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Giuseppe Bertola and Ricardo J. Caballero 
PRINCETON UNIVERSITY, AND C.E. PR./COLUMBIA UNIVERSITY 

Kinked Adjustment Costs and 

Aggregate Dynamics* 

1. Introduction 
The best-fitting linear representations of relationships among aggregate 
time series are typically smooth and sluggish. When seeking microfoun- 
dations in a representative agent framework, macroeconomists have 
therefore adopted convex and differentiable-most often quadratic- 
adjustment cost functions. This implies partial and continuous reactions 
to all innovations; but even casual observation of, for example, durable 

purchases and retail prices indicates that microeconomic units make cer- 
tain adjustments only intermittently and by amounts that are not neces- 

sarily small. Obviously, then, real-life individuals are not solving the 

representative agent's convex adjustment cost problem, and its parame- 
ters have no clear "deep structural" interpretation. Resolving the tension 
between empirical tractability and microeconomic realism is not easy, but 
the importance of efforts in this direction is becoming more and more 
evident. Consideration of microeconomic realism is, we believe, essential 
for macroeconomics to develop sound theoretical foundations.1 

*For comments on earlier drafts and helpful conversations we are indebted to Roland 
Benabou, Olivier Blanchard, Alan Blinder, Andrew Caplin, Avinash Dixit, Stanley Fischer, 
Robert Hall, Eytan Sheshinski, seminar participants at Columbia, Princeton, L.S.E., and 
M.I.T., and NBER Macroeconomics Annual Conference participants. 
1. More careful work on dynamic adjustment may be needed for purely empirical purposes 

as well. On the one hand, the rich, slow dynamics of aggregate data have proven 
difficult to rationalize in a representative agent model, whether based on atemporal 
frictionless optimization or on convex adjustment costs; on the other hand, statistical 
models of aggregate data often uncover asymmetries and track endogenous variables 
poorly in the aftermath of large shocks. Hansen and Singleton (1983) and Abel and 
Blanchard (1986) are examples of careful, structural representative agent models falling 
short of providing a statistically robust description of aggregate data, which reject the 
restrictions imposed by optimizing behavior. Neftci (1984), DeLong and Summers 
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Intermittent large adjustments can be explained in an optimizing 
framework by the observation that microeconomic adjustment cost func- 
tions are often kinked at the no-adjustment point. Inaction is costless, but 
even small changes in endogenous variables may entail finite costs. In 
this paper we discuss the microeconomics of infrequent adjustment, 
reviewing well-known qualitative insights along with recent technical 
advances that make it possible to develop sophisticated and realistic 
formal models. Because realistic microeconomic adjustment implies 
much more pronounced sparseness of action than is apparent in aggre- 
gate data, notions of idiosyncratic uncertainty and lack of coordination are 
essential for macroeconomic applications. We provide a formal frame- 
work in which such issues can be addressed, and we discuss the role of 
microeconomic inertia in shaping the empirical behavior of aggregate 
data. 

The paper is structured as follows: Section 2 discusses the realism of 
infrequent adjustment in many partial equilibrium problems of macro- 
economic interest and solves a stochastic model of adjustment under 
kinked adjustment costs. The model we propose and the techniques we 
use for its solution are applicable in a variety of circumstances. As in 
previous work, we find that in the long run endogenous variables 
should be well predicted on average by models of costless adjustment, 
while kinked adjustment costs produce a wide dispersion of possible 
outcomes at a point in time, and rich, history-dependent dynamics. 

Section 3 studies the behavior of a large group of individuals following 
similar dynamic adjustment policies. Modeling the probabilistic struc- 
ture of aggregate and idiosyncratic shocks in a variety of simple frame- 
works, we find that the behavior of aggregate variables depends in an 
intuitive way on the relative importance of ongoing aggregate and idio- 
syncratic uncertainty. When the former predominates, the aggregate be- 
haves very much as any one of the individuals would, displaying strong 
history dependence and sluggishness; but as idiosyncratic shocks be- 
come more important, the aggregate behaves more and more as an 
individual would in the absence of any obstacle to adjustment, and therefore 
quite unlike any one of the actual individuals. 

Section 4 proposes an application of these models to U.S. durable 
goods consumption data. The results are encouraging, and suggest that 
a good fit of aggregate dynamics can be obtained under realistic assump- 
tions about the dynamics of microeconomic adjustment. Section 5 con- 
cludes and outlines directions for further work. 

(1986), and others have focused on the asymmetric cyclical behavior of macroeconomic 
time series. 
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2. Microeconomics 

Individual firms do not continuously adjust their capital stock, prices, 
and production techniques; consumers do not alter their portfolio com- 
position, labor supply, and consumption habits every hour, day, or 
even year. This type of behavior cannot be rationalized by strictly con- 
vex adjustment costs, which would make it optimal to continuously 
and partially adjust to all exogenous shocks. In fact, the assumption 
that average costs of adjustment should be increasing in the speed of 
adjustment is not generally realistic at the microeconomic level: even as 
they introduced quadratic adjustment costs and certainty equivalence 
to the economic literature, Holt et al. (1960) made it clear that such 
assumptions could only be taken to be reasonable approximations over 
a range. 

Infrequent corrections might be taken to reflect suboptimal behavior at 
the individual level (Akerlof and Yellen 1985). Alternatively, and to take 
advantage of optimization-based theory and prediction, inaction can be 
explained if adjustment costs are specified so as to penalize continuous 
small reactions-a form of increasing returns to scale. It is not unreason- 
able to allow for kinked adjustment costs (not differentiable, and possi- 
bly discontinuous) at the no-adjustment point. Inaction should be 
costless, but the cost of even small adjustments may be finite; more 
generally, if the per-unit cost of reacting to those exogenous changes that 
typically occur between decisions is large compared to the benefits ad- 
justment would yield, it clearly does not pay to always adjust. 

While economists have long been aware of the qualitative dynamic 
effects of adjustment cost nonconvexities (a wide-ranging critique of 
convex adjustment cost models is in Rothschild 1971), interest in models 
of infrequent adjustment has recently been rekindled by introduction of 
techniques providing quantitative insights and exact solutions in realistic 
applications, adapting stochastic calculus results from engineering, op- 
erations research, and finance applications (many relevant results and 
techniques are usefully summarized and reviewed in Harrison 1985). 
The assumption of continuous time and state spaces makes it easier to 
obtain analytical results, as integrals are more readily manipulated than 
summations. When modeling behavior in continuous time and assum- 
ing a differentiable flow benefit function, an adjustment cost function 
that is not continuously differentiable is sufficient for intermittent adjust- 
ment to be optimal. This section reviews recent and less recent contribu- 
tions to the literature and provides a simple introduction to continuous 
time models of infrequent dynamic adjustment, highlighting their advan- 
tages in terms of realism and analytical tractability. 
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2.1 LITERATURE REVIEW 

The (S, s) two-point rule is the earliest and best-known discontinuous 

adjustment control policy. It is applicable to cases where adjustment is 
assumed to be one-directional, and to entail a fixed lump-sum cost per 
adjustment decision, as may be the case in inventory management at a 
retail outlet: the cost of ordering nothing is zero, each unit can be pur- 
chased at a given unit price once an order has been placed, but a fixed, 
per-order cost yields a downward sloping unit adjustment cost function. 
Both the total and unit order cost are then discontinuous at zero, and the 

optimal ordering strategy calls for infrequent, large orders (see Scarf 
1960, and his references for even earlier, less formal work); under simpli- 
fying assumptions, cost minimization will call for all orders to be the 
same size. Money demand has been modeled in a similar framework, 
assuming the exchange of ready cash for other stores of value to entail 

lump-sum transaction costs (Baumol 1952, Tobin 1956, Miller and Orr 

1966). The controversial-but in some settings realistic-assumption 
that price changes incur a fixed menu cost makes for large, infrequent 
price adjustments (Barro 1972, Sheshinski and Weiss 1977, 1983), which 

again can be described by fixed-adjustment-size rules under simplifying 
assumptions; adjustment will be one-sided if price reductions are never 
found to be optimal. 

The contributions cited above either assume certainty, or provide styl- 
ized treatments of simple uncertainty cases. Continuous-time, stochastic 
models of (S, s) adjustment policies, motivated by realism and tractabil- 

ity, have been studied extensively in the Operations Research literature 
(an early reference is Bather 1966). Financial economists make extensive 
use of similar techniques in modeling asset prices, and the first applica- 
tions to adjustment cost problems other than that of inventory manage- 
ment were, quite naturally, in a financial setting. Constantinides (1986) 
proposes an approximate solution for the portfolio problem of a con- 
sumer-investor in the presence of nondifferentiable portfolio adjustment 
transaction costs, and Grossman and Laroque (1990) solve a specific 
model of illiquid durable goods consumption under uncertainty. Frenkel 
and Jovanovic (1980) provide a rederivation of the Baumol-Tobin model 
of cash management and money demand in a continuous-time uncer- 

tainty framework (Smith 1989 further extends the model to include inter- 
est rate variability and proportional transaction costs), and Tsiddon 
(1988) proposes a continuous-time model of menu cost pricing. 

While it is obvious that adjustment should be infrequent and large in 
size when action entails lump-sum costs, it is perhaps less clear that 
inaction may be optimal even when adjustment costs are proportional to 
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the size of the correction being undertaken. In fact, when exogenous 
influences may make adjustment in both directions desirable, inaction is 

optimal if the adjustment cost function, though continuous, fails to be 
differentiable at zero. 

An extreme example is that of finite, proportional adjustment cost in 
one direction, and prohibitive costs in the other, as may be realistic in 
models of investment (Arrow 1968, Nickell 1974, Pindyck 1988, Bertola 
1989a).2 More generally, inaction is optimal when either the adjustment 
technology has increasing returns to scale, like in the lump-sum cost 
models discussed above; or, adjustment has constant returns to scale 
(proportional adjustment costs), but it is costly (not necessarily impossi- 
ble) to retrace one's steps, and exogenous variables may return to their 
original values after an innovation. 

For example, labor turnover costs may not be strictly convex even 
when no lump-sum adjustment costs are present. New employees need 
to be screened and trained, and the cost of doing so may well be propor- 
tional (if not less than proportional) to the total number of hirees; and 
employment contracts penalize-explicitly or implicitly-a firm's firing 
decisions. It is quite clearly not optimal to hire a new worker just before 
desired employment ceases rising, and fire her as it starts falling: the 
hiring and firing costs would have to be paid at essentially the same 
moment to almost no avail, since the marginal worker would not have 
time to produce flow revenues in her short tenure. These insights are 
modeled by Kemp and Wan (1974), Nickell (1978), and Bertola (1989b) in 
a certainty framework, while the effects of uncertainty have been stud- 
ied by Caplin and Krishna (1986), Gavin (1986), and Bentolila (1988) in 
discrete-time models, and by Bentolila and Bertola (1990) in a more 
general continuous-time framework. 

Other dynamic adjustment problems have been studied along these 
lines. Inasmuch as durable goods can be seen as factors of utility produc- 
tion, the problem of a consumer faced by transaction costs in the pur- 
chase and sale of durable goods is similar to that of a producer choosing 
an optimal capital accumulation policy (the budget constraint introduces 
additional complications, however). Bar-Ilan and Blinder (1987) and 
Grossman and Laroque (1990) propose models incorporating these fea- 
tures. Finally, marketing of a product may also entail lumpy and, more 
generally, nondifferentiable costs. Baldwin and Krugman (1989) apply 
this insight to the responsiveness of prices and quantities of internation- 

2. If desirability of downward adjustment were ruled out (as it is in (S, s) models of 
inventories with positive net sales at all times), irreversibility of adjustment would be 
completely irrelevant. In general, however, irreversibility has important consequences 
on optimal (necessarily infrequent) dynamic adjustment. 
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ally traded goods to exchange rate fluctuations: exporting and import- 
competing firms should be wary of reacting to such fluctuations, if doing 
so is costly and there is a possibility of exchange rates reverting back to 
their earlier values. When adjustment costs are kinked, short-lived ex- 

change rate swings may have long-lived effects on international trade, 
and, more generally, the dynamic relationship between exchange rates, 
activity levels, and trade balances is highly nonlinear. Continuous-time 
stochastic models of such phenomena have been developed by Dixit 

(1989a,b,c) and Dumas (1988). 
This brief review suggests that issues of infrequent adjustment have 

been addressed early and often in the economic literature. Models, how- 
ever, that are so realistic as to make applied work possible have only 
recently begun to be developed in economics. We proceed to illustrate 
the new techniques with a relatively simple model. 

