, y, 
and P. Section 3 provides estimates of ac, y, and P, as well as of changes 
in 8 (but not its level) and in a over time. Initially, we focus our attention 
on the average value of the parameters, and postpone the discussion 
of the impact of changes in parameters until later in this section. We 
set the discount rate, p, to 0.03,57 and use average U.S. consumption 
growth together with the steady state of the model to calibrate 8 and L. 
In order to calibrate these parameters, we first need to go back to the 
model itself and characterize its equilibrium. 

The dynamical system that emerges from the model described in Sec- 
tion 2 has a range of parameters for which innovation is unprofitable, 
so growth does not occur. We focus our analysis on cases where steady- 
state growth is strictly positive. 

From the innovation function, labor market equilibrium and free- 

entry conditions, we obtain an expression for the rate of innovation as 
a function of the productivity of labor in research and of the value of 
the leading idea in units of consumption: 

t = tL - (17) 
Vt. 

Replacing this in the valuation equation (5) yields the dynamic equation 
for Vt as a function of itself and Ot: 

t(P + 1 tL) Vt a (18) 

Finally, the dynamic equation for labor productivity in research is ob- 
tained by differentiating Equation (10) with respect to time: 

et= ( - 
ot) 

- pNt, 

57. Quantitative conclusions are not affected by other "reasonable" assumptions about 
the discount rate, p. 
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which combined with Equation (17) yields: 

O 
yt=y( 

- o) -Potr- t). (19) 

Equations (18) and (19), together with initial conditions on 0 and a 

transversality condition, form a self-contained dynamical system. After 

solving for the paths of 0t and Vt from this system, the rate of innovation 
can be recovered from Equation (17). 

Because we found large values of *y-i.e., a high speed of diffusion 
of ideas-in the previous section, it is convenient to first characterize 
the case where diffusion is infinitely fast; this is a good approximation, 
and it has the advantage of an extremely simple set of dynamic equa- 
tions. 

If there are no lags in the diffusion of knowledge, the system has no 
transitional dynamics.58 As shown in Section 2, in this case Ot = 8/P; 
which by Equation (18) and the transversality condition implies: 

U_ 1 
V= x 

1I - a oc8 
1-a1p 

while the rate of innovation is: 

= -) --p\ (20) 

and consumption growth is: 

Ct = N + it,. (21) 

These expressions provide a simple setup to understand the main 
role of a, 8, p, and p in determining the equilibrium valuation of new 
ideas, knowledge spillovers, and the economy's rate of growth:59 

58. Obviously, anticipated changes will lead to non-steady state dynamics. The absence 
of transitional dynamics refers to the response of the system to a once-and-for-all 
unexpected change in a constant of the model. 

59. One could also study the impact of L, but we take this as a nuisance parameter. It is 
at best unclear which is the appropriate normalization. 
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aVpV2 ap T a (II _ I;J 
-a-= (x2 0at 1-c 1-a 1-a 

av av Lv2 daN aN (1 - ot)L 
V = - V = _- < 0; = - > 0, (22b) 66 pdp a d pdp P 

a'V _(1 - a)V2 aI/ 
a=- < 0; a= -(1 - t) < 0. (22c) 

dp ta ap 

When the degree of substitutability among goods (a) rises, the value 

(per unit of consumption) of a new idea rises. This may seem surprising 
because an increase in a lowers the markup charged by firms. There 
are, however, three other effects that must be considered. First, as dis- 
cussed in Section 2, the fall in the markup is outweighed by an increase 
in the size of the market faced by new ideas (the "scope effect"), so 
that the initial profit of the newest idea rises with a. Second, an increase 
in ax raises creative destruction, which reduces expected future profits 
and, hence, the initial value of ideas. Third, it can be shown that from 
these effects alone, the ratio of the value to the wage would fall.60 From 
the free-entry condition, this would be inconsistent with positive inven- 
tion. Therefore, there must be an endogenous decline in creative de- 
struction (fall in N) in order to offset the fall in the value to wage ratio.61 

The impact of an increase in the potency of spillovers (8) as well as 
that of a reduction in the technological destructiveness of new ideas (p) 
is shown in Equation (22b). They increase the pace of innovation, and 

through the impact of this on creative destruction, lower the equilibrium 
value of new ideas.62 Finally, Equation (22c) shows that an increase in 
consumers' impatience, p, lowers both the value of new ideas and the 
rate of invention through standard discounting and savings mecha- 
nisms. 

Although the intuition as well as the sign of the relations described 

60. An important mechanism behind the monotonic relation between growth and mark- 
ups is that labor supply is completely inelastic. If this assumption is relaxed, then as 
the wage falls (i.e., markups rise), there would be a reduction in resources available 
and, under the appropriate functional assumptions, an eventual decline in equilibrium 
growth. 

61. In the y finite case, the endogenous decline in creative destruction would not com- 
pletely offset the initial decline in the value to wage ratio. 

62. Alternatively, the fall in equilibrium value can be explained in terms of the increase 
in the productivity of research. This and the creative destruction interpretations of 
the decline in value are related in equilibrium by the free-entry condition. 
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earlier survive the introduction of a finite y,63 it is worth describing 
briefly the implications of frictions in the diffusion of ideas. 

If y is finite, the system exhibits transitional dynamics because "the 
clocks have to synchronize to the new pace." That is, if information 
diffuses slowly, "shocks" that lead to changes in N disrupt the balance 
between technological obsolescence and increases in the base of knowl- 

edge. Transitional dynamics occur while the new level of 0 that restores 
this balance is reached. Before discussing dynamics, however, it is 
worth pausing to study the steady state and to calibrate the remaining 
parameters using average U.S. growth data. 

The steady state can be found in closed form, although the equations 
are somewhat less informative than before: 

0 p( - a){ - / + /(p(l - at) - /)2 + 48-/L(1 - a)2 
2(1 - a)L (23a) 

= 
V(p(l - o)p 

- /)2 + 48/L(1 - a) - p(l - ta) - (23b) 
2P 

and 

a 1 
V= x 

1 
(23c) 

1 - ot 

It is apparent from these equations that using average growth data 

only (which we do here), it is neither possible nor relevant to separate 
L from 8; thus we set L = 1. We can now recover all the parameters of 
the model. We obtained y = 0.7 directly from the citation function, and 
p = 1.67 is the inverse of the coefficient on the change in the number 
of ideas, as normalized in the citation function, in the growth equation. 
We recover a from the average of our creative destruction estimates, 
0.035, which corresponds to otN/(1 - a), and the average of N, 0.042.64 
The estimate of a so obtained is 0.463. The last parameter, 8, is obtained 
from the steady-state equilibrium equation for N (Equation 23b) and is 
equal to 0.199. 

