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6.1 Introduction

The issue of contagion has been one of the most debated topics in inter-
national finance since the Asian crises. One interesting aspect of this dis-
cussion is the strong agreement among economists about which events have
constituted instances of contagion: the debt crises in 1982, the Mexican
Tequila effect in December 1994, the Asian “flu” in the last half of 1997, the
Russian “cold” in August 1998 (including the long-term capital manage-
ment [LTCM] crisis), the Brazilian “sneeze” in January 1999, and the Nas-
daq “rash” in April 2000. Paradoxically, however, there is no consensus on
what contagion means.

This paper deals with the question of how to measure contagion. There-
fore, instead of providing a list of all its possible definitions and the proce-
dures to measure it, this paper concentrates on the two most frequently
asked questions raised by applied papers in this area: First, what are the
channels through which shocks are propagated from one country to the
other? In other words, is it trade, macrosimilarities, common lenders, learn-
ing, or market psychology that determines the degree of contagion? Second,
is the transmission mechanism stable through time? Or more specifically,
does it change during a crisis?

Answering either of the previous two questions encounters important
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econometric limitations. Contagion has been associated with high-
frequency events; hence, it has been measured on stock market returns, in-
terest rates, exchange rates, or linear combinations of these. These data are
plagued by simultaneous equations, omitted variables, conditional and un-
conditional heteroskedasticity, serial correlation, nonlinearity, and non-
normality problems. Unfortunately, no procedure can handle all these
problems at the same time; therefore, the literature has been forced to take
short cuts.

This paper evaluates the performance of some of those techniques. Obvi-
ously, there is not enough space to study all the possible empirical proce-
dures nor all the problems. Thus, the paper discusses the most widely used
methodologies in the contagion literature (linear regressions, logit-probit
regressions, and tests based on principal components and correlation co-
efficients1) and concentrates on the three main problems exhibited by the
data: simultaneous equations, omitted variables, and heteroskedasticity. Is-
sues related to serial correlation, nonnormality, and nonlinearity are left
out of the analysis.

The paper briefly examines two new procedures that are robust to the
problems studied here: one designed to test for the stability of parameters,
and the second one designed to solve the problem of identification. In each
case, the assumptions underlying the methodologies and the circumstances
in which they can be used are reviewed.

The paper is organized as follows: Section 6.2 introduces the statistical
models used in the discussions. Section 6.3 investigates the problems sur-
rounding the second question concerning contagion: how to test for
changes in the propagation mechanism. The paper analyzes this question
first because the limitations of the standard techniques become evident in
simple models. Section 6.3 studies alternative corrections for the standard
tests and the conditions under which they can be used. Finally, the section
summarizes a new procedure to test for parameter stability under simulta-
neous equations, omitted variables, and heteroskedasticity, and points out
the assumptions required for its use.

Section 6.4 considers the more complicated issue: the measurement of
the transmission channels. Several Monte Carlo simulations are presented
to illustrate the problems in the interpretation of the results when the prop-
agation channel is measured by probit, ordinary least squares, or principal
components methods. At the end of the section, a new procedure to esti-
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1. I am leaving important aspects of the measurement of contagion out of this analysis,
mainly measures based on autoregressive conditional heteroskedasticity (ARCH) models (see
Edwards and Susmel 2000), cointegration (see Cashin, Kumar, and McDermott 1995 and
Longuin and Slonick 1995), switching regimes (again, see Longuin and Slonick 1995). There
are two other techniques that have not yet been used: factor regression models (see Sentana
and Fiorentini 1999 for problems of estimation in these models when the factors are het-
eroskedastic) and limited dependent models under heteroskedasticity (see Chen and Kahn
1999 and Klein and Vella 2000 for estimation problems in these models).



mate the contemporaneous interrelationship across countries is reviewed.
This procedure is robust to the data problems emphasized here.

Section 6.5 applies the two new techniques to measure contagion in Latin
American and Southeast Asian countries. First, the test on stability of pa-
rameters across time is implemented; second, the transmission mechanism
is estimated. Section 6.6 explores avenues for future research. Section 6.7
concludes.