2.2 A PROBLEM OF ADJUSTMENT UNDER KINKED COSTS 

Let the flow benefits accruing to a microeconomic unit be described by a 
function nl(x,y) of x, controllable, and y, exogenous; y denotes a collection 
of variables describing the environment of the microeconomic unit and 
the character of its stochastic evolution in time. Let I(.,.) be twice differen- 
tiable and strictly concave in x, with a well-defined unrestricted maximum 

x*(y) arg max ll(x,y). 
x 

In the presence of adjustment costs and uncertainty, we write the dy- 
namic problem of a risk-neutral optimizer with discount rate p as 

V(x,y,) -max Et { e-Pt)( Il(x,,y,)dT 
- [adjustment costs] ) 

Ideally, the optimizer would like to choose a stochastic process for x, 
such that XT = x*(y,) at all r. If altering the level of x is costly, however, 
these costs have to be traded off against the benefits of tracking x*(yT), 
the frictionless optimum, more closely. Specifically, let every upward ad- 

justment of x by some amount k > 0 cost Cu + cuk; and, similarly, let 
downward adjustments by -k < 0 cost Cl + c,k.3 This is the piecewise 

3. The adjustment cost parameters C,ci,i = 1, u need not all be positive: if some adjustment 
decisions bring on rewards, rather than costs, the optimization problem may still we 
well defined. For the existence of a well-defined solution to the problem, however, 
CQ,Cu,Cl,Cu must be such that Cu + C, + c,k + c,k > 0 for all k - 0; otherwise, adjustment up 
and down by k would produce revenues rather than costs, and nothing in the problem 
would prevent this from happening infinitely often, yielding an unbounded value for 
the program. 
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linear adjustment cost function plotted in Figure 1. The function is kinked 
at zero, the no-adjustment point; it is discontinuous whenever C, : 0 
and/or C, : 0, and nondifferentiable whenever c, # -cq. 

To separate the essentially static problem of choosing x*(y) from the 

dynamic adjustment aspects, let us define the value of the program in 
the absence of any adjustment cost, 

V*(yt) = Et { f e-p(-t)I(x*(y,),y)dt 

and write 

V(xt,yt) = V*(yt) + 1(xt,Yt). 

Thus, i(xt,yt) denotes the loss in value terms due to the presence of 

adjustment costs, as a function of the current state of endogenous and 

exogenous state variables. The adjustment policy should minimize this 
loss, trading off the costs incurred at the times when adjustment is loss, trading off the costs incurred at the times when adjustment is 
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undertaken against the expected present value of flow costs due to devia- 
tions from the frictionless optimum. 

We now introduce assumptions that yield a simple form for the adjust- 
ment policy. First, we assume that the {x*(yt)} stochastic process is well 
described by an arithmetic Brownian-motion process, and the endoge- 
nous stock xt depreciates linearly when the optimizer chooses not to act: 

dx* = Ydt + o-dWt, dxt = -6dt + adjustment. 

Second, we assume that 

(Xt,Yt) = Et { e-(r-t) (- b) (xr))2dr 
- [adjustment costs]) . 

Defining zt xt - x*(yt), we note that in the absence of adjustment zt 
follows a Brownian-motion process with constant drift -O (with6 - O* 
+ 8) and standard deviation a, and that the loss i(.,.) is a function of z, 
only: 

(Xt,Y-t) v(Zt) = min Et e-P')((zr) dr + [adjustment costs]. 

(2.1) 

Under regularity conditions, v(z) is less than zero and is bounded below 
(see the Appendix). These simplifying assumptions ensure that the state 
space of the optimizer's problem is continuous and Markovian in terms 
of a single-state variable, z. The optimizer always has the option to alter 
the current level zt instantaneously, not necessarily by infinitesimal 
amounts, and the optimal policy can be expressed in terms of fixed 
trigger points and adjustment steps in this state space. The simple form 
of the solution is exact under the assumptions above, which are not 
dissimilar from those made in earlier macroeconomic applications; we 
discuss in Section 2.4 the restrictions they impose on the underlying 
structure. The solution may also be taken as an approximation to that of 
more general problems with kinked adjustment costs leading to some 
form of inaction.4 

We describe the adjustment policy in terms of four, not necessarily 
distinct, parameters (L,l,u, U). Specifically, adjustment only occurs when 

4. Since dxl(x*(y),y) = 0 by assumption, this expression could be justified in terms of a 
second-order approximation around the moving point x*(y,), as long as ax2I(x*(y,),y,) is 
constant (and equals b). dx,f(x,y) denotes the jth partial derivative of a function f(.) with 
respect to x, evaluated at x = x. 
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z is at points L or U, L - U; when z reaches L, control moves it instanta- 

neously to 1, with L - I < U; and when z reaches U, control moves it back 
to a point u, with L < u < U. We proceed to characterize these four 

points in terms of the value function v(.) defined by (2.1). If the optimal 
control policy is unique, it is necessary and sufficient for optimality of a 
candidate policy that costs and benefits of any action undertaken by the 

optimizer be equal along the optimal path, on the one hand, and costs of 

potential actions be weakly larger than their benefits when the optimizer 
is inactive, on the other hand. Formally, v(.) and (L,l,u,U) must be such 
that 

v(l) - v(L) = C, + c,(l - L), v(x) - v(y) C + c,(x - y) x > y(22) 
v(u) - v(U) = Cv + c(U- u), v (y) - v() 

- 
CU + cu(y - x) Vx < y. 

These relationships are illustrated in Figure 2 (similar diagrams appear in 
Constantinides and Richard 1978, and in Caplin and Krishna 1986 for the 

Figure 2: v(z) 
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case of proportional costs only). Moreover, we note in the Appendix that 

(2.2) and differentiability of v(.) imply: 

v'(l) = v'(L) = c(2.3) 
v'(u) = v'(U) = -c 

These conditions on v'(z) can be intuitively interpreted in terms of opti- 
mality of adjustment size. Once the optimizer has decided to take action, 
the lump-sum cost Cu (or Cl) is sunk, and the size of the jump must be 
such that the marginal return to adjustment exactly offsets the propor- 
tional cost at the return point. Considering that the optimizer might 
have decided to initiate adjustment at points different from the candi- 
date triggers, the same reasoning applies to L and U. 

Thus, optimal action and return points must then be such that v'(x) 
equals the marginal cost of action whenever action is undertaken 
("smooth pasting"), and the value function at the trigger and return 

points must differ by the total cost of adjusting between the two points 
("value matching"). By differentiability of v(.), we can write 

v(l) = v(L) + f v'(z)dz, v(U) = v(u) + v'(z)dz, 

and the solution of the dynamic optimization problem can be represented 
as in Figure 3 (similar diagrams appear in Constantinides and Richard 
1978, Harrison, Selke, and Taylor 1983, Dixit 1989d). In the Figure, 
smooth pasting constrains the level of the S-shaped v'(z) function at the 
action and return points, and value matching requires that the shaded 
areas be equal to the lump-sum costs of adjusting in that direction. 

When there is no lump-sum component (Cu = C, = 0), there is never 

any reason for adjustment to be larger than infinitesimal in an ongoing 
optimization program, as the path of {z} is continuous in the absence of 

regulation. Hence, U = u and L = 1, and the common value of these 
parameters needs to be determined, by the conditions in (2.3) alone, at 
the points where the S-shaped curve of Figure 3 is horizontal. In the case 
of nonzero lump-sum adjustment costs, adjustment must have finite 
size; given differentiability of the value function, infinitesimal changes in 
z would not yield benefits large enough to match a finite cost. Then, the 
value of the four points defining the optimal policy will be derived from 
joint consideration of (2.2) and (2.3). 

To make use of the optimality conditions, we need a functional form 
for v(z). Since v(z) is flat around its maximum, it is certainly suboptimal 
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Figure 3: v'(z) 
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to correct small zt deviations, as doing so entails first-order costs. The 

optimal adjustment policy then allows zt to wander some finite distance 
(L, U) from zero before taking correction action. In this range, {z} be- 
haves as a Brownian motion, and we show in the Appendix that this 
makes it possible to characterize the value function's behavior in the 
absence of control, and to obtain an explicit functional form for v(.) up to 

integration constants to be determined at the boundaries of the inaction 

region. These boundaries and the integration constants are jointly deter- 
mined by conditions (2.2) and (2.3), which are not difficult to solve 
numerically. 

2.3 DYNAMICS, LONG-RUN DISTRIBUTION, AND AVERAGES 

In the absence of obstacles to continuous and complete adjustment, the 
economics of the optimization problem would provide us with a tight 
relationship x*(y) between the exogenous state variables, y, and the en- 
dogenous one, x. This relationship would typically be used to draw 
positive implications on the position and dynamics of x from knowledge 
of y. Adjustment costs make such inferences more difficult and less 
precise. At a point in time, the actual value xt can deviate from x*(yt) by 
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the potentially large amount zt, depending on the past history of the 

exogenous variables and on the resulting path of adjustment. As to 

dynamic reactions, they also depend on the past history (as summarized 

by the current value of z): x may fail to respond to a small change in y if 
no adjustment is triggered, or may react disproportionately if lump-sum 
costs of adjustment are present and the y change triggers a jump in x. 

When we are asked to interpret the likely evolution of x in the face of 

exogenous shocks, we cannot always have complete information about 
initial conditions and the history of exogenous variables. It is interesting, 
then, to examine the implications of the model at the other extreme: 

suppose we have no information as to the current position of x, though 
we know the parameters of the individual's dynamic problem, and con- 
sider the long-run behavior of {zj deviations in the simple optimization 
program above. Since the {z} process never leaves [L,U], and reaches 

any point in that interval with probability one over the infinite time 
horizon we consider, it possesses an invariant, ergodic distribution- 
and if we literally know nothing about the past history of the optimizer, 
our inferences about xt from knowledge of Yt should be probabilistic, 
based on the ergodic distribution over the [x*(yt) + L,x*(yt) + U] interval. 

In the Appendix, we derive the ergodic distribution exploiting its invari- 
ance property. Under the assumptions above, the stable density f(z) is 

piecewise linear if e = 0, piecewise exponential otherwise. The shape of 
the ergodic distribution depends on e, the ratio of the drift O to uncer- 

tainty per unit time or2. A positive x* drift (or a large 8) tends to concentrate 
the z distribution toward the lower boundary of a given inaction interval 
(see Figure 4), but the extent to which this occurs is decreasing in the 

degree of uncertainty about the fluctuations of the regulated process {z}. 
Intuitively, we expect z to be low if it usually drifts downward, but are less 
and less sure about this inference the larger the uncertainty. In the limit, 
the distribution tends to uniformity over the relevant action range when 
the ratio /or2 tends to plus or minus infinity; in this sense, one-sided rules 
of the (S,s) type, and their uniform ergodic distribution, emerge as a limit 
of the more general four-points rules examined here (see Section 3.3 
below for a further discussion of this point). 

Figure 4 displays ergodic densities for different drift-variance ratios (5) 
over a given inaction range, highlighting effects on the shape of f(z) but 

disregarding the impact of s on optimal policies for given adjustment 
costs. The latter issue is illustrated in Figure 5. There, we plot the stable 
distributions of z for different values of O, setting the action and return 

points at their optimal levels (given ar and the other parameters). In a 
smaller panel, we also plot against O the action and return points, and 
the mean of the ergodic distribution. 
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Figure 4: f(z) 
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It is apparent that, while the shape of the distribution is strongly influ- 
enced by the ratio of <p to o, different drifts do not have a noticeable 
effect on the mean value of z (different ac would also, while affecting the 

shape of f(z), have quite minor effects on its mean). A positive drift 

implies a tendency toward positive deviations, but induces the opti- 
mizer to correct those deviations sooner and by a larger amount; when 
the expected change of the instantaneously optimal level x* is strongly 
positive (so that the drift of z is strongly negative), the difference be- 
tween x and x* is not allowed to become very negative-because such 
deviations would be expected not only to persist but to become larger in 
the absence of corrective action. As a consequence, although the ergodic 
distribution tilts heavily in the direction of L with a large negative drift in 
z (Fig. 4), the average deviation of x from x* is hardly affected by the size 
of the drift, precisely because behavior is altered in ways that by and 

large tend to maintain z quite close to zero on average (Fig. 5). 
In partial equilibrium, if the path of x* can be taken as exogenous, this 

insight is quite general; although "small" adjustment costs and "small" 
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amounts of uncertainty are sufficient to generate "large" inaction ranges 
(see Dixit 1989e) and important dynamic deviations from the frictionless 

optimum, in the long run positive and negative deviations tend to cancel 
out. The effect of adjustment costs on long-run average deviations from 
the frictionless optimum is, therefore, one order of magnitude smaller 
than that on inaction ranges. In the context of the symmetric cost- 
minimization problem considered above, this is quite intuitive; the opti- 
mizer attempts to track the frictionless optimum as closely as possible, 
and deviations from it are equally penalized in both directions.5 

2.4 APPLICABILITY OF THE RESULTS 

Given the analytical expressions in the Appendix, numerical solution of 
(2.2) and (2.3) yield action and return points as functions of adjustment 
costs, uncertainty, concavity (summarized in b), and drift. We now need 
to discuss applicability of the simplified model above in specific exam- 

ples, noting that exact solutions are typically available for constant elas- 

ticity (loglinear) models (Grossman and Laroque 1990, Bentolila and 
Bertola 1990, Bertola 1989a, Dixit 1989a) and that numerical solutions 

may be obtained, adapting the methods outlined above, for more com- 

plex functional assumptions as well. 
The problem solved above is simplified in many respects. In particu- 

lar, the basic framework is such that in the absence of adjustment costs 
the dynamic optimization problem would collapse to a sequence of static 
choices. This simplification is harmless if no intertemporal linkages other 
than adjustment costs are present in the case under study. We discuss 
the further simplifying assumptions we made in this context, before 

turning to a discussion of other intertemporal links. 
Consider, for example, a firm's labor demand policy. In the absence of 

turnover costs, employment should be chosen to set labor's marginal 
revenue product equal to unit wages. This defines x*(y), with y including 
wages, prices of intermediate materials, productivity, and output prices. 
If xt represents the logarithm of desired employment, Brownian motion 

dynamics may be a good approximation if the increments in the rate of 

growth of prices, wages, and productivity are approximately inde- 

pendent over time. The parameters and variables of the simplified opti- 
mization problem are then readily interpreted in terms of real-world 

5. To the extent that average effects are relevant, however, functional forms different from 
the symmetric one considered here-asymmetries in adjustment costs, discounting, and 
drifts-all have a role in determining them (see Bentolila and Bertola 1990, Bertola 
1989b). The positive effects of inflation on welfare identified by Diamond (1988) and 
Benabou (1989) in a search context depend heavily on sharp asymmetries in flow objec- 
tive functions and on interactions through general equilibrium conditions. 
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quantities; lump-sum and proportional adjustment costs apply to propor- 
tional employment changes, and z measures log-deviations of employ- 
ment from the level that would maximize the flow of operating cash flow 
H(.,.). If a year is the time unit, and the yearly wage of a unit of labor is 
the numeraire, then p, O, and Cr2 are in time units; the concavity index b 
measures lost cash flows in the same units in which the yearly wage bill 
is measured; and Cu and C, refer to the lump-sum cost, in those same 
units, to be paid when changing the logarithm of employment-namely, 
a fraction of the current wage bill has to be paid whenever employment is 

changed by any nonzero amount.6 
In partial equilibrium models of the firm, the required rate of return p 

may well subsume all intertemporal aspects other than adjustment costs; 
thus problems of menu pricing, investment, and inventory management 
can be similarly framed in terms of the model proposed above. In many 
cases, however, intertemporal linkages would not disappear if adjust- 
ment costs were removed. For example, even when labor turnover is 
costless a firm should adopt forward-looking employment policies in the 

presence of learning-by-doing, or of strategic interactions with potential 
and actual competitors. More to the point, a consumer's portfolio and 
consumption choices are subject to the intertemporal budget constraint 
in the absence of adjustment costs. 