63. This is particularly true for large values of y, as is the one estimated in the empirical 
section. 

64. For this we use that N4 = /N',b/,, and N'ob = 0.07. Our sample for the estimate of 
creative destruction is 1965-1981, while we use the period 1960-1989 to compute the 
average change in ideas. 
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Figure 10a plots the steady-growth rate for an economy with the same 
base parameters of the United States and a range of values of a, the 
index of creative destruction, and 8, the spillover potency index, that 
contain the U.S. values. Figure 10b does the same for the equilibrium 
value/consumption ratio. U.S. "average" equilibrium is depicted by a 
black dot in each figure. 

One of our main empirical findings is that productivity of labor in 
research has declined sharply over the sample, and this seems to be 

mostly due to a decline in 8. According to Figure 10a, this ought to 
lower the equilibrium rate of innovation, N, and raise the value of a 
new patent to consumption ratio, V. On the other hand, our empirical 
evidence on creative destruction suggests that a has decreased over 
time; this should raise N and V. 

Splitting the sample into two periods, 1960-1974 and 1975-1989, asso- 

ciating the 1965-1974 and 1975-1981 averages of creative destruction to 
each of these periods, respectively,65 we can calculate the model's pre- 
dicted steady-state changes in N and V. We find that the effect of the 
decline in the power of spillovers dominates the effect of the decline in 
creative destruction on equilibrium growth, leading to a prediction that 
N should have fallen by about 50% from the first to the second periods. 
With respect to value, both of these effects go in the same direction, 
leading to a predicted increase of about 25% in the value to consumption 
ratio. 

In reality, N (the patent series adjusted by our estimated i) fell about 
15%. If we proxy the value to consumption ratio by the ratio of stock 

prices to nominal consumption, we find an actual rise in V of about 
20%.66 Thus, the qualitative predictions of the model are confirmed, 
although the actual magnitudes changed less than the model implies 
they should have. 

We conclude this section by briefly addressing several issues that are 

tangential to our main concerns: (1) a description of the transitional 
dynamics of the model, (2) the long-run effect of changes in the speed 
of diffusion of ideas (y) and in technological destructiveness (1), and 
(3) optimal R&D subsidy rates. 

Figure 11 shows the phase diagram corresponding to a case with 

65. Remember that the sample used to estimate the path of creative destruction goes from 
1965 to 1981 only. 

66. There are several reasons to think that an index of aggregate stock prices is not a great 
proxy for the value of patents. In particular, the number of patents a firm has is likely 
to be an important component of the value of its stock and, for the experiments we 
discuss here, value and number of patents at the firm level are likely to be negatively 
correlated. 
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Figure lOa: N 

Figure lOb: V 
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Figure 11: PHASE DIAGRAM 
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noninstantaneous diffusion. Point A corresponds to a steady-state equi- 
librium with the parameter configuration of the 1960-1974 period de- 
scribed earlier, while point B illustrates the steady state emerging from 
the 1975-1989 period. The thick line with arrows illustrates the saddle 
path of the new equilibrium. Because in reality the shift in parameters 
may have been slow, and the decline in 6 seems to have compromised 
only newer cohorts, it seems unreasonable to assume that the actual 
dynamics can be characterized in terms of the new saddle path. Instead, 
a path like the one depicted by the thin line with arrows seems more 
likely.67 

Figure 12 illustrates the long-run effect of changes in the speed of 
diffusion of ideas (y) and in technological destructiveness (P), with the 
black dots representing the steady state of an economy with the parame- 
ter values we found for the United States. It shows that y is large, in 
the sense that further increases in it do not increase equilibrium growth 
significantly. An increase in the destructiveness parameter P, by low- 
ering the equilibrium productivity of labor in research, reduces equilib- 
rium growth and raises the required value of a new idea. 

Finally, we address the optimal subsidy issue, focusing on the case 
where -y - oc. We also assume that the subsidy to labor used in research 
is financed with a tax on labor used in production of consumption 
goods. 

Setting L = at = 1, and letting s be the subsidy rate (in terms of units 
of consumption), it can be shown that in equilibrium, N is: 

N = (1 
-)( p )) (24) 

which is clearly maximized as s -> 1. As always, however, there is a 
tradeoff between long-run growth and current consumption. Indeed: 

1/a 
l - ao (oa - S) a8 Nt 

a ? (1 -s) a )- 
(25) 

which, for given Nt, is decreasing with respect to s, and reaches zero 
when s = a. Because the utility function is logarithmic, the optimal 
subsidy rate must be less than a. 

Because we have assumed that exogenous technological progress is 

67. Note that the initial jump in 0 is possible only if the initial change in 8 involves the 
potency of older patents. 
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Figure 12a: N 

Figure 12b: V 
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negligible, we have that Ct = N, so we can write the present-value 
utility of the representative agent, U0, as: 

U0 = lnCo + 4. 

Maximizing this equation with respect to s, subject to Equations (24) 
and (25), yields the optimal subsidy rate, s*: 

- a2(s8/ - p) 
p + a(8/pI - 2p)' 

Replacing the parameters calibrated in the previous subsection yields 
an optimal subsidy rate of 33% if p = 0.03. If one turns back to Equation 
(24), such subsidy rate almost doubles the rate of growth of an unsubsi- 
dized economy characterized by the parameters calibrated for the 
United States.68 

5. Conclusion 
We have constructed a model of economic growth through the creation 
of new goods, in which the phenomena of creative destruction and 

knowledge spillovers play prominent roles. The model has fairly simple 
and intuitive relationships between the existing public stock of knowl- 

edge and new ideas, between new ideas and growth, and between 

growth and the value of ideas or blueprints. The model produces endog- 
enous growth for appropriate parameter values, and it highlights the 

importance of the speed of diffusion of existing knowledge and the 

endogenous rate of knowledge obsolescence. 
We implemented the model empirically using patents as proxies for 

new ideas. First, we showed that it is possible to use patent citation 
information to put a fairly rich structure of knowledge diffusion and 
knowledge obsolescence onto the notion of research spillovers. We find 
that the rate of knowledge obsolescence rose from about 2 or 3% per 
year early in the century to about 10-12% per year at the end of the 
1980s. Our results show that the process of knowledge diffusion is quite 
rapid, indeed, sufficiently rapid that the model performs essentially as 
if diffusion were instantaneous. In this context it is important to note 

68. The optimal subsidy rate experiment raises the issue on whether our calibration exer- 
cise should be corrected to consider the fact that in the United States the subsidy rate 
is nonzero. We do not think that the precise numbers should be taken that literally. 
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that the lag we are measuring is between the grant date of the cited 

patent and the grant date of the citing patent. It seems plausible to view 
diffusion as beginning with the patent grant, because that is when the 

patent information is public. But the grant date of the citing patent is, 
of course, several months to a few years after its application date, and 
we take application date as being associated with invention. Thus, from 
the grant date of the cited patent to the application date of the citing 
patent would be even a shorter lag. Our results on the speed of diffusion 
seem to be broadly consistent with earlier work, particularly that of 
Mansfield (1985), who found that 70% of product innovations were 
known and understood by rivals within 12 months of the innovation, 
and only 17% took longer than 18 months. 