6.2 The Models

Several simple models are used to discuss the problems involved in the
measurement of contagion. Even though true description of the world is
probably the union of these particular pieces, the paper uses minimal sta-
tistical frameworks to highlight the problems there more easily.

The country variables of interest are denoted by xt and yt. They reflect ei-
ther stock market returns, exchange rates, interest rates, or combinations of
these. Without loss of generality, assume that xt and yt have been demeaned
and are serially uncorrelated. Common unobservable shocks are denoted by
zt. These should be interpreted as liquidity shocks, risk preferences, investor’s
sentiments, etc. All the idiosyncratic innovations are denoted by εt and �t. It
is assumed that they are independent, with mean zero, and independent
from the common shocks as well. The models concentrate on the bivariate
case, although most of the results can be easily extended to larger setups.

When the paper focuses on the problems of simultaneous equations, the
following model (model 1) to describe the interrelationship between the
countries is used:

yt � �xt � εt

xt � �yt � �t

where E(εt) � 0, E(�t) � 0, and E(εt�t) � 0, and their variances are denoted
by �ε and ��. When the problem of omitted variables is contemplated, model
2 is used:

yt � �xt � �zt � εt

xt � zt � �t

where, in addition to the previous moment restrictions, it is assumed that
E(εt zt) � 0, and E(�t zt) � 0. The variance of the common shock is �z.

In all these models, the parameter of interest is � (or whether it has
shifted). It is assumed that the equation to be fitted is the following:

(1) yt � �xt � �t

Due to the problems of simultaneous equations and omitted variables, it is
well known that this equation cannot be consistently estimated without fur-
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ther information. Formally, E(xt�t ) is different from zero (the “identifica-
tion condition”) for both model 1 and model 2, which implies inconsistent
estimates.

One solution is to find valid instruments. However, for the purpose of the
paper, it is assumed that those instruments do not exist. Nevertheless, there
are circumstances in which it could be claimed otherwise. For example, it is
possible to assume, on the basis of large-economy arguments, that Organi-
zation for Economic Cooperation and Development (OECD) countries are
unaffected by emerging markets. This would motivate an exclusion restric-
tion, � � 0. Even though this assumption might be appealing, it raises im-
portant questions of why, during both the Hong Kong and Russian crises,
the U.S. and European stock markets were so heavily influenced. In fact,
part of the FED’s motivation to lower interest rates at the end of 1998 was
based on the stability of world markets. Similarly, it is possible to argue that
proxies for the common shocks exists. However, most of these measures are,
at best, derived from the same prices and volumes the model is explaining.
In this paper, it is assumed that the instruments are weak (whenever they ex-
ist), and that the problems persist.

To tackle the question on the measurement of the channels of contagion,
the statistical framework must be slightly more general. Most of the theo-
ries of contagion imply that the transmission of shocks across countries is a
function of the strength of the contagion channel. Therefore, a reduced
form of the return of country xi,t would be described by a latent factor model
as follows:

xi,t � �1X~i,t � �2TRADEi,~ iX~ i,t � �3MACROi,~iX~i,t � �4REGIONi,~iX~i,t

� . . . � �1,i LIQUIDITYt � �2,i RISKt � . . . � εi,t

where xi,t is the ith country return; εi,t is the idiosyncratic shock to country
i’s fundamentals; X~i,t are the returns of the rest of the countries; TRADEi,~ i

is the vector that measures trade between country i and other countries;
MACROi,~i is the degree of macrosimilarities across the countries; and
REGIONi,~i captures regional characteristics (similarly for other channels
of contagion not included in the specification). Common unobservable
shocks also affect country returns, and in this example, liquidity shocks and
shifts in risk preferences have been modeled. Other shocks could be incor-
porated.

Each country satisfies an analogous equation, which conforms a system
of equations

A1Xt � A2(TRADE)Xt � A3(MACRO)Xt � A4(REGION)Xt � . . . 