In such situations, x; should be understood to represent the state- and 
time-contingent choice that would be optimal if adjustment costs were 
removed while maintaining the other intertemporal linkages.7 Such a xt 
process need not be readily expressible as a function of exogenous Yt 
variables. For example, optimal consumption rules have not been 
derived for constant relative risk aversion utility under incomplete 
markets.8 Consumption-portfolio problems, however, imply that some 
variable follows a martingale; if x* corresponds to this variable, the as- 
sumption of Brownian motion dynamics is justifiable-to some extent- 
even when all exogenous variables are stationary. For example, if x* 
represents desired consumption, it should be a martingale when the 

6. Such an assumption may be realistic, in fact, if the lump-sum component of firing costs 
represents production lost because of strikes or other disruption of labor relations, and 
that of hiring costs represents workdays lost in training the new hirees. 

7. When the additional source of intertemporal linkages is a budget constraint, wealth 
should be adjusted to allow for adjustment costs. 

8. A consumer's infinite horizon, frictionless optimization problem could formally be ex- 
pressed as in (2.1) by defining HI(x,,yt) = U(xt) - Atxt, where At denotes the shadow value 
of wealth in the absence of transaction costs. An appropriate choice of frictionless price 
between the selling and buying price would guarantee that the budget constraint is 
satisfied along the optimal path in the presence of transaction costs. Still, the At process 
cannot, strictly speaking, be an element of y, (it is not exogenous when considering the 
adjustment policy). 
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Hall (1978) assumptions are satisfied. In a slightly more general frame- 
work, xt may be taken to represent marginal utility. 

We postpone further discussion of specific applications to Section 4 
below, and to future research. In concluding our overview of micro- 
economic optimization techniques, we note that the simple quadratic- 
deviation model illustrates the general features of similar, more complex 
models, and provides a convenient starting point for moving on to aggre- 
gation and empirical work in the next sections. The policy followed by 
an optimizer in the framework explored above is expressed in terms of 

log-deviations of actual from "desired" state variables, an intuitively 
appealing rule of thumb. When a solution can be found for more general 
and sophisticated models, it must be quite similar in character to the one 
we discussed-though trigger and return points may be defined in a 

space that is not independent of the structural parameters we subsume 
in x*(yt).9 

3. Macroeconomics 

Though microeconomic agents faced by kinked adjustment cost functions 
often choose inaction and may react disproportionately to innovations 
when they do act, neither inaction nor instantaneous sharp reactions are 

typically observed at the aggregate level. This has led macroeconomists to 
devise assumptions that would make smooth, partial adjustment optimal 
at the microeconomic level as well-namely, to assume unit adjustment 
costs to be increasing in the speed of adjustment, assumptions hardly 
justifiable at the microeconomic level. As we show in this section, 
however, macroeconomic data may well be consistent with realistic mi- 
croeconomic behavior. To reconcile microeconomic behavior and aggre- 
gate evidence, and to understand how and to what extent microeconomic 

rigidities work their way into the macroeconomy, it is crucial to assess the 

degree of coordination of individual actions at all points in time (Caballero 
and Engel 1989b,c). 

Two polar cases highlight the importance of aggregation and coordina- 
tion issues. At one extreme, if the individuals in a group are identical, in 
all respects the aggregate should behave like each of the individuals. 
Symmetric, perfectly bunched equilibria of this type have been studied 
in static macroeconomic models of sticky prices (e.g., Mankiw 1985, 
Akerlof and Yellen 1985, Blanchard and Kiyotaki 1987, Rotemberg 1987); 
in a dynamic setting, perfect bunching in state space would imply that 

9. For example, in the loglinear models of Grossman and Laroque (1990) and Bertola 
(1989a), trigger and return points are defined in terms of marginal contributions of the 
endogenous state variable to flow benefits. 
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all units take similar actions at the same time. At the other extreme, 
however, if a large group of agents follow one-sided rules and are uni- 

formly spread in the state space, their actions are perfectly uncoordi- 
nated and the aggregate is unaffected by microeconomic rigidities, fully 
flexible, and smooth (Caplin and Spulber 1987). 

In light of the stark contrast between these extreme cases, it is essen- 
tial to model the determinants of cross-sectional distributions over the 
relevant state space. Blinder (1981) stresses this insight in his treatment 
of inventories, and Caplin (1985) takes the initial steps for a formal and 

systematic study of joint movements by heterogenous units that follow 
intermittent adjustment policies. The Caplin and Spulber (1987) steady 
state model is the first analytical study of the role of cross-sectional 
distributions. Recent work by Caballero and Engel (1989a,b,c) has pro- 
vided a suitable framework for a formal study of nonsteady state aggre- 
gate dynamics in terms of the behavior of cross-sectional distributions. 
We review and extend these technical developments below. 

A complete treatment of the endogenous determination of cross- 
sectional distributions should take into account strategic and general 
equilibrium interactions between individual decisions, structural dissimi- 
larities across units, and imperfect cross-sectional correlation of sto- 
chastic factors affecting individual units. Results on the role of structural 

heterogeneity are briefly reviewed in (3.3) below, and the concluding 
Section 5 discusses the role of interactions in the type of models we 

study. The present section, however, focuses on the correlation of factors 

affecting individual units. We model the processes taken as exogenous at 
the individual level in terms of two sources of uncertainty: one common 
to all units in the group under consideration ("aggregate shocks"), the 
other uncorrelated across units ("idiosyncratic shocks"). We further dis- 

tinguish among two types of aggregate shocks: "large" or "structural" 
ones-like an oil shock or a permanent change in monetary policy rules 
or wage-setting practices-and "continuous" or "smooth" ones-the 
common component of ongoing fluctuations. 

The basic lesson of the models below is that idiosyncratic shocks tend 
to smooth out microeconomic rigidities by spreading agents in state 

space, while aggregate shocks (especially large ones) tend to coordinate 
individual units' actions, thus allowing microeconomic inaction to affect 
the dynamic behavior of aggregate time series. This point is illustrated in 
three stages. We first consider a model in which all uncertainty is idiosyn- 
cratic. In this framework, we discuss conceptual links between probability 
distributions at the individual unit's level and empirical or cross-sectional 
distributions at the aggregate level, and we discuss the role of mi- 
croeconomic frictions and idiosyncratic sources of uncertainty in deter- 
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mining the aggregate dynamic response to a once-and-for-all aggregate 
shock. This thought experiment serves as an introduction to treatment 
of ongoing aggregate uncertainty, which we discuss in the second stage 
in the well-explored case of one-sided (S,s) rules and, in the third stage, 
in the general band-policy case. A general stylized model of unsyn- 
chronized band-policy adjustment makes it clear that, even when no 

large aggregate shocks occur, the effect of microeconomic frictions on 

aggregate dynamics is an increasing function of the relative importance 
of common and idiosyncratic uncertainty. 

3.1 IDIOSYNCRATIC UNCERTAINTY AND THE AGGREGATE 

Consider a large number n of economic agents indexed by i, i = 1, ..., 
n, and suppose that the path of each agent's endogenous state variable 

(e.g., capital, cumulative orders, prices, workers, cash balances, etc.) 
would be described by 

X = t + crWit (3.1) 

in the absence of adjustment costs. Here, e is a constant aggregate drift 
and Wit is a stochastic process whose increments are independent across 
i (idiosyncratic) as well as across time. 

For simplicity, we shall conduct our analysis in terms of a discrete 
time, discrete state-space Markov chain equivalent of the continuous 

processes assumed in Section 2. The discrete representation of (3.1) is 

X+it* + , with probability p= (1 + (3. 
X it+dt (3.2) 

x\ - r, with probability (1 - p) = 1 - ). 

If we let - = CV-dt, as dt -, 0 this process converges to Brownian motion 
with drift, consistently with the specification of Section 2 above (see, 
e.g., Ross 1983). 

Let all agents follow identical (L,l,u,U) control policies of the type 
discussed in Section 2. We again denote by xi the actual value of agent i's 
state variable, and by zit its deviation from the level that would be opti- 
mal in the absence of adjustment costs: 

it - it Xit 

To economize on notation, we do not explicitly allow for depreciation of 
the actual stock here; with 5 = 0, e = O denotes the drift of the desired 
stock as well as that of its deviation from the actual stock. 
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Though both x* and xi are nonstationary, zit only takes values on a 
bounded state space [1,U] if each unit follows the general band-policy 
rules of Section 2. Letting k (U - L)/lr + 1 be an integer, the discrete 

representation of the relevant state space is a k x 1 vector 

s [L,L + rl, . . , u, .. . . , U- , '. 

Now denote with a 1 x k vector f,o the probability density for each unit's 

position in state space at time zero, z,o: 

fio [io(L), fio(L + /), . .. , fio(l), *. , fo(u), * f0i(U - q7), f(U)W] 

For example, if the position of unit i is known exactly, only one element 
of fio is positive and equal to one. Given the time-zero information, the 

relationship in (3.2) and the band-policy adjustment rule imply that 

probability densities at successive instants are linked by the recursion 

fit 
= 

fit-dt (3.3) 

where P (equal for all units) denotes the transition matrix over s implied 
by the x* transition probabilities in (3.2) and by the (L,l,u,U) adjustment 
rule that maps x* into zt: 

L L+ri L+2rl ... ... u .. U-2rl U- r U 
L 0 1-p 0 ...p... 0 ... 0 0 0 
L+r7 p 0 1-p. ..0... 0... 0 0 0 
L+27r 0 p O ... 0.. ... 0 0 0 

P = i i i . . . . . . i . i 
U-27r 0 0 0 ... 0... 0 ... 0 1-p 0 

U-rl 0 0 0 ... 0 ... 0 ... p 0 1-p 
U 0 0 0 ... ...1 -p... 0 p 0 

We can iterate (3.3) forward from time zero to obtain 

fit = fioPt, 

and it is easy to show that the Markov chain under consideration is 

ergodic: starting from any fo, ft eventually converges to a unique, invari- 
ant steady-state probability density f, the discrete counterpart of the 

ergodic density discussed in Section 2, which satisfies f = fP, Z' fj = 1, 
and is the same for all units. 

From the macroeconomic point of view, we are not concerned with the 
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position or probability density of each individual unit. Rather, we would 
like to characterize the empirical, cross-sectional distribution, i.e., the real- 
ization of all zi positions at each point in time, which we denote with ft. 
The elements of this 1 x k vector measure the fraction of units located at 
every point in state space at time t. Defining the aggregate time series, 
Xt, as the mean of the actual positions of the xi (e.g., actual capital, price, 
etc.): 

xt = - EXit, 
n i= (3.4) 

the mean deviation of agents from their frictionless position is simply 
given by 

Zt 
= 

ftS 

Recalling that xi = x* + zt, we obtain 

X, t -+ t,. (3.5) 

Our interest in individual probability distributions arises from the fact 
that when the number n of units is large, conceptual links can be estab- 
lished between the Markov chain relevant to an individual's probability 
density on the one hand, and a vector difference equation describing the 
path of the whole cross section on the other. Specifically, if we assume 
that the initial empirical distribution f0 is given and that each unit's initial 
probability density fio is the same (f0), and we consider a larger and larger 
n, than fo can be made arbitrarily close to fo, and ft can be made arbitrarily 
close to ft = foPt. This is a simple application of the Glivenko-Cantelli 
theorem (see, e.g., Billingsley 1986); heuristically, when the total number 
of units n tends to infinity the number of units in each state-space loca- 
tion becomes large enough that, by a strong law of large numbers, the 
probabilities associated to each position in state space coincide with the 
actual fractions of units located in the same states. As this happens at all 
point in times, the fraction of units moving between positions in the 
state space must coincide with the probabilities in the units' transition 
matrix. 