This rapid diffusion rate prevented the large influx of foreign patent- 
ing in the United States in recent decades from lowering U.S. R&D 

productivity even further: With diffusion this rapid, the spillovers from 
the foreign knowledge creation approximately balance the increased 
rate of knowledge obsolescence that they also create. 

This "good news" is overshadowed, however, by a measured reduc- 
tion in the usefulness of existing public knowledge in generating new 

knowledge, as reflected in citation patterns. The estimated spillover 
potency (8s) fell by a factor of 5 over the century, with most of this 

occurring in the first few decades, and a fall of about 25% in the postwar 
period. When we translate this into the change in effective accumulated 

public knowledge, we predict a fall in the private productivity of re- 
search inputs of about 30% between the late 1950s and 1990. 

We then move to the estimation of the innovation production func- 
tion, the relationship between aggregate U.S. private research inputs 
and aggregate U.S. idea generation, as represented by U.S. patents. We 
confront the well-known "puzzle" of the large fall in the ratio of U.S. 

patents to U.S. research inputs in the postwar period. The citation func- 
tion estimation could, potentially, explain this in two ways. If the size 
of patents was increasing fast enough, then the idea/research-input ra- 
tio may not be falling even if the patent/research-input ratio is. Second, 
if the effective stock of public knowledge is falling, then the reduced 

spillovers would explain the fall in the productivity of private research 

inputs. We find evidence of both effects, although the increase in patent 
size peaks in the early 1970s, so that our ideas/research-input ratio actu- 

ally falls faster than the patent/research-input ratio after that. For the 
entire 1958-1990 period, we can explain the overall patent-productivity 
trend quite well, but we do not explain the accelerated decline in re- 
search productivity that occurred in the late 1970s, or the apparent re- 
versal of the trend in the mid-1980s. One difficulty with understanding 
the very recent movements is that these patents have not had much 



70 * CABALLERO & JAFFE 

time to be cited, so our estimates of both 8s and i, are very imprecise 
for the late 1980s. Given the large increases in the number of patents 
in this period, it will be interesting to see how these patents fare as 
time goes by. 

As noted, we also found evidence that the "size" of patents has 

grown over the century, increasing by a factor of 3 from 1900 until 1940, 
and then by an additional 20% until it peaked in about 1970. This is 
consistent with previous conjectures about changes in the propensity 
to patent. The early rise, in particular, is probably traceable to changes 
in the legal treatment of patents and the "corporatization" of research 
(see Schmookler, 1966). It may also be that innovation has become more 

"systems" oriented as it has become increasingly science-based, so that 
each "invention" is actually a larger and larger package of component 
ideas. It is also interesting that we find the size of patents to be falling 
in recent years. There were two major institutional changes in the 1980s 
that might have been expected to affect the propensity to patent, in 
opposite directions. First, patent application fees were increased, and 
fees for patent renewal were instituted for the first time in the United 
States in 1981. These changes should have operated to increase the 
threshold for inventors to decide to make a patent application, reducing 
the propensity to patent. At approximately the same time, there has 
been a perceived increase in the strength of patent enforcement in the 
United States. This makes patents more valuable and should thereby 
increase the propensity to patent. Our results suggest that the latter 
effect may be empirically more important.69 

Next we looked at the relationship between the rate of idea creation 
and consumption or productivity growth. We showed that, after remov- 
ing high-frequency movements, the growth rates of either consumption 
or labor productivity display movements over the last several decades 
that correlate quite closely with the rate of invention that we measured. 
Thus, in our model, the productivity slowdown-the long fall in the 
smoothed growth rate of productivity from the mid-1960s-can be 
traced back to a fall in the rate of new product creation, which itself can 
be traced to a fall in research productivity connected to a decrease in 
the potency of old knowledge in generating new ideas. 

The coincidence in timing of the fall in patenting in the 1970s and the 
slowdown in aggregate productivity has been noted by others. We have 
a story consistent with those facts, but we cannot push it too hard 
because so many of our assumptions about lags between observables 
and unobservables cannot be tested. 

69. As can be seen from Figure 6, there has been a large increase in the patent/research 
ratio in the late 1980s. This would also suggest a possible rise in the propensity to 
patent (fall in the size of patents). 
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Our final empirical innovation is the measurement of rates of creative 
destruction, using data on patents and value at the firm and sectoral 
level. Unfortunately, these estimates can only be made for a shorter 
time period in the 1960s and 1970s, because the construction of patent 
totals for these firms in the 1980s has not been carried out. This exercise 
does give reasonable estimates for many sectors, varying between 0 for 
Petroleum Refining and 25% per year for Drugs, with a mean of about 
3.5% per year. The estimated time path of the average rate of creative 
destruction is somewhat surprising, falling from a high of 7% in the 
mid-1960s towards zero by 1981. A challenge for future work will be to 

try to find alternative data series that would permit a richer analysis of 
rates of creative destruction by sector and over time. 

We then took the empirical parameter estimates back to the model 
and showed that the observed decline in the productivity of research 
has implications for the innovation rate, the growth rate, and the value 
of new ideas that are all roughly borne out. The model simulation also 

emphasizes the importance of the apparently rapid diffusion rate of 

knowledge. The fact that knowledge diffuses rapidly prevented what 
could otherwise have been an even greater productivity slowdown in 
the 1970s and early 1980s. 