� B1LIQUIDITYt � B2 RISKt � . . . � εt,

which can be rewritten as
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(2) AXt � BZt � εt

A � A1 � A2(TRADE) � A3(MACRO) � A4(REGION) � . . . 

B � (B1, B2, . . . )

Zt � (LIQUIDITYt, RISKt, . . . )	.

This model is too complex to analyze. Therefore, it is simplified it in two
directions. First, model 3 concentrates on the omitted variable problems
with multiple regressors. Therefore, A is assumed to be triangular, and B is
assumed to be different from zero and nontriangular. In particular, the
model with three countries (model 3) is

yt � �x1,t � zt � εt,

x1,t � �1zt � �1,t,

x2,t � �2zt � �2,t,

where yt and zt are as before and xi,t are two other countries. The idiosyn-
cratic shocks are assumed to be independent.

In this model, x2,t does not enter the structural equations of yt. The only
relationship between these variables arises from the omitted common
shock. The main question is how well the standard procedures capture the
true underlying structure of the model.

Second, model 3a focuses on simultaneous equations problems. The
common shocks are shut down (B � 0), and the three country returns are
determined by

A � � � � �,
where A is non-block diagonal. Again, the question in this model is related
to the identification of matrix A.

These models are (in general) estimated using three procedures: OLS,
probit, and principal components. When OLS is used, it is assumed that the
research fits the following equation:

(3) yt � �1x1,t � �2x2,t � �t

It is well known that �1 and �2 will be biased, but the question is the size and
direction of it.

There is another important strand of the contagion literature that esti-
mates models 3 and 3a using probit (logit or multinomial) setups. The equa-
tion fitted is

(4) y∗
t � 1(c � �1x1,t � �2x2,t 
 y~).

Again, where c is the constant, the question is the bias of �1 and �2.

εt

�1,t

�2,t

yt

x1,t

x2,t
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Finally, the last technique used to determine the importance of the con-
tagion channels is based on principal components estimation on the multi-
variate system.

6.3 Testing for Changes in the Propagation Mechanism

A large applied literature defines contagion as a shift in the transmission
channel. Hence, testing for the existence of contagion is implemented as a
test for parameter stability.

The most widely used procedures are based on OLS estimates (including
generalized least squares [GLS] and feasible generalized least squares
[FGLS]), principal components, and correlation coefficients. The objective
of the tests is to determine whether there is a change in the coefficients
across two different samples, usually crisis and tranquil periods.

As will become clear below, if the data suffer from heteroskedasticity and
either of the other two problems (simultaneous equations or omitted vari-
ables), then most of the standard techniques are inappropriate to test for the
stability of the parameters.

It is important to note that the standard techniques are inappropriate
only if all problems are present. For example, if the data are homoskedas-
tic, then the tests for parameter stability are consistent even in the presence
of simultaneous equations and omitted variables. In other words, if the
structural change test is rejected, then it must be explained by parameter in-
stability. The test result does not indicate which one has changed, nor in
which equation, but at least it indicates that a shift has occurred. On the
other hand, if there is only heteroskedasticity, then procedures exist to cor-
rect all the traditional tests and achieve consistency. It is the interaction be-
tween the heteroskedasticity and the other problems what creates the in-
consistency in the tests.

The intuition explaining this case is simple: both the endogenous and the
omitted variable biases depend on the relative variances. If the data exhibit
heteroskedasticity, then the biases shift across the sample. Therefore, it is
possible to reject the hypothesis that the estimates are stable because of the
change in the biases, and not because of a shift in the underlying parame-
ters.

The objective of this section is to show these results formally. It is organ-
ized as follows: First, it analyzes each of the procedures and their problems.
Second, it summarizes some of the adjustments that can be introduced to
(partially) solve them. In certain cases, exact corrections exist; however,
these adjustments are not general and often only approximations can be
used. Finally, this section reviews a new test that is robust to the presence of
all three problems, indicating the situations in which the test can be used
and what assumptions are needed.
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6.3.1 Testing Using OLS

The OLS estimates of the first equation in model 1 and model 2 are

(5) �̂Mod1 – � � �(1 – ��) �
�2�ε

�

�

ε

��

� ,

(6) �̂Mod2 – � � ��
�z �

�z

��

� ,

respectively. Note that the bias (in both cases) depends on the relative vari-
ances of disturbances.