This insight makes it possible to characterize aggregate dynamics 
when adjustment costs are present (L < U) and a large group of units are 
distributed over [L, U] in some arbitrary fashion. By (3.5) and an applica- 
tion of (3.3) to the empirical distribution, the aggregate follows 
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Xt+dt = Ot + ft+dtS = O+ ftPs. 

Thus, as long as ft = f, the dynamic behavior of Xt differs from that of a 
frictionless economy. 

The Markov chain describing the probability density of individual 
units is ergodic and, if n is large, the same is true of the empirical distribu- 
tion. "Ergodicity" of the empirical distribution means that the actual 
realization of the cross-sectional distribution becomes stationary; thus, if 

only idiosyncratic sources of uncertainty are present, then Zt eventually 
converges to the constant z, = f s starting from any initial distribution ft. 
We normalize this constant to zero in what follows.'0 It is important to 
make it clear that individual zit deviations from the frictionless optimum 
are in general not zero in the long-run steady state, and convergence of 
Zt does not mean that once the steady state is reached microeconomic 

activity should cease. Rather, individual units continuously move and 

change their relative positions; but in steady state the fraction of agents 
that leave each position is equal to the fraction that arrives to it. Outside 
the steady state the empirical density ft changes over time, and so does 
its first moment, Zt. 

It is interesting to study in some detail the role of O, the aggregate 
drift, in determining the size and character of the aggregate impulse 
response after a once-and-for-all structural change that moves the empiri- 
cal distribution away from its steady state. We showed in Section 2 that 
when the ratio of drift to variance is large, the long-run probability 
distributions for the position in state space of an individual unit's zit are 
skewed. When dealing with a large number of similar individuals, their 

empirical distribution can be similarly characterized by the results 
above. In a menu-cost pricing framework, for example, if trend money 
growth has been strongly positive then we would expect relatively many 
units to be near the point that triggers price increases; few should be 
close to the point that triggers price reductions. Consider now a sudden, 
temporary acceleration of money growth or an unanticipated increase in 
the money level; this would trigger price adjustment by many units, and 
elicit a small output response. Conversely, a negative monetary surprise 
would trigger few downward price adjustments and have a large, nega- 
tive impact on output. 

This insight is illustrate in Figure 6 (Tsiddon 1988 makes a similar 

point). Starting from the stable distribution, we plot the aggregate re- 

sponse to a once-and-for-all aggregate shock of size 0.03; such a shock 

10. zr should in fact be quite close to zero on the basis of the microeconomic results of 
Section 2.3. 
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could be modeled either as a discrete increase in the level of all x* by the 
same amount, which would bunch a discrete mass of units at the I return 
point, or as an accumulation of small shocks in infinitesimal time, which 
by inducing units to act sequentially would preserve the relative posi- 
tions of the adjusting units. The distinction is not important for the issue 
at hand. We choose the latter alternative-the smaller panels in the 
figure display the resulting cross-sectional distribution of units just after 
the shock as a solid line, and the stable distribution to which they will 
eventually return as a dashed line. 

The solid, dashed, and dotted lines in the main panel of the Figure 6 
represent detrended Xt for 's equal to -2, 5, and 10 percent, respec- 
tively. For all three cases, we assume L = -U, I = u = 0 (adjustment 
takes z to zero from symmetric trigger points). The assumption of similar 
behavior in the presence of different drifts is obviously unwarranted; if 
adjustment costs are the same in the three environments, the drift af- 
fects the location of trigger and return points (see Figure 3 above). How- 
ever, microeconomic optimality of adjustment policies has second-order 
importance for the aggregate response to a one-time common shock, 
starting from the steady state.1 

On the one hand as argued above, a positive shock has a large impact 
on Zt (i.e., a smaller impact on Xt) when the drift is negative; in steady 
state, only 1.8% of the units are close enough to the lower trigger point 
for a 3% shcok to induce them to adjust xt to xi. On the other hand, 
when e = 10 almost all the units are between L and I in steady state, a 
3% shock triggers action by 7% of the units, and as a result one-third of 
the aggregate shock passes through at time zero. In the aftermath of the 
one-time shock, all three paths converge exponentially back to the 
steady state. The speed at which this happens is an increasing function 
of o, i.e., of the size of the idiosyncratic shocks reshuffling the cross- 
sectional distribution (see Caballero and Engel 1989a, and our discussion 
below). 

3.2 ONGOING AGGREGATE UNCERTAINTY 

Aggregate impulse responses to one-time shocks highlight important 
insights, but fall short of providing operational tools for an analysis of 
aggregate data. For this purpose, it is necessary to model explicitly the 
probability structure governing aggregate uncertainty and to replace 

11. In the experiment considered, the initial aggregate response is equal to the product of 
the size of jump and the fraction of agents exercising control: given a drift and variance, 
if the optimal jump were larger than the one arbitrarily assumed in Figure 6 then the 
ergodic distribution associated to the optimal control would concentrate fewer units in 
the neighborhood of the trigger point. 
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equation (3.1) with a system incorporating a stochastic aggregate compo- 
nent, At: 

= At + OWit 

At = Et + rAWat (3.6) 

Here, Wit and Wat are independent random variables whose increments 
have zero mean and unitary variance per unit time. 

If ongoing aggregate uncertainty is present, it does not wash out 
when averaging across units, no matter how many. Thus, in the absence 
of adjustment costs the aggregate defined in (3.4) would now be 
stochastic: 

Xt = At = Ot + AWat. (3.7) 

Taking the fluctuations of Wat as exogenously giverl, we would like to 

study how the actual path Xt differs from the path in (3.7) in the pres- 
ence of microeconomic adjustment costs. The same steps that led to 

equation (3.5) establish that Xt = X* + fts, and we proceed to study the 
evolution of ft. 

From the point of view of each individual unit, the source of uncer- 

tainty is irrelevant and the equations in (3.6) can be combined to yield 

X = it + Wiat 

where o- = VoiA + o and W,t is a random variable with the same 
univariate probability structure as Wit and Wat. This equation is analo- 
gous to (3.1) above. Thus, for any i the evolution of fit can be character- 
ized along the lines of Section 3.1. The fact that now the innovations in 

-Wiat are correlated across units (with correlation coefficient equal to a(A/ 
o) is irrelevant when considering an individual unit. 

However, the source of uncertainty has a crucial role in determining 
cross-sectional distributions. To see this, consider the extreme cases: If 
there were only idiosyncratic uncertainty (oi > 0, (A = 0), the cross 
section would be closely related to the probability density of individual 
units, as shown in Section 3.1. But if only aggregate uncertainty existed 
(or, = 0, oA > 0), then the probability density of a single unit and the cross 
section would bear no relationship to each other. For example, if all units 
start together and there is no idiosyncratic uncertainty, the empirical 
distribution remains concentrated in a spike wandering through the 
state space forever, driven by aggregate shocks-although probabilistic 
statements about an individual unit's position should ultimately be 
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based on the ergodic distribution, as before. In the context of menu-cost 

pricing, Caplin and Leahy (1990) construct a model in which a nonde- 

generate and self-replicating family of empirical distributions exists in the 
absence of idiosyncratic uncertainty, and yields a convenient statistical 

representation for the aggregate price process. 
In general, no cross-sectional distribution is invariant to aggregate 

shocks: thus, the empirical distribution cannot converge to a limit. In 

specific applications of this general principle, it is important to take into 
account not only the relative importance of aggregate shocks, but the form 
of adjustment policies and the character of exogenous processes. We pro- 
ceed to highlight the latter insights by a review of available results on one- 
side (S, s) adjustment policies, perhaps the best known among kinked 

adjustment cost models. This case provides an exception to the general 
rule: If no large shocks occur, and ongoing uncertainty is continuous and 
monotonic, a steady-state empirical distribution exists and a large group 
of individuals will converge under fairly weak conditions. 

3.3 ONE-SIDED (S,S) RULES 

If the path of xt is monotonic, i.e., all its changes are in one direction, 
adjustment under lump-sum and proportional adjustment costs can be 
described by two points in state space, customarily denoted s and S, 
such that when zi = s action brings it instantaneously to S. In the frame- 
work of Section 2, the optimal solution converges to such one-sided 
rules when - 20/2 is large in absolute value. The results reviewed 
below should be understood to apply in situations where the drift domi- 
nates the variance of x4. While optimizing agents would also perform 
unidirectional corrective actions when adjustment in the other direction 
is prohibitively costly (e.g., the irreversible investment case of Pindyck 
1988 and Bertola 1989), the results below would not be applicable as long 
as xt movements occur in both directions. 

Caplin and Spulber (1987) discuss a striking feature of the one-sided 
model. They present an example in which no idiosyncratic uncertainty 
exists, s and S are the same across units, and the initial cross-sectional 
distribution of prices is uniform on the [S, s) interval; and they show that 
the uniform cross-sectional distribution is unaffected by monotone, con- 
tinuous increases in the quantity of money. Thus, Zt is identically con- 
stant at all t (and equal to zero under the normalization s = -S), and 
microeconomic frictions have no effect on the aggregate path. To see 
this, suppose the zi deviations are uniformly distributed on (-S,S], and 
let the aggregate move continuously by AAt over an interval of time At, 
where A denotes change in the variable. This shifts the whole distribu- 
tion down by At/2S, leaving an empty space of equal length on the 
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top-but units that were within distance AA/2S of s before the shock 
have moved into the space at the top, thus preserving the uniform 

empirical distribution: zt remains unchanged, and AXt = AXt = AAt. 
The ergodic probability density of each unit's zi, f, is also uniform on 

(s,S] when exogenous shocks are monotonic and adjustment is of the 

(S,s) type. Thus, in steady state the probability density of an individual 
unit and the empirical cross section coincide, as they did in Section 3.1, 
even in the presence of aggregate shocks. Outside the steady state, 
however, the resemblance fades. Caballero and Engel (1989a,b) show 
that if nonstationary idiosyncratic shocks are added to Caplin and 

Spulber's model, the empirical distribution of the zis converges to a 
uniform distribution starting from any initial distribution, but more 

slowly than each unit's probability density converges to the ergodic one; 
aggregate shocks affect all units xt equally, and do not mix their cross- 
sectional distribution. Only idiosyncratic shocks aid convergence of the 

empirical distribution to the stationary, uniform one, while convergence 
of the probability density of a single unit depends on the total uncer- 

tainty it faces, including the aggregate component. 
Even though aggregate shocks do not aid convergence, they do affect 

the mean of the cross section, z, outside the steady state. In Figure 7 we 
illustrate this insight by plotting the detrended path of Xt in the after- 
math of a "large" aggregate shock, namely a structural change that dou- 
bles the absolute value of both S and s (from r0 = 0.08 to rl = 0.16). The 
solid line refers to the frictionless case S = s = 0, while the short- and 

long-dashed lines refer to cases in which idiosyncratic uncertainty is, 
respectively, large and small. After the structural shock, the initial cross- 
sectional distribution is uniform on a subinterval of the new (s, S] inter- 
val. The cross section eventually converges to a uniform on the whole 
new (s, S] interval; in the shorter run, however, microeconomic rigidities 
have a substantial effect. We can see that while the economy with large 
idiosyncratic uncertainty (short dashes) converges relatively quickly, 
when idiosyncratic uncertainty is small (long dashes) convergence is 
slow and departures from the frictionless path can be long-lasting. 

Several other extensions have been considered by Caballero and Engel 
(1989a,b,c) in the context of one-sided adjustment. On the one hand, 
heterogeneous behavior across units (needed for Caplin and Spulber's 
steady state to be a relevant benchmark) can result from structural hetero- 

geneity rather than from differences in the exogenous processes' realiza- 
tions; if units' (S,s) bands are different, the aggregate dynamics replicate 
the frictionless path whenever the cross-sectional distribution of SS - s 
is uniform on the unit interval, and these normalized deviations converge 
to uniformity even when idiosyncratic uncertainty is negligible. On the 
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other hand, the uniform distribution is not invariant to "large" aggregate 
shocks, i.e., discrete changes that discontinuously alter all units' position. 
Since "small" shocks have a limited role in the one-sided case, this is a 
natural framework for exploring the consequences of recurring, probabilis- 
tic regime changes. Suppose, for example, that At-following a more 
general process than the one in (3.6)-may at times move instantaneously 
by the finite amount AA,; even if the cross section were uniform before the 
shock, the discrete shift would concentrate the finite fraction AA/(2S) in a 
spike at the single point S. In the aftermath of such a large shock, idiosyn- 
cratic shifts would spread the spike and the cross section would tend 
toward the uniform, steady-state distribution-but further large shocks 
would undo the gains in that direction and rebunch some agents anew. In 
this situation, there would be a continuous tension between the endoge- 
nous tendency toward uniformity, due to heterogeneity, and relatively 
infrequent structural changes that prevent the cross section from ever 
reaching a steady state in which the path of X, coincides with that of X*. reaching a steady state in which the path of Xt coincides with that of X*t. 
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3.4 GENERAL POLICY RULE 

When exogenous events can make adjustment in either direction desir- 
able, no cross-sectional distribution is invariant to aggregate shocks even 
when only "small" ones can occur. To some extents the insights of the 

previous section are still useful in this case: a large group of individuals 
subject to idiosyncratic uncertainty (or heterogeneous in other respects) 
will display a tendency to converge toward the cross-sectional distribu- 
tion that would be stable in the absence of coordinating aggregate 
shocks. This tendency, however, is hampered by ongoing common 
shocks; in the model we develop below, the relative strength of the 
forces at work in the two directions is summarized by the ratio of the 
variance per unit time of the idiosyncratic and common components of 
uncertainty. The tension between aggregate and idiosyncratic shocks 
noted in the one-sided (S,s) case arises here even when no "large" 
shocks occur. 