Stepping back from particular parameter estimates and the con- 

sistency of particular model blocks with observed trends, we have 

suggested an organizing framework for empirical research on the contri- 
bution of industrial innovation to aggregate growth. We believe that 
this framework offers many avenues for fruitful future work. Having 
demonstrated that the citation function works reasonably well, it would 
be interesting to go back to it and focus in more detail on issues of 
stochastic structure and identification. Further, to really understand the 

significance and interpretation of the observed decline in spillover po- 
tency, we need to look at the variations across sectors and geographic 
space in the size of patents, and in the diffusion and obsolescence rates. 
In principle, one could categorize citing patents by technological sector 
and by the national origin or U.S. state of origination. This would allow 
one to put a finer structure on our homogenous, public good called 

knowledge, examining, e.g., whether foreigners are slower to pick up 
knowledge in U.S. patents than are Americans. One could also, to some 
extent, examine whether knowledge seems to have a private compo- 
nent, by looking at whether the firm cites its own patents more often 
or more rapidly than it does patents owned by other firms.70 

Consideration of cross-country citation patterns suggests that more 

70. There is evidence, e.g., that such "self-citations" are more prevalent for private firms 
than for universities, and that they come sooner in time than non-self-citations. See 
Trajtenberg, Henderson, and Jaffe (1992). 
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thought needs to be given to how to think about the rate of invention, 
the rate of consumption growth, and the stock of public knowledge 
in an open economy. We have modeled U.S. consumption growth as 

depending on U.S. invention, U.S. invention as depending on U.S. 
research, but the "public" stock of knowledge available to U.S. research- 
ers as being the worldwide stock. With respect to each of these, our 

assumption seems superior to the alternative polar extreme, but reality 
is probably somewhere between the extremes. 

An interpretation of the decline in 5s is that research is steadily becom- 

ing "narrower" and, hence, generates fewer spillovers because each 
new idea is relevant to a smaller and smaller set of technological con- 
cerns. Empirical testing of this notion would necessitate incorporating 
multiple dimensions of product quality into the model, so that there 
would be a notion of "technological distance" between different inven- 
tions.71 This could perhaps be implemented empirically using the patent 
classification information,72 although the classification information is not 
available in computerized form for patents before the late 1960s. 

Finally, it would be interesting to look at the connections among the 
private value of particular inventions, the creative destruction they pro- 
duce, and the knowledge spillovers they generate. To some extent, one 
would expect that important patents would be high on each of these 
scales, but ideas also probably vary in the magnitude of both the nega- 
tive and positive externalities they generate. 

REFERENCES 

Aghion, P., and P. Howitt (1992). A model of growth through creative destruc- 
tion. Econometrica 60:323-351. 

Bound, J., et al. (1984). Who does R&D and who patents. In R&D, patents and 
productivity, Z. Griliches (ed.), Chicago: University of Chicago Press. 

Cockburn, lain, and Z. Griliches (1988). Industry effects and appropriability 
measures in the stock market's valuation of R&D and patents. American Eco- 
nomic Review 78:420-423. 

Cohen, W. M., and S. Klepper (1992). A reprise of size and R&D. Mimeo, 
November. 

Evenson, R. (1991). Patent data by industry: Evidence for invention potential 
exhaustion? In Technology and Productivity, the Challenge for Economic Policy. 
Paris: OECD. 

Gort, M., and S. Klepper (1982). Time paths in the diffusion of product innova- 
tions. The Economic Journal 92:630-653. 

Griliches, Zvi (1990). Patent statistics as economic indicators: A survey. Journal 
of Economic Literature 28:291-330. 

71. Ariel Pakes emphasizes this point in his discussion of this paper. 
72. A version of this is presented in Trajtenberg, Henderson, and Jaffe (1992). 



Knowledge Spillovers and Creative Destruction ? 73 

Griliches, Zvi (1989). Patents: Recent trends and puzzles. Brookings Papers on 
Economic Activity, Microeconomics 291-330. 

Griliches, Zvi, ed. (1984). R&D, patents and productivity. Chicago: University of 
Chicago Press. 

Griliches, Z. (1979). Issues in assessing the contribution of R&D to productivity 
growth. Bell Journal of Economics 10(1):92-116. 

Grossman, Gene M., and Elhanan Helpman (1991a). Innovation and Growth in 
the Global Economy, Cambridge: The MIT Press. 

Grossman, Gene M., and Elhanan Helpman (1991b). Quality ladders in the 
theory of growth. Quarterly Journal of Economics 106:557-586. 

Hall, B., et al. (1988). The R&D master file. NBER Technical working paper No. 
72. 

Hall, B., Z. Griliches, and J. Hausman (1986). Patents and R&D: Is there a lag? 
International Economic Review 27:265-283. 

Hausman, J., B. Hall, and Z. Griliches (1984). Econometric models for count data 
with an application to the patents-R&D relationship. Econometrica 52:909-938. 

Jaffe, A. (1986). Technological opportunity and spillover of R&D: Evidence from 
firms' patents, profits, and market value. American Economic Review 76:984- 
1001. 

Jaffe, A., M. Trajtenberg, and R. Henderson (1993). Geographic localization of 
knowledge spillovers as evidenced by patent citations. Quarterly Journal of 
Economics, forthcoming (NBER working paper No. 3993). 

Kortum, S. (1993). Equilibrium R&D and the decline in the patent-R&D ratio: 
U.S. evidence. American Economic Review: Papers and Proceedings, forthcoming. 

Tones, C. (1992). R&D-based models of economic growth. MIT mimeo, No- 
vember. 

Levin, R., et al. (1987). Appropriating the returns from industrial research and 

development. Brookings Papers on Economic Activity 3:784-829. 
Mansfield, E. (1985). How rapidly does new industrial technology leak out? The 

Journal of Industrial Economics 34-2, December. 
Mansfield, E., M. Schwartz, and S. Wagner (1981). Imitation costs and patents: 

An empirical study. The Economic Journal 91:907-918. 
Mansfield, E., et al. (1977). Social and private rates of return from industrial 

innovation. Quarterly Journal of Economics 91(2):221-240. 
Merton, R. K. (1965). On the Shoulders of Giants. New York. 
Pakes, A. (1986). Patenting as options: Some estimates of the value of holding 

European patent stocks. Econometrica 54:766-784. 
Pakes, A. (1985). On patents, R&D and the stock market rate of return. Journal 

of Political Economy 95:390-409. 
Pakes, A., and Z. Griliches (1984). Patents and R&D at the firm level: A first 

look. In R&D, patents and productivity. Z. Griliches, ed. Chicago: University 
of Chicago Press. 

Pakes, A., and M. Simpson (1989). Patent renewal data. Brookings Papers on 
Economic Activity, Microeconomics. 

Romer, P. M. (1990). Endogenous technological change. Journal of Political Econ- 
omy 98:S71-S102. 

Segerstrom, Paul S. (1991). Innovation, imitation and economic growth. Journal 
of Political Economy. 