Assume that the question of interest is whether the parameters are stable
along the sample. In general, the structural change test takes two forms; ei-
ther it estimates a � in the two subsamples and performs a comparison, or
it introduces a dummy in one of the subsamples and tests for its signifi-
cance. Independently of the setup, however, the results indicated below are
the same. For simplicity in the exposition, it is assumed that the sample is
split and two separate regressions are run.

R 1. When there is no heteroskedasticity, then regardless of the si-
multaneous equations or omitted variables problems, the test for structural
change is consistent.

This results comes from the fact that the biases under the null hypothesis
are the same in both subsamples. Formally, the difference in the estimates is

(�̂Mod1,s1 – �s1) – (�̂Mod1,s2 – �s2) � – (�s1 – �s2)

in model 1 and

(�̂Mod2,s1 – �s1) – (�̂Mod2,s2 – �s2) � (�s1 – �s2)

in model 2, where s1 and s2 stand for each subsample.
Under the null hypothesis that �, �, and � are constant across samples,

the difference in the estimates is zero; it is proportional to the change in the
parameters. Thus, the rejection occurs only if the parameters have shifted.

R 2. When the data have heteroskedasticity along with either simul-
taneous equations or omitted variables problems, the test for stability is in-
consistent.

If there is heteroskedasticity in the sample, the test for stability can be re-
jected under two cases: (1) if the parameters have changed, or (2) if the vari-
ances (and hence the biases) have shifted. To exemplify this point, assume

1
�
1 � �

�

�

�

z

�

�2

�
�2 � �

�

�

�

ε

�
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there is heteroskedasticity and that the parameters are constant. The differ-
ence in the estimates is

�̂Mod1,s1 – �̂Mod1,s2 � �(1 – ��) � – �
in model 1 and

�̂Mod2,s1 – �̂Mod2,s2 � �� – �
in model 2.

The biases across the samples cancel each other out if there is ho-
moskedasticity or if the heteroskedasticity implies a proportional increase
in the variance of all shocks (��/�ε or ��/�z are invariant). Otherwise, the es-
timates are different even though the underlying parameters are constant.2

Moreover, this problem cannot be solved by estimating the parameters us-
ing GLS or FGLS.

In conclusion, when there are problems of specification, the test for sta-
bility (based on a version of the Chow test) is implicitly testing against the
joint alternative hypothesis: the stability of parameters and the homo-
skedasticity of the residuals. In the particular case of contagion, it is im-
portant to remember that the data are characterized by large shifts in sec-
ond moments. Thus, making any inference about the stability of parameters
in the linear regression context is complicated; the test does not provide the
reason for the rejection.

6.3.2 Testing Using Principal Components

Principal components is a technique designed to find common factors for
a set of time series. The objective of the methodology is well summarized by
Kaminsky and Reinhart (2000), who state that “in the case where the orig-
inal series are identical, the first Principal Component explains 100 percent
of the variation in the original series. Alternatively, if the series are orthog-
onal to one another, it would take as many Principal Components as there
are series to explain all the variance in the original series. In that case, no
advantage would be gained by looking at common factors, as none exist.”3

Formally, assume there are K variables each with n observations. Denote
the sample data as X and their covariance matrix as �. The first component
explains the K series as well as possible. Thus, it minimizes the discrepan-
cies of

1
��
1 � ��

�

�

�

z

��s2

1
��
1 � ��

�

�

�

z

��s1

1
��
�2 � ��

�

�

�

ε

��s2

1
��
�2 � ��

�

�

�

ε

��s1
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2. Obviously, the changes in parameters and heteroskedasticity exactly cancel each other out
and make the test equal to zero. This means that the test has no power against such a set of pa-
rameters.