Consider again a large group of individuals following discontinuous 

adjustment rules, with the same trigger and return points (L,l,u,U), and 
assume both idiosyncratic and aggregate uncertainty to be present as per 
equations (3.6) and (3.7). We need to extend the discrete time representa- 
tion in equation (3.2) to take both stochastic components into account. 
Let At be a simple binomial random walk, 

At+d _ At + v, with probability q; (3.8) t+dt L A, - v, with probability 1 - q. ) 

We shall refer to positive aggregate shocks as "booms," and to negative 
ones as "recessions." Assuming 

v= rA , 
q= 21+ v (39) v=- ̂ 1-i ? '-K 1^)~!Z, (3.9) 

the aggregate process converges to Brownian motion with drift e and 
standard deviation 0A as dt-> 0. 

Now let us write the innovation of each xi process conditional on 
whether the economy is in a boom or a recession: 

AAI+dl = v _? J* x + n with probability Pb 
t+dt Xit+dt Xt- with probability 1 - Pb 

(3.10) 
gAtA+ -,^ ,' 

- 
Jxit* + r with probability Pr t+dt - - X 4it+dt - l x - with probability 1 - Pr 
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where we define:12 

Pb 21 + t Pr 1 77 = 
tJ 

0= 
\2A + i 2 1 )O' 2 O' 

(3.11) 

Aggregating over units and over time, it is straightforward to verify that 
the aggregate stochastic process and each of the individual processes all 
converge to Brownian motion as dt -> 0, and that the increments of At 
and of (x* - At) are independent for all i. 

As long as we condition on the realization of the aggregate, we can 
again translate probability statements at the individual unit's level into 
statements about the cross-sectional behavior of a large number of units. 
From this point of view, Pb represents the fraction of the many units in 
each state that receive a positive shock during a boom, and Pr represents 
the analogous fraction during a recession. The expressions above for Pb 
and Pr simply reflect the fact that more units are affected by positive 
shocks during booms than during recessions, and that the difference 
between booms and recessions becomes more pronounced as the vari- 
ance of aggregate shocks rises relative to that of idiosyncratic shocks. 

Given the transition probabilities in (3.10), the form of the adjustment 
policy, and the realization of aggregate shocks, it is possible to character- 
ize the evolution of the cross-sectional distribution of the zits, and of Zt. In 
contrast to Section 3.1 above, where only idiosyncratic shocks were pres- 
ent, the change of empirical distribution at successive instants depends 
on whether a "boom" or "recession" is occurring. Given ft, we have 

{ Pft during a boom (3.12) 
ft+dt 

Prft during a recession 

where Pb and Pr are the transition matrices during booms and recessions 
for the individual unit's zit; these matrices can be written out, using (3.10) 
and the band-policy parameters, in the form of P above-with (respec- 
tively) Pb and Pr in place of p. The difference between the elements of Pb 
and Pr is increasing in the ratio of aA to oa = Vo' + o2; defining 

era 

12. Note that, given dt, it would be necessary to use the alternative definition v 
VorAdt+ 2(dt)2 for consistency across equations (3.8-3.11). The (dt)2 term has no role in 
the continuous limit if rA > 0; still, it is necessary to take it into account when using a 
finite dt-as we do in Section 4 below. 
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it is straightforward to verify that Pb - Pr = yD, for D a matrix whose 
elements are 0, 1, or -1. 

Now, any instant is a boom with probability q, a recession with proba- 
bility (1 - q). Iterating the transitions forward, we get 

= 
t+dt 

Ph P b with probabilityq h (3.13) 
ft+ hdt 

= 

fH Ph Ph Ir with probability (1 - q) 

where Ph denotes the realization of the transition matrix at time h. Since 

Ph alternates randomly between the two values Pb and Pr, as of time zero 

ft is a random vector for all t if oA > 0; the empirical distribution does not 

converge to a steady state. Consequently, 2t fluctuates forever, reflecting 
the impact of microeconomic frictions on the dynamics of aggregate 
variables. 

Figure 8 illustrates how aggregate dynamics depend on the value of y. 
The dotted line plots a frictionless aggregate sample path (the accumu- 
lated aggregate shocks, At or Xt); this would be the path of the endoge- 
nous variable Xt if no adjustment costs were present. The other lines plot 
the aggregate path in the presence of adjustment costs and of idiosyn- 
cratic uncertainty. The variance of aggregate shocks, the realization of At, 
and adjustment costs are the same for all paths. For each y value, total 

uncertainty faced by individual units is oA/y, and we compute the opti- 
mal adjustment policy for this value of r, keeping all other parameters 
constant; the larger is y, the narrower is the inaction range. We start each 

path assuming that the initial empirical distribution is the individual 
unit's ergodic one, and we use (3.13), (3.5), and the definition of zt to plot 
the aggregate path. Although the inaction range is wider when y is 
small, more uncertainty at the individual level unambiguously implies 
that units change their prices more often; if this were not the case, i.e., if 
the barriers were so much widened by higher uncertainty as to imply 
unchanged or even lower average adjustment costs per unit time, con- 

cavity of the flow benefit function Tr(.) would imply large flow losses. 

Larger idiosyncratic uncertainty implies that reshuffling of the cross- 
sectional position of individual units is faster, and that the cross- 
sectional distribution is less sensitive to aggregate shocks; thus, the 
smaller is y, the closer the aggregate tracks the frictioniess path. In 
Figure 8, when aggregate uncertainty accounts for only 6% of the uncer- 

tainty faced by each individual unit (y = 0.06), the aggregate path re- 

sponds promptly to almost every aggregate innovation; when y = 0.40, 
the aggregate path is quite sluggish and smooth instead; and when y = 
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Figure 8 
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1, the aggregate path is approximately constant for long periods of time, 
reflecting the inaction at the individual level, and displays sharp but 

infrequent movements. 
It is apparent from the figure that, depending on the value of y, the 

model may be able to explain the dynamic patterns of macroeconomic 
data without resorting to the microeconomically unrealistic assumptions 
of conventional representative agent/convex adjustment cost models. 
The parameters of a model taking into explicit account microeconomic 
inaction and idiosyncratic uncertainty are "deeper" than those of dy- 
namic optimization models based on ad hoc functional forms. In particu- 
lar, a crucial role is assigned to the relative importance of common and 

idiosyncratic shocks, indexed by y. Informationi about this parameter in 
different circumstances, countries, and periods should be extremely im- 

portant in macroeconomic applications. Preliminary steps in the direc- 
tion of empirical work are taken in the new section. 
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4. Empirical implementation and durable goods 
consumption 

Empirical work on dynamic problems at all levels of aggregation typi- 
cally adopts strictly convex adjustment cost functions, most often qua- 
dratic ones. This assumption yields easily estimable partial-adjustment 
dynamic relationships, and linear-quadratic models are considerably sim- 

pler than the more realistic microeconomic models reviewed in Section 
2. The structural interpretation of partial-adjustment coefficients, how- 
ever, is often unclear. Autoregressive representations-or more gener- 
ally, the covariogram-are a convenient way to describe the data but do 
not provide an economic interpretation of their dynamics. Blinder (1981), 
Bar-Ilan and Blinder (1987), Hamermesh (1989), and others have noted 
the tension between empirical tractability and microeconomic realism. 
Still, it has proven very difficult to interpret available data (aggregated 
over individuals, over time, and over heterogeneous endogenous vari- 
ables) in terms of optimal microeconomic behavior. 

This section uses the stochastic aggregation model of Section 3 to 

study expenditure on durable goods in the United States. We aim to 
illustrate the explanatory power of the framework we propose, rather 
than provide a detailed study of the many issues involved. Consumer 
durables are a natural candidate for a first application of the techniques 
we propose. Mankiw (1982) finds these data in gross violation of the 
restrictions imposed by frictionless optimization in a permanent income 
framework, and the stock-adjustment model estimated by Bemanke 
(1985) does not succeed in rationalizing the dynamics of the data in an 

optimization framework. Caballero (1990) shows that the data could be 

interpreted in terms of different reaction lags to innovations across con- 
sumers, without violating the basic permanent income hypothesis in the 

long run. Grossman and Laroque (1990), Bar-Ilan and Blinder (1987), and 
Lam (1989) note the realism of discontinuous adjustment models in the 
context of individual durable goods purchases and discuss their implica- 
tions for aggregate expenditure, without, however, addressing the prob- 
lem of stochastic aggregation. 

4.1 METHODOLOGY 

Our framework lends itself naturally to an integrated treatment of data 
at different levels of aggregation. Here, however, we use the tight 
stochastic specification in 2.2 above to interpret aggregate time series 
only, seeking a structural interpretation of dynamic relationships be- 
tween endogenous and exogenous variables at the aggregate level. For 
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expositional clarity, we discuss empirical problems and solutions in three 

separate steps. 

Step A: inference about the frictionless model. The difference between an 

endogenous aggregate state variable (Xt) and its hypothetic frictionless 

counterpart (Xt) is the basic determinant of the model's dynamics. Of 
course, X* is unobservable, and its behavior needs to be inferred from 
the economic structure of the problem. A functional relationship be- 
tween Xt and other variables can be specified on theoretical grounds, 
and, as we show next, it may be possible to use low-frequency informa- 
tion about observable endogenous variables to estimate its parameters. 

We assume that, in the frictionless case, the durables stock to wealth 
ratio would be a function of the relative price of durables and nondura- 
bles. Specifically, we let 

* = hit + aPt + c,, (4.1) 

where xi is the logarithm of the frictionless durable stock of individual i 
at time t, ht is the logarithm of her wealth, Pt is the logarithm of the 
relative price of durables and nondurables, and ct is a deterministic func- 
tion of time meant to capture secular changes in tastes and technology. 

If the parametets in (4.1) are common across individuals, and the 

geometric mean of individuals' relative shares in wealth and (desired) 
durables is approximately constant over time (or its variation can be 
absorbed in the other regressors), then it is straightforward to obtain 
from (4.1) an expression relating averages at the aggregate level;13 and 
recalling that Xt = Xt + Zt, we obtain a relationship between observable 
variables, 

Xt = Ht + aPt + Ct + Zt, (4.2) 

where Xt and Ht are the logarithm of the average durables stocks and 
wealth, Ct absorbs ct as well as secular terms possibly arising from the 
difference between geometric and arithmetic means, and zt is the dy- 
namic error term introduced by adjustment costs. 

The Xt series we use is constructed from National Income real expendi- 
ture data. Assuming a 2% quarterly depreciation rate, we obtain an 
initial stock for the first quarter of 1954 by averaging expenditure on 

13. Note that we abstract from the traditional, static aggregation issues that would arise 
even in the absence of adjustment costs. These problems have been extensively stud- 
ied. See, for example, Stoker (1984). A model of aggregate data should also, in princi- 
ple, address issues of aggregation across different types of durable goods. 
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durable goods from the third quarter of 1952 to the second quarter of 
1954 and dividing by the depreciation rate, and we produce a quarterly 
stock series up to the fourth quarter of 1988. We approximate Ht by the 
accumulated innovations of an estimated ARI(1,1) representation of 

(log) personal income levels (see Campbell and Deaton 1989), and Pt is 
the log-difference of the implicit deflators. All data are seasonally ad- 

justed and, since (4.2) applies to per capita quantities, we adjust all 
series and the depreciation rate for population growth.14 As to Ct, we fit 
a piecewise linear trend with a break in the first quarter of 1975. In the 
theoretical model, the structural break represents a one-time shift in the 
secular components and in ex-ante real interest rates.15 

We estimate a and the parameters of Ct by running OLS on (4.2). The 
unobservable Zt has quite complex univariate dynamics in the presence 
of adjustment costs, and it is obviously not independent of current and 

lagged values of exogenous variables. Zt, however, necessarily has finite 
unconditional variance in the framework considered here; the important 
dynamic effects of transactions and adjustment cost must wash out over 

long-time averages in a rational maximization framework (see Section 
2.3 above). Thus, if Xt is an integrated variable, then Xt and Xt are 

cointegrated, and the relationship between Xt and exogenous processes 
cointegrated with it can be recovered from a regression of Xt on the same 

processes. In the case at hand, the right-hand variables in (4.2) can be 
shown to be integrated, and not cointegrated among themselves. Thus, 
we can obtain superconsistent estimates of a and the parameters in Ct 
from a regression of Xt - Ht on Pt and a broken trend. Cointegration tests 
and regression results are reported in Table 1.16 

To proceed, we treat the predicted values from the cointegrating re- 

gression as a Xt series, and its residuals as a zt series. To simplify the 
notation, we make no distinction between these estimates and underly- 
ing "true" values. 

Step B: booms and recessions. From the Xt sequence and the assumed 
quarterly depreciation rate of the per capita stock of durables (6 = 0.02 

14. We also remove the deterministic component of per capita personal income growth. 
This is intended to capture the role of finite horizons in OLG models with productivity 
growth. 

15. When entered as a separate regressor, ex post real interest rates in terms of durable 
goods are insignificant and have no important effect on our estimates. 