Schankerman, M., and A. Pakes (1986). Estimates of the value of patent rights 
in European countries during the post-1950 period. Economic Journal 96: 
1077-1083. 



74 * CABALLERO & JAFFE 

Schmookler, J. (1966). Invention and Economic Growth. Cambridge, MA: Harvard 
University Press. 

Schumpeter, J. (1942). Capitalism, Socialism and Democracy. New York: Harper. 
Stokey, N. L. (1992). R&D and economic growth. Mimeo, June. 
Trajtenberg, M., R. Henderson, and A. Jaffe (1992). Ivory tower versus corpo- 

rate lab: An empirical study of basic research and appropriability. NBER work- 
ing paper No. 4146, August. 

Comment 
PHILIPPE AGHION 
Oxford University and E.B.R.D. 

This paper is an important contribution to the so-called neo-Schumpe- 
terian theory of economic growth. The basic trade-off emphasized by 
the Schumpeterian approach is that between the positive spillovers in- 
duced by current innovations on future research activities on the one 
hand, and the creative destruction (or "obsolescence") effect exerted by 
new technologies on the existing ones on the other hand. The interplay 
between the positive and negative externalities respectively involved in 
the previous two effects is known to have far-reaching implications for 
the growth process, both positive and normative. 

This paper contributes both to the theoretical and empirical under- 

standing of the previous trade-off. It improves upon existing models 
of creative destruction, first by relaxing the extreme assumption that 
successful innovators become monopolies, and by allowing instead for 
(asymmetric) monopolistic competition between old and new technolo- 
gies: Instead of being instantaneously displaced from a full monopoly 
position by new technologies, the old technologies can rely on the exis- 
tence of product differentiation in order to remain in existence (although 
with a reduced market share) even after newer technologies have been 
implemented. An interesting consequence of mixing up quality ladders 
and product variety models is that the variety parameter (which also 
measures the degree of product market competition) affects both current 
profit and the equilibrium amount of creative destruction: The higher 
the degree of substitutability between older and newer products, the 
larger is the creative destruction affect. 

The second, and perhaps more important, theoretical contribution of 
this paper lies in the endogenization of the research technology. More 
specifically, the productivity of research now depends in a sophisticated 
way upon the whole technological history, i.e., upon the time distribu- 
tion of past innovations. This, in turn, can help us understand why the 
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productivity of research activities may evolve over time and in particular 
why it has decreased in the United States in the recent decades. 

More precisely, this paper provides the first empirical analysis of re- 
search spillovers and creative destruction based on microeconomic patent 
data. Then key insight is that data on patents and on their citations by 
subsequent patents can serve as a basis to estimate both the degree of 

intertemporal spillovers (i.e., the positive externality that any innova- 
tion exerts on the subsequent ones) and the speed of knowledge obso- 
lescence (measured by the speed at which the number of citations of a 

given patent by subsequent ones declines over time). The main result 
from this empirical analysis is that research spillovers generated by suc- 
cessive cohorts of patented innovations, and measured by their subse- 

quent citations by future patents, have substantially declined over this 

century, hence pointing to a decline in the productivity of research. 
(This in turn might account-although the authors remain very cautious 
on this point-for the slowdown in aggregate productivity recently ob- 
served in most developed countries.) 

Two main explanations are suggested by the authors in order to ac- 
count for the decline in the average number of citations by future pat- 
ents. One is the fact that the size of patents, measured by the number 
of new ideas embodied in them, has substantially increased over the 

century. In particular, the number of future patents that could poten- 
tially cite current or past innovations tends to decrease over time. This 
first explanation only accounts for the decreasing rate of citations, but 
not for the decreasing research (and output) productivity. 

In this respect the model may not appear entirely consistent in the 
sense that the size of innovations, as measured by the quality parameter 
q, is supposed to be constant over time, whereas the citation rate, which 
also reflects the size of an innovation, is allowed to vary over time. 

Endogenizing the parameter q might in turn destroy the linear relation- 

ship between N and C and, therefore, the interpretation of the results 
in terms of aggregate productivity slowdown. 

On the other hand, there may be strategic and/or organizational rea- 
sons for why the rate of patent citations has declined over time. For 

example, large firms (i.e., firms with a long purse) often generate or 

purchase patents that they do not use (or the use of which they decide 
to delay), primarily in order to prevent entry by potential competitors 
on the same product market. This, however, would not account for the 

alleged slowdown in the productivity of research, even though it would 
be consistent with the observed decline in the average rate of citations. 

More generally, identifying patents as a reliable measure of both the 

production and diffusion of new ideas and technologies independently 
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of the organizational environment may be quite misleading. In particu- 
lar, it is known that research activities are increasingly governed by 
complicated inter- or intrafirm contracts whereby property rights on 
innovations are often split between research employees (or research 
units) and their employers (or customers), and where the governance 
structure (full vertical integration, research joint venture, etc.) has an 
important effect on the incentive to produce and/or diffuse new technol- 
ogies. The relationship between new ideas and patents is thus bound 
to evolve over time and follow the evolution of the organizational and 
legal frameworks for R&D activities: In other words, patents may just 
be the tip of a more complicated iceberg, with no invariant relationship 
between the rate of patents citations and the rate of knowledge obso- 
lescence. 

A second explanation for (or possible implication of) the observed 
decline in the rate of patent citation in the United States is the increasing 
rate of knowledge obsolescence. Again, the relationship between these 
two phenomena is far from obvious. First, as the rate of technological 
discovery has greatly accelerated in recent decades, all the parties in- 
volved in patent citation (the innovators and his or her examiners) may 
share the same incentive to avoid informational and administrative 
overload and, therefore, reduce the number of patent citations prior to 
a given time period. In that case, a declining rate of patent citation 
would be no evidence either of an increasing rate of knowledge obsoles- 
cence or of a decline in the productivity of research. 

Second, as suggested in the paper, innovations may have become 
increasingly specialized. This would instead be consistent with an in- 
creasing rate of obsolescence although not necessarily with a decline in 
the productivity of research. In order to be further investigated and 
tested, this latter explanation would require that the basic neo- 
Schumpeterian model be extended so as to introduce the distinction 
between fundamental (or general) and secondary (or specialized) inno- 
vations. This in turn would allow for the possibility of Schumpeterian 
waves in equilibrium and for a richer discussion of the dynamic evolu- 
tion of technological spillovers and obsolescence. In particular, it might 
be interesting to investigate whether the alleged decline in the produc- 
tivity of research over the last (two) decades is bound to be infinitely 
durable or instead corresponds to the temporary downfall part of a 
Schumpeterian wave. 
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Comment 
ARIEL PAKES 
Yale University and NBER 

This is an ambitious and creative paper. It tries to mix theory with 
data to throw some light on how the interactions among agents in the 

production of knowledge affect growth and welfare. The mix of theory 
and data serves to focus discussion on magnitudes that might have both 

empirical and theoretical content. It also generates a framework that 
allows us to use the empirical estimates to evaluate various policy and 

descriptive scenarios. The authors view their framework as a structure 
that will evolve over time as they interact more with different types of 
data. My comments will be made with subsequent reformulations of 
their framework in mind. 