3. See Theil (1971) for a formal derivation.



X – a	p

where p is the principal components and a	 is a matrix of scalars. The vari-
able p is identified only up to a constant, and therefore some normalization
is imposed (usually p′p � 1 or the diagonal of the p matrix is equated to 1).
It can be shown that the first component corresponds to the eigenvector of
the largest eigenvalue of �. The components of p are known as the loading
and reflect the importance of a particular variable in explaining the rest.

Principal components have been widely used to test for the stability of the
propagation mechanism because their estimates are consistent even if the
data have simultaneous equations and omitted variables problems.4 This as-
pect of the measurement is perhaps the greatest advantage of using princi-
pal components.

R 3. When there is no heteroskedasticity, tests of stability based on
principal components are consistent.

The intuition of the structural change test based on principal compo-
nents is that if the loadings in the first component change, then the param-
eters underlying the statistical model have shifted as well. Model 1 implies
a covariance matrix equal to5

� � �
(1 –

1

��)2
� � �.

The eigenvalues are given by

�
1

2
��ε�
1 � �
2�� ,

where


1 � 1 � �2 � (1 � �2)θ,


2 � (1 � �2)2θ2 – 2[(1 – �2)(1 – �2) – 4��]θ � (1 � �2)2,

θ � �
�

�

�

ε

�.

The eigenvector of the first eigenvalue (the largest one) is

(7) ��
1

2
� �

� �

�ε

�θ
� (
3 � �
2��,

1

��� � ��ε

�� � �2�ε

�2�� � �ε

��� � ��ε
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4. See Calvo and Reinhart (1995), Kaminsky and Reinhart (2000), and Masson (1997) for
applications in the contagion literature.

5. In this section only the case under endogenous variables is studied; the results are quali-
tatively the same under omitted variables.



where


3 � 1 – �2 – (1 – �2)θ.

Note that the eigenvalues and eigenvectors depend only on the parameters
(� and �) and the relative variance of the idiosyncratic shocks (θ).

Therefore, under the assumption of homoskedasticity, a change in the
loadings of the principal component indeed implies a shift in the parame-
ters (� and �). This property of the principal components is what grants its
usefulness in testing for parameter stability. However, as before, this result
holds only in the lack of heteroskedasticity.

R 4. Tests of parameter stability based on principal components are
inconsistent in the presence of heteroskedasticity.

This result is stronger than the one stated for the OLS case. It says that
even in the absence of simultaneous-equation and omitted-variable prob-
lems, the tests of structural change based on principal components are in-
consistent if the residuals are heteroskedastic. Hence, as oppose to the OLS
or the correlation case (see below), there is no procedure that can deal with
the existence of heteroskedasticity alone. A shift in the relative variances (θ)
alters the loadings, even if � or � is equal to zero.6

Again, the fact that contagion is accompanied by large shifts in second
moments implies that comparisons of principal components across samples
are inadequate as an indication of parameter stability.

6.3.3 Testing Using the Correlation

The first paper (to my knowledge) to test for changes in the propagation
mechanism using correlation measures was the influential contribution by
King and Wadhwani (1990). The intuition of their test is that changes in the
underlying coefficients imply a shift in the correlation coefficients as well.
This test has been widely used in the literature because of its simplicity and
intuitive implications.

However, the conditions under which a change in correlations implies a
shift in the underlying parameters are restrictive. Ronn (1998) shows that
increases in variance implies a rise in the correlation.7

For instance, assume that the problem of endogenous variables does not
exist (make � � 0 in model 1). The correlation between xt and yt is

� ��
���(�

�

ε

�

��
�

�2��)�
�� ,

which is a function of θ.

�
��

��
θ
1

� � ��2�
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6. This result should be intuitive. By the definition of principal components, movements in
the relative variances, in the end, must reflect changes in the loadings because the common
component is shifting. This should be true in almost any model.