16. Unfortunately, critical values for multivariate cointegration models including time 
trends depend crucially on the specific characteristics of the model considered. The 
3.13 value reported in Table 1 should only be used as a reference threshold. Further- 
more, in light of the large serial correlation in 2t that naturally arises from the theoretical 
model, the tests may have low power to reject the non-cointegration null. 
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Table 1 

H t t P ADF 

X 1 -0.001 0.004 -0.448 -3.377 
X 1 0.000 0.005 --2.400 
X 1 - -0.907 
H - - - -1.640 
P -0.003 -0.001 - -2.633 
P - 0.081 

All equations include a constant. 
ADF is augmented (three lags) Dickey-Fuller test. 
The 5% critical value is -3.13. 
t and t represent the trend and additional trend from 75:01 on, respectively. 

plus the rate of population growth) we can construct a series for accumu- 
lated aggregate shocks, At: 

At Xt + (8t + log (population at t)). 

We fit a random walk with drift to the At sequence in the discrete time 
binomial framework of Section 3, assuming that four Bernoulli innova- 
tions occur between observations. This yields estimates for the (annual- 
ized) drift and the standard deviation of the binomial aggregate process; 
in the durables application, these turn out to be 0 = 0.10 and 0rA = 0.040. 
We also obtain a period-by-period estimate of the number of boom 

subperiods (positive aggregate shocks) within each quarter. For exam- 

ple, if the realized At - At+1 is abnormally high we may infer that three or 
all of the four shocks were positive, while if At - At+1 is close to zero, we 

may deduct that the quarter contains two booms and two recessions. 

Step C: inaction range and uncertainty decomposition. In the framework of 
Section 3, the estimated process from Step B indicates how many of the Ph, 
h = 1,2,3,4 should equal Pb for each quarter, though not the order in which 

they occur; the other transition matrices are equal to Pr, and the empirical 
distributions at successive observations is linked by the recursion 

4 

ft+1= ft Ph. 
h=1 (4.3) 

To proceed, we use a nonlinear optimization routine to maximize the fit 
of the model as measured by the mean square of the prediction errors 
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et - ft , 

where ft is, at every point in the sample, an estimate of the distribution of 
individual zit deviations over their state space, ?. The estimated ft se- 

quence must respect the recursion contraint in (4.3). 
The free parameters at this stage are those entering the two transition 

matrices Pr and Pb; given t and 0A from Step B, these matrices depend on 
the relative importance of aggregate uncertainty in total unit-level uncer- 

tainty, y = crA/Vo2 + oa, and on the form of the individual unit's adjust- 
ment rule, the (L,l,u, U) quadruple. Our procedures allows us to estimate 

y. As to the adjustment rule, the arguments in footnote 11 suggest that 

aggregate data are unlikely to convey information on the four points 
separately. We simplify the estimation procedure by assuming that 

(L,l,u,U) = r(-0.50,0.00,0.45,0.50), 

and we estimate r, the overall width of the inaction band, instead of the 
four separate parameters (L,l,u,U). The assumption that I = 0 is simply a 
normalization, and has no substantive implications in the loglinear 
model we use; and the distance of the return points from the trigger 
points is assumed a priori to be strongly asymmetric. 

To interpret these parameters and the assumptions we make about 
them, it is easiest to think of purchases of durable goods in the frame- 
work of Grossman and Laroque (1990). An individual can upgrade her 
durable good but, because of transaction costs, she does so by discrete 

jumps of size r/2 (the absolute value of L - I). Given the strong drift due 
to depreciation, on average consumers are unlikely to contemplate down- 

grading their stock of durables, and in fact a reduction (beyond deprecia- 
tion) of the aggregate stock of durables should realistically be ruled out. 

Society as a whole cannot disinvest (or can do so in return for only 
dismal scrap values). If durables accumulation is literally irreversible, u 
and U both approach infinity; we can set them to a reasonably finite 
number without affecting the results, however, because the strong drift 

implies that they should seldom be approached in the sample path.17 
The interval (1,U] is important because in its absence adjustment 

would follow a one-sided (S,s) rule, and the type of aggregate uncer- 
tainty we allow for would not generate any interesting dynamics. The 

17. Note that individuals, hit by idiosyncratic as well as aggregate shocks, can and will 
downgrade their durables. Such transactions occur on the secondhand market, and are 
irrelevant from the point of view of National Accounts data; still, transaction costs on 
used goods are the determinant of infrequent adjustment at the microeconomic level. 
Careful modeling of used goods transactions is left to future research. 
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key insight is that the evolution of wealth and relative prices would 
sometimes make disinvestment desirable (though impossible) in an aver- 

age sense, and this is captured by allowing individual units to go beyond 
I when the random shocks they receive are so negative (positive for zit) as 
to offset the strong negative drift in zt due to wealth growth and durable 

goods depreciation. 
The number of partitions of the state space, k, is determined in the 

estimation procedure through the relation 

k = 2 [2V((rA/y)2) dt + 02 (dt)2 

where [x] denotes the integer part of x. 
In practice, we choose starting values for y and r and assume that the 

initial distribution is the one that would be stable if At grew linearly at 
rate e with no uncertainty; we disregard the first 10% of the residuals to 
obtain an essentially random initial condition. For given y and r, our 
estimation program chooses the order in which booms and recessions 
occur within each quarter so as to minimize the absolute value of each et 
residual, and generates a sequence of empirical distributions based on 
this best-fit criterion. (We have experimented with programs that do not 
allow any freedom of choice as to the unobservable sequence of within- 

quarter innovations; the basic results are not sensitive to this.) We then 
feed the sum of the squared residuals (setting the first 10% equal to zero) 
to a standard minimization routine, which iterates to convergence over y 
and T. 

4.2 RESULTS 

Table 2 presents the results. The bandwidth (r) is about 52%, to imply that 
consumers typically wait for their durable stock-to-desired stock ratio to 
fall by about 26% before upgrading. This estimate should be confronted 
with the predictions of theoretical models such as that of Grossman and 

Laroque (1990), and with evidence on real-life transaction costs on typi- 
cal durable purchases. On both counts, a 26% jump in the value of 
durable goods when adjustment is undertaken does not seem unreason- 
able at the individual level.. The estimate of y suggests that common 
shocks account for about 30% of the total uncertainty faced by individual 
consumers of durables.'8 The third row in Table 2 reports the R2 measur- 

18. In terms of the binomial model of Section 3, row 7 indicates that any given instant is a 
boom with probability 0.765, in which case 67% of the agents experiment with a 
positive shock. 
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Table 2 

Estimate Std. Deviation 

r 0.514 0.027 
y 0.299 0.052 
R2 0.707 
v 0.012 
0 0.100 
(JA 0.040 
q 0.765 
Pb 0.673 
p 0.592 
m 15 
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Table 3 

MA(1) Q(30) 

AEt -0.071 46.2 
(0.092) (0.030) 

AEt -0.937 42.7 
(0.040) (0.066) 

AEt -0.933 61.2 
(0.034) (0.007) 

In parenthesis: standard deviations for the MA coefficients, significance levels for the Q portmanteau 
static. 

illustrates this by plotting zf as estimated in Step B above along with t = 

f^, the predicted value form the estimation procedure. 
As an alternative way to highlight the dynamic explanatory power of 

the model, consider its implications for the time series of expenditures. 
Mankiw (1982) argues that if the stock of durables-like nondurables 

consumption-follows an approximate random walk, as they should 
under the PIH, and if durable goods depreciate geometrically, then the 
first difference of expenditures should follow an MA(1) with a negative 
MA coefficient equal to the depreciation rate (plus population growth, 
when considering per-capita series) minus one. Thus, we would expect a 

negative MA coefficient with an absolute value in the order of 0.95 (or 
larger) in quarterly data. Mankiw found that expenditures display no 
such negative MA component, and his basic result is reproduced in the 
first row of Table 3; the MA coefficient for the first difference of the data 
we use (the period 59:1 to 88:4) is -0.07 and insignificant. In the pres- 
ence of transaction costs, however, Mankiw's observations should apply 
to the expenditure series implied by the Xt series constructed above,19 
not the actual expenditure series. 

We can first check whether Step A does deliver an Xt with the appro- 
priate stochastic properties, estimating an IMA(1,1) process for the fric- 
tionless expenditure series implied by Xt, i.e., on 

Et =ext - (1 - S)ext-. 

The results, reported in the second row of Table 3, are comforting. The 
MA coefficient emerges clearly and its magnitude is about right. 

19. Note that Mankiw's derivation does not include price effects. Given our specification of 
Xt and the stochastic properties of the price series, however, this does not change the 
basic interpretation of the results. 
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It is more important and interesting to check whether the frictionless 

expenditure series recovered from Step C, 

Et- eXt-t- (1- )eXt-l-2t-1, 

has the appropriate MA(1) structure. The third row in Table 3 shows that 
the estimation procedure's outcome is overall consistent with the basic 

implications of intertemporal optimization models, although the Port- 
manteau statistic suggests that more complex dynamics are present as 
well. Thus, once the dynamics captured by a model of infrequent, 
unsynchronized adjustment are removed, the residual satisfies the impli- 
cations of a frictionless model.20 

These results highlight the importance of cross-sectional develop- 
ments across heterogeneous individuals for an understanding of aggre- 
gate dynamics. Adjustment costs have an important role in the short 
and medium run-although, as we repeatedly noted above, frictionless 
models should not mispredict actual data by very much in the long run. 
In the durables case, in fact, the frictionless PIH model fails to predict 
short-run dynamics but is not rejected in the long run (Caballero 1990). 
In the model we propose, the dynamics are generated by continuous 

shifting and reshaping of the cross-sectional distribution by the aggre- 
gate process and by idiosyncratic shocks. Aggregate expenditures are 

triggered when units reach L and move back to 1. 
To interpret the results, it is helpful to inspect visually the estimated 

cross-sectional distributions that our procedure allows us to infer from 

aggregate data. Figure 10 shows a three-dimensional view of the ft se- 

quence, and Figure 11 plots the dynamic path of its percentiles. The 

dynamics of the distribution are not very pronounced, which is not sur- 

prising since "large" aggregate shocks and structural changes have been 
excluded from our empirical model. The responsiveness of durable stocks 
(and expenditures) to innovations does vary through time, always de- 
pending nonlinearly on the recent history of wealth and price innova- 
tions. When the aggregate stock of durables is low relative to the desired 
level, our model interprets the evidence as a shift of the distribution 
toward L; when the stock of durables is high, the model concentrates 
more units near U. Absent further aggregate developments, idiosyncratic 
shocks would tend to reshape these off-steady state distributions and to 
produce exponential impulse responses similar to those of Figure 6. 

20. Note that the results in Table 3 are just an alternative measure of the fit highlighted in 
Table 2: As the R2 goes to one in Table 2, row 3 in Table 3 converges to row 2. Alterna- 
tively, as the R2 in Table 2 goes to zero, the third row in Table 3 converges to the first 
row in the same table. 
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5. Concluding remarks 
This paper studies microeconomic optimization, dynamic aggregation, 
and empirical estimation using relatively simple models. The concluding 
section addresses some of the more complex issues we have disre- 

garded, discusses how they could be dealt with in future research, and 
notes that the most important insights appear robust to these and other 
extensions. 

Consider again the durables consumption goods application of Section 
4. As argued above, by taking into account the discontinuous nature of 

adjustment at the individual level the techniques we propose should 

provide an interpretation of aggregate dynamics that is "deeper," or 
more structural, than that obtained by representative agent models of 

dynamic optimization under convex adjustment costs. A truly structural 
model of durable goods consumption should, however, take into consid- 
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eration issues of general equilibrium interactions, endogenous coordina- 
tion via strategic complementarities, and structural heterogeneity. We 
illustrate these issues by discussing the role of y in the model above; this 
parameter measures the correlation between desired durables purchases 
across different units. One might think of confronting the statistical 
results obtained from estimation on aggregate data with microeconomic 
evidence, such as that obtainable from panel studies of income dynam- 
ics. It is important to realize, however, that a finding of y = 0.3 does not 
imply that wealth innovations have a 0.3 correlation across individuals. 

On the one hand, the results of Caballero and Engel (1989c) suggest 
that cross-sectional heterogeneity in behavioral parameters would bias y 
toward lower values, attributing to idiosyncratic uncertainty the low 
degree of coordination due to different adjustment policies. More gener- 
ally, redistribution effects due to heterogeneous parameters in equation 
(4.1) would not be properly recognized by our estimation procedure. 
Heterogeneity of this type presents a problem for any structural macro- 
economic model, and we do not have much to say on this score. 

On the other hand, there are at least two mechanisms by which the 
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desired stock of durables may be found to covary much more strongly 
than individual incomes or other wealth innovations. First, movements 
of the price of durables (relative to nondurables and other points in time) 
are common across units. The price of durables should, of course, be 

endogenous in a completely specified model, and in future work it will 
be necessary to take into account intertemporal substitution and trans- 
action costs on the supply side as well as the demand side of the market 
for new and used durable goods. Second, individual decisions may be 

endogenously coordinated if one unit's optimal actions depend "strategi- 
cally" on other's actions-for example, bandwagon effects may be pres- 
ent in durables consumption; more interestingly, strategic interactions 
would need to be taken into account in models of price setting. Endoge- 
nous coordination-whether through supply constraints or strategic 
complementarities-would generally emphasize truly exogenous com- 
mon shocks, via a multiplier effect. It would also make it much more 
difficult to derive optimal microeconomic adjustment rules, because the 

parameters of the processes taken as given by individual units would 
need to be determined endogenously in terms of the optimal adjustment 
rules themselves. The importance of these issues needs to be explored 
on a case-by-case basis; rules of the band-policy type with fixed parame- 
ters may be close to optimal, for example, if strategic complementarities 
are weak or supply is elastic relative to demand. 