1. The Model 
The theory is very simple, as it should be in this stage of research. 
Products are differentiated by a "vertical"-quality dimension. New 

products are produced by research resources, have the same cost of 
production as old products, and extend the quality frontier. The produc- 
tivity of research in producing new products depends on the informa- 
tion made available by the outcomes of past research. (Past research 
generates a nonpecuniary externality to new research.) Given the prod- 
ucts that have been developed, a Nash equilibrium in prices determines 
current returns. That equilibrium implies that new products "obsolete" 
old products. (New products cause old products to earn less; a pecuni- 
ary externality.) Note that there is no physical obsolescence of products; 
if there are no new products then the value of the knowledge embodied 
in the old products does not decay over time. Although this is not 
correct for all types of knowledge, it is probably close enough to correct 
for the vast majority of the output of industrial knowledge-producing 
activities. (An example of a type of knowledge whose physical produc- 
tivity does decay through use is the knowledge embodied in insecti- 
cides; frequently use of an insecticide leads to the development of 
resistant strains in the insect population.) There is a single consumer 
who consumes all products and generates the needed demand curves, 
while a free-entry assumption together with equilibrium in the labor 
market determines the amount of product development. 

Note that there is only one dimension to the quality of a product. 
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This simplification should only bother us if it constrains the empirical 
work in ways that are either at odds with, or causes us to misinterpret, 
the data. I will note later where this assumption may become problem- 
atic. On the other hand, it is not obvious that we can do away with the 

assumption that quality has only one dimension without a much more 
extensive modeling effort. They make a second simplification, however, 
which is probably both more problematic and easier to rectify. 

They currently do not allow for either any uncertainty or for any 
unobserved factors to affect the relationship between research inputs 
and research output. One of the striking results of empirical work in 
this field is precisely the enormous variance in the outcomes of indus- 
trial research activity, and there is good reason to think that this vari- 
ance does not "average out" when we look at the sum of individual 
outcomes. In the more directed research that policymakers are usually 
concerned with (e.g., energy saving research or research on reducing 
emissions of pollutants), the fact that the randomness does not average 
out across research enterprises is because the different firms are all 

exploring the same unknown frontier, and the extent to which that 
frontier can yield to current knowledge is a common factor that affects 
the outcomes of all research. Further, there is a good deal of evidence 
that shows that the productivity in research in different fields is highly 
correlated. That is, historians tell us that there are periods of relatively 
rapid technological development, usually foreshadowed by an advance 
in a "metatechnology" that can be used in the development of many 
new types of products (synthetic materials in the postwar period, and 
semiconductors thereafter; see the classic article by Rosenberg, 1974). 

I worry about ignoring the unobserved components in the relation- 
ship between industrial research inputs and outputs both because I 
think we could incorporate it in ways that would enhance the frame- 
work significantly, and because the exclusion of it is going to generate 
biases in the rest of our estimates. First on what we miss. In reality the 
productivity of industrial research depends on the outcomes of the 
(more basic) research done in our universities and national research 
labs. It would be interesting to hook the unobserved component of the 
productivity term back to this, more basic, research and quantify its 
impacts. In this context, I should note that patents not only cite other 
patents, they also cite key articles that were used in their development. 
By ignoring the unobserved productivity components, we are also giv- 
ing up on the problem of coming up with a quantitative measure of the 
uncertainty associated with research outcomes. This can be important 
in its own right, especially in more detailed models where the extent of 
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uncertainty might have an impact on both how much and on which 

type of research we want to get engaged in. 
The estimation problem created by ignoring the unobserved compo- 

nents of the outcomes of the research process is just the traditional 
simultaneous equations problem in estimating production type relation- 
ships. (The classic reference here is Marschak and Andrews, 1944.) Pe- 
riods when the unobserved productivity is high will be periods when 
firms are induced to expand their research activities, so standard least- 

square analysis of measures of research output against research input 
will give you biased coefficients. (For a recent attempt to handle this 
problem at an industry level of aggregation, see Kortum, 1993.) 

2. Overview of the Empirical Analysis 
The empirical analysis has four equations: 

1. A citation equation that is used to obtain both a measure of the extent 
to which past research has an impact on current research productiv- 
ity (the nonpecuniary externality discussed earlier), and the relation- 

ship between patents and knowledge output. 
2. An innovation production function in which "inputs" are current 

research expenditures and the citation measure of current research 
productivity, and the output is the patents-based measure obtained 
from 1. 

3. A growth equation that relates either consumption or labor produc- 
tivity to the measure of the outcomes of research activity. 

4. A creative destruction equation that analyzes the relationship of 
stock market values of firms to a firm's own patents, and to the 
patents of the other firms in the same industry. (The latter gives us 
the effect of the pecuniary externality discussed earlier.) 

I begin with some general points and then focus in on a more detailed 
discussion of the first equations in this system. 

Although much of the modern growth literature is focused on the 
impacts of externalities of one form or the other, almost all of the empiri- 
cal work that emanated from it used only aggregate data. The essence 
of externalities in the interrelationships among units, and the externality 
impact we are looking for is often a difference between a "micro" and 
an "aggregate" response function. It is hard to believe that one could 
provide convincing evidence of the impact of interrelationships among 
agents, and/or of a difference between aggregate and micro response 
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functions, from an empirical analysis that relied solely on aggregate 
data. This paper actually goes back to the micro fundamentals and tries 
to estimate the impact of the externality generating relationships di- 

rectly. This is a much more convincing way of determining the impor- 
tance of the basic assumptions underlying the model, and it is also likely 
to be much more fruitful in pointing to directions where both our mod- 
els and our empirical work are likely to bear fruit. 