7. See Boyer, Gibson, and Loretan (1999), Forbes and Rigobon (1999), and Loretan and
English (2000) for generalizations of Ronn’s result.



Shocks to the variance of xt imply an increase in θ, which causes the ab-
solute value of the correlation to rise as well. In the limit, when shocks to
country xt are infinitely large, the idiosyncratic shocks to yt are negligible
and the correlation between the two variables is 1. On the other hand, when
the variance of �t goes to 0, the correlation is 0. Note that the correlation
moves from 0 to 1 and that the parameter � remains the same.8

R 5. Tests of parameter stability based on (unadjusted) correlation
coefficients are inconsistent if the data are heteroskedastic.

The result is stated on unadjusted correlation because there are some
cases in which the bias can be corrected. This adjustment was first proposed
by Ronn (1998) in the bivariate setting.9 The main assumptions required are
that there are no problems of simultaneous equations or omitted variables
and that the heteroskedasticity is fully explained by shifts in �t and not in εt.
In this case, the data provide a measure of the change in θ (which is given by
the increase in the variance of xt), and the “unconditional” correlation can
be computed where it can be compared across samples, and its stability is
consequential for tests of structural change.

The procedure is as follows. Assume the variance of xt increases in �; then
the correlation in that subsample is given by

�c � .

The implied unconditional correlation is the one that would have prevailed
if the errors were homoskedastic. Hence, it is given by

�u � ;

Solving for the implied unconditional correlation (�u ) as a function of the
conditional correlations and the shift in the volatility, the following adjust-
ment is found:

�c � �u��
1
1
�

�

�

�

��2
u

��
The �u’s can be compared across samples. Under the assumptions stated in
this derivation, if they change it is the case that the �’s have also shifted. The
two main advantages of this procedure are: First, � can be estimated directly

�
��

��
1
�

� � ��2�

�
��

��
�(1

1
�� �)
� � ��2�
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8. See Rigobon (1999) and Forbes and Rigobon (2000) for a simple example highlighting the
biases induced by using correlation coefficients.

9. For applications of these corrections, see also Baig and Goldfjan (2000), Gelos and Sahay
(2000), and Favero and Giavazzi (2000).



from the sample by looking at the shift in the variance of xt. This makes the
adjustment very simple. Second, there is no need to estimate � to perform
a test of its stability.

However, as was mentioned before, this adjustment can be used only if
there are no simultaneous equations and omitted variables issues.10 In fact,
in this situation there is no problem using OLS, and thus no need to estimate
the correlation coefficient in the first place. This is the main weakness of us-
ing correlation coefficients to indicate the stability of a model; the setting
under which the change in the correlation coefficient (or its adjustment) is
meaningful generally justifies the implementation of other methodologies.

6.3.4 New Procedure

The previous discussion clearly indicates that the empirical question of
the stability of parameters across countries faces tremendous econometric
difficulties. The properties of the data make procedures designed to cope
with one of the empirical issues inappropriate when all the problems are
present.

This section describes a new methodology to test for structural change
under simultaneous equations, omitted variables, and heteroskedasticity
problems. It is a simplified version of Rigobon (2000b). This procedure is
based on the assumptions that (1) the country generating the crisis is
known, and (2) the changes in the variance of the rest of the countries is ex-
plained, at least in the short run, by the country under crisis and not by
other idiosyncratic shocks.