The simplifying assumptions made in the formal work above allow a 

tight characterization both of the microeconomic optimization problem 
and the aggregation process. Many insights are much more general than 
the specific models we have used to illustrate them, however, and more 
realistic, less tractable models would share many of the general features 
noted above. At the individual unit's level, kinked adjustment cost func- 
tions are realistic; this implies that optimal adjustment should be infre- 

quent, interspersed with long periods of inaction, possibly lumpy, and 
these features are consistent both with casual empiricism and available 

disaggregated data. As to the dynamics of aggregate data, microeco- 
nomic inaction implies that close attention should be paid to the degree 
of coordination across units, and to the extent to which their actions are 
synchronized. In general, these issues can be modeled in terms of a 
distinction between common and idiosyncratic forces driving dynamic 
adjustment. As to empirical applications, information about the position 
and shape of cross sectional distributions is crucially important for a 
better understanding of macroeconomic fluctuations in the presence of 
adjustment costs. Such information can be obtained from the dynamics 
of aggregate variables themselves, as shown above. Although the im- 

plied dynamic reaction to shocks may or may not be similar to that 
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generated by more standard (e.g., autoregressive) models, depending 
for example on the relative importance of "large" events, our approach 
still recommends itself for its microeconomic foundations, and may 
make it possible to exploit in macroeconomic applications the informa- 
tion provided by disaggregated data. 

APPENDIX 
The control problem 
Define two processes {M} and {N} denoting the cumulative amount of 

(respectively) upward and downward adjustment performed on z up to 
time r. By this definition, 

dM, O, dN, O Vr 

where dMr represents the differential of a continuous sample path or the 
discrete increment Mt - Mt_ when this is finite. Also define the sets of 
times {i} and {j} where the time path of {z,} is discontinuous: 

{ilNt+Ti > Nt+.,i-dt, i > t}, {JIMt+ > Mt+rj-dt. 7 > t}. 

It is then possible to represent "adjustment" formally: 

dz, = -Odt + adW, + dMT - dN, (A.1) 

zt) 
= 

max Et f-p( r-t)( d 

- e-A-t)(cu dN, + c,dM,) - > e--t)C - e- C t)C} . 
fe i=1 i= (A.2) 

As long as the regularity condition of footnote 3 is satisfied, v(z) is 
bounded above by zero. It is bounded below as well if p > 0 and 0 and a 
are finite. 

Smooth pasting 

Differentiability of v(.) at the trigger points is endogenous when adjust- 
ment costs are not differentiable; see Dixit (1989d) for a proof that this is 
the case when fixed trigger and return points are optimal. Given differ- 



282 * BERTOLA & CABALLERO 

entiability, the conditions in (2.2) imply those in (2.3): consider x - 1, y 
L. For adjustment taking z from y to x not to dominate the candidate 

band-policy, by a Taylor approximation it must be the case that 

v(l) + v'(l)(x - 1) - (vX(L) + v'(L)(y - L)) < Cl + c,(x - y). 

But v(l) - v(L) = C, + cl(U - u). Thus, we require 

(v'(l) - cl) (x - 1) - (v'(L) - cl) (y - L) < 0, 

which is satisfied Vx > y only if the first line of (2.3) holds true. Similar 
considerations apply to downward adjustment. 

The functional form of v(z) 
When dM, = dNT = 0, z, follows a Brownian motion process with drift -e 

and standard deviation o. An application of Ito's lemma yields an expres- 
sion for the expected change of v(z): 

Et{dv(zt)} = v'(zt)(-) dt + tl'(zt)a2dt 

In an ongoing optimization program, these expected "capital gains" plus 
current flow costs are equal to the required return on the current value of 
the program, p v(z)dt. Thus, 

bz2 
t'(z)o2 - v'(z)i- - v(Z) 2 2 2 (A.3) 

It is easy to verify that 

b + $r2 - 2zt, +2 tP(zt)-- t + + ) 

is a particular solution of this differential equation. This is the present 
discounted value of flow losses if no adjustment is ever undertaken; its 
maximum value is - 

2/p - a2 < 0 at z = Op. 
All solutions of (A.3) can be obtained by adding tP(z) to a function that 

solves the homogeneous part of (A.3). Such a function can be written 

Aleazt + A2eczt 
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where a, a2 solve the characteristic equation a-i + 'a2or2 - p = 0 and A1, 
A2 are constants of integration. As long as inaction is indeed optimal for 
finite periods of time, the value function resulting from the problem in 
(A.1, A.2) must be a solution of (A.3); therefore, it can be written in the 
form 

b I22 72 - 2zt t 
2 

+ 
2 

V(zt) = '+ + Aleazt + A2eazt 2 + p2 ) +ezt+A (A.4) 

The Al and A2 constants are to be chosen so as to satisfy the conditions 

imposed on v(z) at the boundaries of the domain over which (A.3) is 
valid. 

The ergodic distribution 

We approximate Brownian motion by a discrete random walk to make 
use of standard results from the theory of Markov chains. In the interior 
of the inaction region (i.e., for L < z, < U) let 

Z Zt + dz, with probability 1 (1 - O dt/dz); A 
Zt+dt zt - dz, with probability (1 + dt/dz). ( ) 

The {zt} process never leaves the bounded state space {L, L + dz, . .. 
U - dz, U}, hence it is ergodic if it can be shown to possess a unique 
invariant distribution, and it does possess a unique invariant probabil- 
ity distribution since all its states are positive recurrent (Ross 1983, 
p. 109). If downward adjustment of xt is impossible, U approaches 
infinity; in this case, positive recurrency and ergodicity require e < 0. 

The binomial random walk converges to Brownian motion as dz and dt 

approach zero, provided that (dz)2 = a2dt. Its invariant distribution over 
the discrete states {L, L+dz, . . . , U - dz, U} similarly converges to the 
invariant distribution of the continuous-time process in (A.1) over its 
continuous state space (L, U). 

The ergodic distribution can be derived exploiting its invariance prop- 
erty. At every point z in the interior of the inaction range, except I and u, 
the discrete steady-state probability distribution function should satisfy 
the balance equation 

f(z) = f(z - dz) 2 (1 - O dt/dz)+ f(z + dz)(1 + O dt/dz). 

Rearranging, 
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= (f(z + dz) -f(z))- (f(z)- f(z - dz)) + 9 d [(f(z + dz)- f(z)) + ( f( z) - 
f(z - dz))]. 

Dividing by dz and taking the limit, we find that f(z) is continuously 
differentiable. Dividing by (dz)2, and using dtl(dz)2 = r,-2, we have in the 
limit 

f" (z) ( Of'(z). 2 f ( 
(A.6) 

The general solution of this functional equation has the form 

f(z) = Az + B if = 0 

20 = Aesz + B if 0 0, for= . 

To determine which values of A and B are appropriate at every point, we 
make use of the balance equations at the trigger and return points. 

Consider first the case L < 1, with strict inequality. The discrete pro- 
cess (A.5) never reaches point L, and jumps to I instead. If z, = L + dz, 

f L + 2 dz, with probability 2 (1 - e dtldz); 
Zt+dt 1 I with probability 2 (1 + dtldz). ( 

Hence, f(L) = 0, and z can reach I not only from I - dz and I + dz, but 
from L + dz as well. For invariance of f(z), it must be that 

f(L + dz) = f(L + 2 dz) (1 + Odtldz) 
f(l) = f(l - dz) (1 - e dt/dz) + f(L + dz) 2 (1 + e dtldz) + f(L + dz) 

2(1 + o dtldz). 

In the limit, f(z) is continuous at 1 and L but need not be continuously 
differentiable. Making use of f(L) = 0, the balance equations can be 
rearranged to read 

f(l) - f(l - dz) = (f(l + dz) - f(l)) + (f(L + dz) - f(L)) 
-o dtldz [(f(l - dz) - f(l + dz)) - (f(L + dz) - f(L))]. 

Dividing by dz, using (dz)2 = r2dt and denoting the left- and right-hand 
side derivatives with f(_,(.) and f/(,(.), in the limit we find 
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f )(l) = f,)(1) + f(+,(L). 

Consider next the case L = I (reflecting barrier), which is the case 
when control incurs linear adjustment costs with no fixed component. 
Then, when zt = L, 

= f L + dz, with probability 2 
(1 - t dt/dz); 

Zt+dt 
~ 

L with probability 2 (1 + a dt/dz). 

Although f(L(_)) = O, f(L) > 0 in this case. As it is possible to reach point L 
both from L + dz and from L itself, the invariant distribution must satisfy 
the balance equation 

f(L) = f(L + dz) 1 (1 + i dt/dz) + f(L) 1 (1 + O dt/dz). 

Right-continuity of f() at L follows in the limit. Dividing by dz and taking 
the limit, 

f(+) 2 f(L) (L) 

Similar computations provide boundary conditions for the stable den- 

sity at the upper trigger and return point. These boundary conditions 
and the adding-up constraint 

f(z)dz= 1, 

form a rank-deficient system of linear equations in (at most six) A and B 
constants, and a solution can always be derived in closed form. 
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Comment 
ANDREW CAPLIN 

I would like to congratulate the organizers of the conference and the 
authors, for a first-rate piece of work on the general topic of aggregation 
with indivisibilities. The topic is close to my heart, and reading this work 
has increased my confidence in the overall research program. In this 
comment I will point out how their work expands our knowledge, and 
make a few suggestions on future directions of research. 

The paper has three parts. The first is a valuable survey of the mi- 
croeconomics of adjustment costs. Here the authors produce a synthetic 
model that illustrates the impact of both nondifferentiability and disconti- 
nuity in adjustment costs. The second is an overview and extension of 
the literature on techniques for studying the aggregate distributional 
dynamics in models with microeconomic inertia. The final part is a pio- 
neering attempt to bring this class of aggregative models to the data. I 
will focus most of my attention on this final part, since this is where the 
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nuity in adjustment costs. The second is an overview and extension of 
the literature on techniques for studying the aggregate distributional 
dynamics in models with microeconomic inertia. The final part is a pio- 
neering attempt to bring this class of aggregative models to the data. I 
will focus most of my attention on this final part, since this is where the 
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paper has its surprise value. I have spent some time trying to under- 
stand whether the apparent success of the authors' estimation procedure 
can be explained by certain idiosyncratic features. At this stage, I have 
failed to find any obvious candidates. It may just be that even in their 
current preliminary form, these aggregation models provide some worth- 
while insights into macroeconomic fluctuations. 

In the portion of the paper that deals with the microeconomics, Bertola 
and Caballero study an individual agent optimizing against an exoge- 
nous stochastic process when there are both fixed and linear costs of 

adjustment. They develop a canonical version of this model that exposes 
the central qualitative features of a wide variety of different models. 

One element is a fixed cost of adjusting a microeconomic variable-for 

example, a cost of ordering new inventory, a cost of moving house, a 
cost of price adjustment, or a cost of entry and exit. The central qualita- 
tive feature of the optimal adjustment policy is then to make infrequent 
large changes in the state variable: small changes are simply not worth- 
while. The second element is a linear adjustment cost with a kink at the 

origin, as when there is an imperfect capital market for the resale of a 
durable commodity, a transactions cost in asset purchases, or costs of 

hiring and firing workers. The basic conclusion is that there will be long 
periods of inaction in which it is not worth moving due to the difference 
between the value of upward and downward adjustment. When adjust- 
ment does take place, however, it may be on a small scale. When these 
two forms of adjustment cost are both present there is a hybrid policy 
that in its simplest form can be defined by four parameters. There is a 

range of inaction defined by two outer adjustment points: the agent 
allows state variable to diverge from its optimal value between lower 
and upper bounds L and U, respectively, L < U. There is adjustment 
from U to u and from L to 1 with U > u > I > L. The reason the variable is 
not adjusted to the same point from L and U is that the kink in the linear 

adjustment cost term discourages further adjustment at the margin. 
The reason for the recent burst of activity in this class of microeco- 

nomic models is the use of the modem theory of optimal-control of 
continuous-time stochastic processes. This theory allows one to go be- 
yond these simple qualitative conclusions to get precise characteriza- 
tions of optimal strategies for each of the many problems that share this 
broad nature. 

The macroeconomic development of these topics deals with the ques- 
tion of what happens at the aggregate level when agents face the kind of 
microeconomic circumstances that make them adjust in this frictional 
manner. In these settings, it becomes very difficult to use standard repre- 
sentative agent reasoning, especially when the shocks that agents face 
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include both idiosyncratic and common elements. Instead, it becomes 
vital to shift the focus of macroeconomics toward distributional dynam- 
ics; the key issue is to assess the extent to which individual inertia is 
inherited at the aggregate level. This pushes us into a large number of 
technical boundaries. The current early stage of modeling these issues 
involved looking for simple stories that may capture qualitative features 
that will survive in more complete models. 

The first way to get aggregate insights is to fix a strategy of the kind 
outlined beforehand. We also need to fix the extent of common and 

idiosyncratic shocks. We then consider the response of the economy to 
different paths of the common shock by studying the distribution of 

agents' positions within their range of inaction. Any well-trained econo- 
mist can spot that there are a large number of missing elements. In 
certain cases we take the strategy as a primitive rather than solving for 
the optimal strategy given a complex shock process. We may also end up 
ignoring many general equilibrium effects whereby the strategies them- 
selves influence the path of the supposedly exogenous shocks. Hence, 
these early models should be regarded as a way into the research rather 
than as the ultimate summary of how to aggregate when there are 
indivisibilities. 