The second striking aspect of the empirical work is the use of citation 
data. To measure externalities effectively we need to know which bit of 

knowledge is "closer" to which other. (If they all have the same impact, 
then there is only an aggregate effect that is the same to all and, hence, 
whose impact is very hard to distinguish from the impact of other time 
invariant variables.) The citation variable is an independent measure of 
the "distance" between different "bits" of knowledge and, hence, can 
be used to examine the quantitative impact of various forms of externali- 
ties. (And recall that it is these externalities that lie at the heart of any 
difference between the social and private return to research and, hence, 
of policy analysis.) 

The citation data are used here to obtain a measure of the impact past 
knowledge has on the production of new knowledge (the nonpecuniary 
externality noted earlier). Here the basic concept is that the patentees 
cite patents whose information content was used in the production of 
the knowledge embodied in the patent. This, however, is not the only 
possible use of the citation data. Because the purpose of the patent 
references is to cite prior state of the art, one could have thought of 
using citations to construct a measure of the extent to which different 
pieces of knowledge have been made obsolete. This would have allowed 
us to use the citation data to help construct measures of obsolescence 
for the analysis of creative destruction. More to the overall point, there 
is probably some content to both of these interpretations of the citation 
data, and, had we done both types of analysis, we might have learned 
more about how best to use the citation figures in future research. 

3. The Citation Equation 
This equation serves two purposes: 

1. It determines the usefulness of past cohorts of patents in current 
knowledge production and, hence, determines current research pro- 
ductivity. 

2. It determines the relationship between knowledge and patents. 



Comment - 81 

To see how both these things are done in one equation, it is helpful 
to examine the structure of that equation. Its dependent variable is 
ats = cites to cohort s from patents sampled in t per patent in t divided 

by number of patents in s. If we look at their specification in logs and 
do not impose some of their constraints on functional forms, what we 
have is 

ln(ats) = g1(t) + g2(s) + g3(t - s) + g4 A knowledgej 

A knowledgej = A Nj = ijPj, 

where Pj is patents granted in j, and ij measures the knowledge per 
patent in cohort j. 

Here g4() measures the degree to which patents in cohort "s" have 
become obsolete and, hence, contain less useful ideas, for cohort "t"'s 
use. In a unidimensional quality mode, where each good improves on 
the quality of other goods, it makes some sense to make the extent of 
obsolescence of period s goods a function of the number of new goods, 
or the amount of "new knowledge," produced between s and t, and 
this is what they have done. Note, however, that this determines the 
relationship between patents and knowledge for the rest of the analysis, 
i.e., knowledge per patent in a cohort becomes equal to the obsoles- 
cence effect per patent of a cohort. 

In a model with more than one quality dimension, this would no 
longer seem like a natural assumption, and, indeed, it is easy to think 
of new patents that actually enhanced the productivity of the ideas in 
old patents. So I would have preferred to have a different weight for 
patents in g4( ) than the weight given to patents in the definition of A N. 
This would have required more econometrics, probably a simultaneous 
equations analysis of the whole system, and as a result may best be left 
for a different analysis. Still this is one case where the added economet- 
rics might well be worth it; the measure of research productivity and 
the measure of knowledge increments are the basic inputs into the sub- 
sequent analysis of how knowledge affects the economic magnitudes in 
the subsequent analysis. 

The other factors affecting ats are as follows: 

gl(), the time effect, is meant to pick up changes in the institutional 

regime that lead to more citations for a given number of used ideas. 
(This appears in the paper as t4)t)). 
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g2() provides a measure of the importance of the ideas in a cohort for 
subsequent citations; i.e., it is our measure of the "externality inten- 
sity" of a cohort. (This appears in the paper as s,8). 

g3( ) is a function of age that they argue has to do with diffusion of the 
ideas in a cohort [appears in the paper as a transform of y(t-s)]. 

It is well known that one cannot estimate free functions of cohort, 
age, and time, so they have to impose some constraints. Their specifica- 
tion allows gl( ) to be free (and it picks up a secular increase in citation 
intensity), approximates g2( ) with a combination of dummies and poly- 
nomials, and makes linearity assumptions on both g3() and g4(). 

I pause here to consider the implications of the specification for g4(), 
which has 

g4() = 3 jPt_j 
j=s 

with the normalization ,3 = 1. The linearity assumption is a very strong 
assumption, which is not really consistent with past micro work of Jaffe 
and some of his coauthors. It bothers me for a couple of reasons. 

First, one of their major findings is that there is a secular decline in 
the {6s}, or in the usefulness of cohorts of patents in producing new 
knowledge. This is a major part of their explanation of the secular de- 
cline in the patent to research ratio. I am worried that the estimated fall 
in the {8s} series is simply an artifact of the fact that old patents are cited 
more than their exponential decay warrants, i.e., if we had a longer time 
series, the current generation of young patents would also pick up 
larger bs's. 

More generally the linearity in g4() is also determining the shape of 
the {iJs, which in turn is fed back into their analysis of the productivity 
of research resources and, hence, affects all subsequent analysis. As a 
first step to seeing whether this linearity is indeed a problem, they 
might have used some more flexible functional forms here (add a qua- 
dratic and maybe a cubic term, or, better yet, try a combination of 
dummies and polynomials that would allowed for bell-shaped pat- 
terns). Here are some more general comments on the empirical results 
from estimating the citation equation. 

The most important thing to take from Table 2 is that allowing for 
intervening ideas (in the form of patents) in addition to the time and 
cohort effects, improves the fit quite markedly. This makes it clear that 
there really is empirical content to their notion of a "knowledge clock," 
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the notion of obsolescence they are after. My problems, then, are just 
in the detailed interpretation they provide for an effect that is clearly 
present. Their intepretation left me troubled in the following ways. 

First, they find that the ij = gl(j) are almost perfectly negatively 
correlated with the 8j = g2(j). If I interpret this correctly, it says that 
cohorts that are cited disproportionately actually do not make obsolete 
as much past old knowledge as cohorts that are not cited as much. This 

may well be true, but my intuition says that if it is, then the model 
should have more than one "quality" dimension, in which case there 
is something wrong with the underlying framework we are using to 

interpret the relationships in the data. In particular, how do we know 
that it is the ij that should be used to construct the AN' in the subse- 

quent analysis, and not some combination of the ~j and the 6j (particu- 
larly because firms tend to have base patents that they build on and 
cite with their subsequent work)? 