The first assumption is relatively uncontroversial. However, it is impor-
tant to highlight that in several events, this information is unavailable. For
example, during the European Monetary System (EMS) crises, which
country is to be blamed for the increase in volatility? The second assump-
tion is perhaps the most difficult one to acknowledge. It is a crucial as-
sumption but one that in the contagion literature is reasonable; and, indeed,
it is testable. In the discussion below, this property of the test is explored
more carefully.
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10. However, as is claimed in Forbes and Rigobon (1999), if the adjustment is practiced us-
ing only the country generating the crisis, then it is still possible to get a good approximation
of the unconditional correlation based on “near identification” arguments (see Fisher 1976)
where “near-identification” refers to the condition that exists when the variance of the shock
in one of the equations is significantly larger than the variance of the shocks in the other equa-
tions. In this case, as can be seen in equation (5), the biases tend toward zero in both the si-
multaneous equations and the omitted variable cases. The estimates get closer to the one in
which � � 0 or � � 0. The periods of crisis closely follow this description. For example, dur-
ing the Mexican crisis in 1994, the variance of the Mexican stock market increased by fifteen
times following the devaluation in December. One limitation of this approach is that the ad-
justment can be performed only in pair-wise comparisons in which the variable xt always cor-
responds to the country under crisis. Hence, the stability of parameters between two countries
that are not the originators of the crisis cannot be tested. The procedure proposed by Boyer,
Gibson, and Loretan (1999) has the same characteristics as the one indicated in Forbes and
Rigobon and therefore can be applied in the same conditions.



Assume the variables are described by model 1.11 Additionally, assume
that it is known that in a subsample the variances of xt and �t rise because
the variance of �t increases, while the variance of εt remains constant. In this
case, two covariance matrices can be computed, one for the low-volatility
period (L) and one for the high-volatility period (H ):

�L � �
(1 –

1

��)2
� � �

�H � �
(1 –

1

��)2
� � �

Note that the change in the covariance matrix is given by

�� � �
1

�

–

�

�

�

�
� � �,

which has a determinant equal to zero. In fact, proposition 1 in Rigobon
(2000b), applied to the case studied here, states that:

R 6. The determinant of the change in the covariance (DCC) matri-
ces is zero if the parameters are stable and if the heteroskedasticity is ex-
plained by the shift in the variance of only one of the shocks.

In other words, if the parameters shift or if the two variances change, then
the determinant of the difference of the covariance matrices is not zero. The
model can have both common shocks and simultaneous equations and this
result will still hold.12

Two remarks about the test are worth highlighting. First, the test is re-
jected in two situations: when the parameters shift (which is the interesting
case) and when there is heteroskedasticity in more than two idiosyncratic
shocks (which is uninteresting for the purposes of studying contagion). Sec-
ond, the test requires the knowledge of the country generating the increase
in volatility, as well as the timing of the volatility. Even though the country
producing the crisis can be pointed out in some cases, the tranquil and cri-
sis periods might not be as easy to determine.

These two weaknesses deserve further discussion.

Two Alternative Hypotheses

First, there is no procedure to disentangle the two alternative hypotheses
thus far. However, an advantage of the test is that if there is no rejection,

�
1

�2

�

�2��
H � �ε ���

H � ��ε

���
H � ��ε ��

H � �2�ε

�2��
L � �ε ���

L � ��ε

���
L � ��ε ��

L � �2�ε
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11. The omitted variables case produces identical results.
12. Conversations with Giancarlo Corsetti helped me generalize that the test can be applied

to models as complicated as the following: A(yt
xt) � �zt � B(εt

1

�t
1) � (εt

2

�t
2), where A, �, and B are

nondiagonal matrices and where the vectors of idiosyncratic shocks εt
1 and �t

1 is transmitted
across countries with higher intensity than the other vectors of idiosyncratic shocks, εt

2 and �t
2.

In this model, it is still the case that if the heteroskedasticity in a subsample is explained by the
shift in the variance of one of the shocks, then the change in the covariance matrix is not full
rank. I thank Giancarlo Corsetti for all his comments.



then the assumption of stability (and on the particular form of the het-
eroskedasticity) are accepted. It is only when the test is rejected that the as-
sumption about the form of the heteroskedasticity becomes crucial for the
interpretation of the results.

The question, then, is one of the power of the test. Rigobon (2000c) stud-
ies the power against two possible alternative hypotheses: (1) a change in �,
and (2) shifts in the two variances. The main conclusions of that exercise is
that, with sample sizes around sixty observations, if the parameters are not
too large (� and � should be smaller than 0.8) and if the observed het-
eroskedasticity of xt and yt is relatively large (the variances increase by at
least five times), then the power of the test against both alternative hy-
potheses is better than 10 percent.