Bertola and Caballero boldly attempt to fit a model based on the fixed 
microeconomic strategies and a certain ratio of idiosyncratic to common 
shocks to data on aggregate durable purchases. My prior belief was that 
there would be a poor fit, but that this would be readily understandable 
in light of the preliminary nature of the models. It is Figure 9 that shows 
this expectation was not met. It appears that the model does a good job 
of fitting the data (although there are no formal procedures that allow us 
to assess the (S,s) model in a wider class of alternatives). It then becomes 
critical to detail the estimation procedure to see whether this good fit 
results from methodological idiosyncracies or fundamental economic 
forces. 

The (S,s) theory explains the dynamics of the divergence between the 
actual and the "desired" stock of durables. The first task in the estima- 
tion procedure is to derive a time path for the desired stock, x*, and the 
residual, z = x - x*. At the same time this procedure characterizes the 
common shock that is driving the model; this is measured by the change 
in the desired stock. From then on the estimation involves essentially 
two free parameters: the fixed aggregate shock is run through an (S,s) 
aggregation model in which the width of the (S,s) bands and the extent 
of the idiosyncratic shocks are allowed to vary to match the data as well 
as possible. 

One qualitative feature of these (S,s) models is a tendency to smooth 
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out aggregate disturbances. In a two-sided (S,s) model, an increase in 
the desired stock of durables will raise the ratio of desired to actual 
durables, yielding a form of partial adjustment in the aggregate. The 
width of the (S,s) bands will influence the range of possible values of the 
ratio of actual to desired durables, as well as the periodicity of cycles in 
this ratio. The extent of the idiosyncratic shock has its main influence on 
the extent of the smoothing of aggregate shocks. Overall, it seems there 
are enough common features of (S,s) models to conclude that the very 
good fit uncovered by Bertola and Caballero is strong evidence ij favor 
of these models. Before we can be confident of this interpretation, we 
must examine some special features of the estimation procedure to see if 

they can help account for the fit. 
One potential explanation lies in the need to arbitrarily specify a start- 

ing point for the distribution of the residuals. It may be that a good fit 
could be artificially generated by choosing this unobservable in an advan- 

tageous manner. This turns out not to be relevant in the current proce- 
dure, in which Bertola and Caballero tie their hands by always using the 
individual firm steady state as the initial distribution. A second potential 
explanation is more subtle and hinges on the sample path dependence 
in (S,s) models. While observations are gathered only once a quarter, it is 

important to allow individuals to make decisions and experience shocks 
more frequently than this. Ideally one would allow continuous-time 
decisions; in their procedure, Bertola and Caballero subdivide a quarter 
into four subintervals. But there is significant path-dependence in these 
models. It is, therefore, possible that by appropriately ordering the unob- 
servable within-quarter order of the shocks, one can greatly improve the 
model's fit. This explanation may be particularly potent if we find ex- 

tremely wide and implausible (S,s) bands. 
While this appears possible a priori, it does not appear to account for 

the fit in this particular case. I say this on the basis of two pieces of 
evidence-one private, one public. The private information is that I have 
seen a version of the model in which the freedom to alter the pattern of 

within-period shocks is removed. The end result is that the while the fit 
is not quite as good in the early part of the sample period, it is almost 
identical for the most recent ten-year period. The public information is 
that there is nothing obviously absurd about the predicted width of the 
(S,s) bands; when you buy a durable, it accounts for 26% of the total 
stock of durables that you hold. 

This leaves open the hypothesis that the good fit has real economic 
causes. Figure 8 helps us understand why we might expect the model to 

yield a reasonable fit. The figure shows that as the extent of the idiosyn- 
cratic shocks is raised, the model's tendency to smooth out aggregate 
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shocks also increases. But this is precisely the observation that explains 
the general success of partial adjustment models: large impulses tend to 
produce effects that get spread over time rather than being absorbed all 
at once. 

This broad observation alone does not seem to be enough to explain 
the model's fit, especially for the last ten-year period. One other impor- 
tant qualitative feature of the (S,s) model is that it allows for a fairly rapid 
turnaround in the face of a change in the direction of the common 
shocks. Note that the (S,s) bands provide a bound on the maximum 
distance between desired and actual durables stocks. Therefore, a rela- 
tively short sequence of positive aggregate shocks may be enough to 
return the actual level of stocks close to its desired level even after a long 
string of negative aggregate shocks. This means there is the ability for a 
relatively rapid turnaround in these models, and this feature may also 
help improve the fit with actual data. Overall, Bertola and Caballero 
have left us with the unusual problem of trying to rationalize a surpris- 
ingly successful empirical exercise. 

Finally, I would like to suggest a number of directions for future re- 
search in this area. First, it is surely desirable to redo this exercise using a 
more formal statistical approach in which alternatives are outlined and 
formal tests carried out. A potentially more important issue is to work 
with data tapes that include a greater level of microeconomic detail, so 
that one can actually observe the changing nature of the stochastic pro- 
cesses at different levels of aggregation. As for the theoretical models, it 
is important to develop models in which we can do more than pay lip 
service to general equilibrium considerations. Beyond this, as we deepen 
our exploration of macroeconomics without the representative agent 
whole new classes of questions will be opened up. One example is the 
interaction between information transmission and transactions costs: 
What effect does microeconomic inaction have on the ability of prices 
and other market data to transmit information? The work of Bertola and 
Caballero suggests that these topics will begin to enter the macroeco- 
nomic mainstream sooner rather than later. 

Comment 
ROBERT E. HALL 

Bertola and Caballero make a substantial advance in this paper. They 
tackle a problem that many of us thought completely intractable-aggre- 
gation of nonconvex adjustment-and derive empirically useful results. 

292 * BERTOLA & CABALLERO 

shocks also increases. But this is precisely the observation that explains 
the general success of partial adjustment models: large impulses tend to 
produce effects that get spread over time rather than being absorbed all 
at once. 

This broad observation alone does not seem to be enough to explain 
the model's fit, especially for the last ten-year period. One other impor- 
tant qualitative feature of the (S,s) model is that it allows for a fairly rapid 
turnaround in the face of a change in the direction of the common 
shocks. Note that the (S,s) bands provide a bound on the maximum 
distance between desired and actual durables stocks. Therefore, a rela- 
tively short sequence of positive aggregate shocks may be enough to 
return the actual level of stocks close to its desired level even after a long 
string of negative aggregate shocks. This means there is the ability for a 
relatively rapid turnaround in these models, and this feature may also 
help improve the fit with actual data. Overall, Bertola and Caballero 
have left us with the unusual problem of trying to rationalize a surpris- 
ingly successful empirical exercise. 

Finally, I would like to suggest a number of directions for future re- 
search in this area. First, it is surely desirable to redo this exercise using a 
more formal statistical approach in which alternatives are outlined and 
formal tests carried out. A potentially more important issue is to work 
with data tapes that include a greater level of microeconomic detail, so 
that one can actually observe the changing nature of the stochastic pro- 
cesses at different levels of aggregation. As for the theoretical models, it 
is important to develop models in which we can do more than pay lip 
service to general equilibrium considerations. Beyond this, as we deepen 
our exploration of macroeconomics without the representative agent 
whole new classes of questions will be opened up. One example is the 
interaction between information transmission and transactions costs: 
What effect does microeconomic inaction have on the ability of prices 
and other market data to transmit information? The work of Bertola and 
Caballero suggests that these topics will begin to enter the macroeco- 
nomic mainstream sooner rather than later. 

Comment 
ROBERT E. HALL 

Bertola and Caballero make a substantial advance in this paper. They 
tackle a problem that many of us thought completely intractable-aggre- 
gation of nonconvex adjustment-and derive empirically useful results. 



Kinked Adjustment Costs and Aggregate Dynamics * 293 

I see their paper as primarily a contribution to noise analysis. They 
show that we can view a time series as the sum of a value predicted by a 
neoclassical model plus a noise factor associated with nonconvex adjust- 
ment. Previous work on noise has often concluded that it is an important 
part of the overall pattern of movement of macrovariables. Bertola and 
Caballero cite Mankiw's investigation of noise in consumer durables as 
an example of the kind of problem their method can handle. Mankiw 
showed the importance of noise through the contrast between the 
stochastic process implied by consumer theory and the actual stochastic 

process of durables acquisitions. Theory predicts that the stock of dura- 
bles should be a random walk, but in fact the flow of acquisitions of 
durables is close to a random walk. There is a big noise factor that 
accounts for the difference. With nonconvex adjustment at the level of 
the individual family, aggregate adjustment is smeared over time. 

It may be helpful to summarize the three steps in the program recom- 
mended by Bertola and Caballero. First, estimate the neoclassical model 
without adjustment costs and calculate the noise series as the difference 
between the actual value of the series and the values predicted by the 
neoclassical model. Second, estimate the aggregate shock process and 
calculate the time series of the aggregate shocks. Third, estimate the 

parameters of the adjustment model from the relation between the noise 
series and the aggregate shock series. 

Let me comment further on the empirical application to durables 
within this framework. From Mankiw, we know that the actual stock of 
durables is almost second-order integrated, not first-order integrated as 

predicted by theory absent adjustment costs. Changes in the stock of 
durables in response to wealth changes that theory predicts would occur 

instantaneously are actually delayed over time. The basic idea of Bertola 
and Caballero is that, with the right asymmetries, adjustment costs tend 
to delay adjustment and thus explain the empirical finding. The asymme- 
tries are important and are discussed fully in this paper. Earlier work by 
Caplin and Spulber, with exact symmetry, gave an example where adjust- 
ment costs do not delay adjustment, after aggregation. The distributed 

lag pattern of delay identifies the parameters of adjustment. 
Although aggregation of nonconvex adjustment rationalizes the lags 

found in data on consumer durables, there is no decisive evidence in 
favor of nonconvex adjustment as against other explanations of the per- 
sistence of durables investment. For example, the simple model in which 
families spend a fixed fraction of their incomes on durables also explains 
the basic facts. If we choose the aggregation-of-nonconvex-adjustment 
explanation, it is because we find its foundations in optimization more to 
our tastes, not because it beats the other model in any statistical way. 
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Figure 9 in the paper shows how the method explains the observed 

persistence and variance of the measured noise in durables investment. 
The rather considerable success shown in the figure demonstrates that 
the two parameters of the model can have values that make the model's 

persistence and variance match the data. We have to judge the results 
not so much by the good fit of Figure 9 but by how reasonable is the 

story told by the parameters. The story is the following: Families wait 
until their stocks of durables are 25% too low, if their fortunes are rising. 
At that threshold, they make a single purchase large enough to bring 
their stock up to its normal relation to wealth. If their fortunes are 

declining, they wait until their stock is 25% too high. At that threshold, 
they cut down to a stock that is 22% too high. At any given time, 
idiosyncratic shocks distribute families in the range from 25% too high to 
25% too low. When a favorable aggregate shock comes along, the fami- 
lies that were on the low side respond by buying more immediately. In 

subsequent periods, idiosyncratic shocks are more likely than before the 

aggregate shock to push other families through the bottom threshold, at 
which point they will respond to the earlier aggregate shock. Because 
families are not uniformly distributed within the band between the two 
thresholds, the effect of the aggregate shock is spread over time. By 
contrast, under Caplin and Spulber's assumptions, there is no spreading 
because the exaggerated response of the families pushed over the edge 
exactly offsets the zero response from those who are not. 

Although I find the theoretical work extraordinarily impressive and 
find the paper convincing that nonconvex adjustment can explain persis- 
tent noise, I am not yet persuaded that nonconvex adjustment will 

emerge as a major explanation of the noise in important macroaggre- 
gates. Surely consumer durables is the strongest application of the 

theory, because adjustment costs are largest in relative terms for the 
smallest decision makers. Even for durables, I am not sure I believe that 
the no-adjustment band is as wide as found in this paper. The narrower 
the band, the smaller and less persistent is the noise associated with 
nonconvex adjustment. For business investment and other nonhouse- 
hold variables, the band should be much tighter and thus nonconvex- 
adjustment noise much smaller. Yet noise seems particularly large for 
investment, especially inventory investment, where adjustment costs 
are probably small. 

Even if other types of noise-possibly from sources of nonconvexities 
different from the one considered here-ultimately turn out to be more 

important than nonconvex-adjustment noise, I expect that the contribu- 
tion of this paper will be a lasting one. I repeat my admiration for a 
remarkable step forward. 
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Discussion 

Greg Mankiw suggested that Caballero and Bertola's theory has differ- 
ent implications about the number of units of durables bought and the 

average price paid per unit, which the authors should explore. Ben 
Bemanke suggested that the authors could examine panel data on auto- 
mobile ownership and wealth to test these predictions. He also sug- 
gested forming out-of-sample forecasts for Z to test the accuracy of the 
model. 

Olivier Blanchard asked if the residuals are completely accounted for 
each period by the estimation method. He also asked whether there was 
a fixed or variable number of shocks each period. Bertola responded that 

they allowed four innovations each period, which were chosen opti- 
mally. 

Matthew Shapiro wondered whether the increased demand for smaller 
cars after the OPEC price increases led to a boom in automobile produc- 
tion, as the model predicts. Bertola answered that in general equilibrium, 
when the price of cars is endogenous, the predictions are not so clear. He 
also noted that the empirical work allowed for a change in intercept in 
1975. 
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