Second renewal data indicates a negative correlation between quan- 
tity and the average private value of the patent rights in a cohort of 

patents. (Empirically this is just a negative correlation between the size 
of the cohort and the fraction of the patents in the cohort that find it 

profitable to pay renewal fees to keep their patents in force in subse- 

quent years.) The simplest explanation is that more stringent rules at 
the patent office cause the less valuable patents not to apply, and be- 
cause the patent distribution is highly skewed with many patents of 

very low value, the induced change in the number of patents in a cohort 
can be quite large even though the change in the total value of the 
cohort is negligible. (See Pakes and Simpson, 1989, and the literature 
cited therein.) Renewal data attempt to measure the private value of 

patent rights, and this value is different from the value of "patents" in 

augmenting aggregate productivity or aggregate consumption (which is 
closer to a social, than a private, value concept). Still we might have 
expected the two concepts to be positively correlated, and it bothers me 
that this paper finds, for the most part, a positive correlation between 
their quantity and "average value" estimates of cohorts of patents. 

Finally, the standard errors in this and subsequent tables are probably 
not believable. Part of the problem is that they never are explicit about 
where the disturbances enter. (In principle this should be either where 
the researchers think they are missing an important piece of data or 
where there is true randomness in outcomes.) As a result, it is hard to 
figure out appropriate ways of calculating standard errors, but what 
they actually do is not robust to much. For example, a reasonable place 
to think the model is missing is in using a constant cite intensity of a 
cohort, so say we change to g2(s) + Et,, and let Et, be serially correlated 
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over time. That would imply both dependence in the residuals of their 
equations, and heteroscedasticity. The current standard errors do not 
make a correction for either of these. 

4. The Last Three Equations 
As far as I know all the citation analysis that has appeared in the eco- 
nomic literature to date is, in a sense, self-contained, i.e., it uses cita- 
tions to measure which patents are closer to which others, but it does 
not bring that measure of closeness to bear in the analysis of other 
economic phenomena we want to explain. The innovation production 
function in this paper does just that; it asks whether the citation based 
measure of research productivity (0) can help explain the relationship 
between industrial research and patents, and this is an important next 
step in the analysis. 

The estimation results indicate that 0 does indeed help explain re- 
search productivity. Indeed, to see this we need only compare the series 
of the ratio of their patents-based knowledge measure to research ex- 
penditures (iPIR), to the series on 0. The troublesome aspect of their 
finding is that it all seems to be coming from two trends; one in iP/R, 
and one in 0, i.e., the higher-frequency movements of the two series 
do not seem to be correlated. Thus, I would have liked them to also 
have allowed a time interaction, and see if their results survive. If they 
don't, and my guess is they will not, then the results should be inter- 
preted as providing one potential source of a time trend in the patents 
to R&D ratio; other heavily trending variables are other possibilities. So 
I view this as perhaps promising, but not strong evidence, in support 
of a hypothesis. Consequently they have not totally convinced me of the 
usefulness of citation data in determining the productivity of research 
resources in producing patents. That is another reason that I would 
have liked to see the citation data used in the obsolescence analysis. 

I should note here there are data reasons why they might not be 
picking up the higher-frequency movements in the iPIR series. First, 
they have done a serial correlation adjustment in the innovation produc- 
tion function analysis. This seems to me to produce an inconsistency in 
the timing used to construct 9O, i.e., if patents are a distributed lag over 
past knowledge increments, then the citations of those patents should 
also be a distributed lag of the citations made by the past knowledge 
increments. Also they use patents by grant date in the first part of the 
analysis and patents by application date in this part of the analysis; and 
there is a long and variable lag between these two series. These kinds 
of problems put real noise into the data, and my guess is that they 
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would help their results a lot by correcting them. (It might, for example, 
allow them to pick up the higher frequency movements in the iPIR 
series.) 

Finally, two brief comments on the analysis of creative destruction. 
First, I reiterate that it would be interesting to integrate the citation 
information into the stock market analysis. Second, I worry that the 
current analysis of growth of firm value ignores the growth in the other 
assets of the firm (growth in physical capital, e.g.), especially because 
we have good reason to believe the growth in physical capital is related 
to the growth in the firm's new products. In this context, it might be 
easier to build a specific stochastic structure into the model and then 
estimate parameters off the one period rate of return on the firm's stock 
(which has a cleaner interpretation in terms of revisions of information). 

To conclude, let me point out that despite all these caveats, the au- 
thors get interesting results on every equation. What I take from this is 
that there is a data base available that should allow us to fill in many 
of the details needed to use their framework to understand the growth 
process. 
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While lauding the results in the paper, Zvi Griliches suggested that the 
citation data must be interpreted carefully. For example, the fact that 
citations to a patent cease does not necessarily imply the knowledge 
associated with the patent has been made obsolete: Economists today 
readily use the Cobb-Douglas production function without citing Doug- 
las explicitly. Moreover, as the authors are certainly aware, patents and 
citations are an artifact of a certain process, and that process is distor- 
tionary. Citations do not necessarily reflect the knowledge that influ- 
ences the inventor; often they are placed into the article by the patent 
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editor. As another example, the body of knowledge available for citation 
is getting larger and larger, but the bibliography of a patent has a natural 
size constraint, i.e., how much the editors will accept. Patents that 

might otherwise be cited will be crowded out, but this need not reflect 
obsolescence. 

Regarding the relatively quick diffusion found in the paper, Griliches 
noted that again the patenting process may be relevant. Patent examin- 
ers are responsible for specific types of patents. Therefore, when a pat- 
ent application is received, the patent examiner is cognizant of the most 
recent patents granted in the field and may require these in the list of 
citations. The diffusion measured in the paper is the diffusion among 
patent examiners, not the diffusion of the innovation in the average 
productivity of the economy. 

Roland Benabou wondered if there have been sudden changes in 
patent regulations such as application fees, royalty rates, or the duration 
of patents that might be used to distinguish variations in the propensity 
to patent from the other effects that we are really interested in. Jaffe 
responded that the largest change in the United States was in the early 
1980s, when patent renewal fees were instituted. Beginning in 1985, 
data is available on whether or not inventors renew their patents. Pakes 
and others have worked with European patents where renewal fees 
have been in place for a longer period of time. Griliches noted that in 
recent years, patent fees have also increased sharply. Interestingly, Jaffe 
remarked, the rate of patenting has risen dramatically over this same 
period. 

Benabou also suggested that royalty fees should be included in the 
valuation equation for patents: If your innovation will require paying 
royalty fees on the patents that are cited, this will presumably affect the 
valuation of the innovation. Jaffe responded that in fact, an inventor 

generally does not have to pay the owners of patents that are cited. 
This depends on the nature of the product that is manufactured and 
sold. If you sell a product that incorporates both your invention and 
the cited inventions, you have to pay royalties. In principle, however, 
a patent is a statement by the patent office that your invention is suffi- 
ciently freestanding that it is a product in and of itself, and no royalties 
are required. 