In applications of contagion, both conditions are generally satisfied.
First, concerning the shift in variance, finding changes of the order of ten
times are common in stock markets, domestic interest rates, exchange rates,
and Brady bond returns. Second, estimates larger than 0.8 imply extremely
high interrelationships not found even in Brady bond markets. Moreover,
straight OLS regression estimates are generally smaller than 0.8. Due to the
endogenous biases it should be expected that these estimates are upwardly
biased, suggesting that the true parameters are smaller than 0.8.

Definition of the Periods

The second question is related to the definition of the periods of high and
low volatility. One important result of this test is that the determinant of the
change in the covariance is consistent even if the windows are misspecified.
This implies that the test is robust to badly stipulated periods. This is a ma-
jor advantage of the test because, in most of the contagion events, the be-
ginnings of the crises are relatively clear but their ends are not. On the other
hand, the cost of the misspecification is that the test loses power; thus it is
more likely not to find a rejection.

The intuition of the consistency of the test is the following: If the periods
are misspecified, the estimated covariance matrices are linear combinations
of the true underlying matrices. The difference between the misspecified
ones is also a linear combination of the difference of the true ones. If the
original change in matrices is less than full rank, the linear combination
would be so too. Hence, consistency is assured. The loss in power is also un-
derstood from this intuition because the linear combination reduces the
difference across the samples by averaging the underlying matrices.

It is impossible, in practice, to define the crisis period precisely. Hence,
robustness of the results when the window is modified should be stud-
ied.13
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13. See Rigobon (2000b) for an application to test the stability of the international propa-
gation of shocks across stock markets.



When To Use the Test

The traditional techniques testing for structural change, in general, are
not appropriate as tests for contagion because the data have simultaneous
equations, omitted variables, and heteroskedasticity problems. Some ad-
justments might reduce the biases, but in fact, there is no guarantee that
those corrections improve the test. More important, the conditions under
which principal components and correlations estimates can be adjusted are
those under which OLS could (and should) be estimated.

The test summarized in this section deals with some of the problems of
the data. Obviously, it depends on another important assumption: namely,
that the heteroskedasticity must be explained by a subset of the idiosyn-
cratic shocks. This is the major assumption (and therefore a weakness) of
the procedure and should be made cautiously.

For example, the application of this methodology during the Mexican
crisis satisfies the premises in the test. It is difficult to claim that the increase
in the volatility of the other Latin American stock markets (following two
weeks after the 19 December 1994 devaluation) is explained by shocks to
those particular countries, and was not a direct consequence of Mexican
problems. In fact, as is shown in the empirical section, the stability is not re-
jected for this crisis.

However, using the same procedure to test for stability of parameters dur-
ing the EMS or Korean crises is more difficult. Which country should be
blamed for the increase in volatility during the collapse of the EMS? One,
two, or all of them? Indeed, if the test is applied to the EMS and Korean
crises, it would be easy to reject that the determinant is zero. For the EMS
it is clear that no single country can be pointed out as the source of the het-
eroskedasticity. For the Korean crisis, there does not exist a period of ten
consecutive days without a crisis in another Southeast Asian country. By
the characteristics of these two crises, a rejection should be expected. How-
ever, claiming that the crisis is due to parameter instability is impossible.
Again, this is a case in which the rejections are uninteresting.

In the implementation of this methodology, the two main questions
should be: first, whether the data are heteroskedastic, and whether they are
large enough. This is the precondition for the second question: can the data
be described by shifts in the variances of a subset of the idiosyncratic
shocks? If so, then the procedure described here is a valid test of parameter
stability. Most of the contagion events, however, can answer both questions
affirmatively.

6.4 Measuring the Channels of Contagion

The second question tackled by most empirical applications of contagion
is the measurement of the different channels through which shocks are
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propagate across countries.14 Regardless of the channels, from the empiri-
cal point of view there exist essentially three approaches to measure them:
probit, OLS, and principal components.

6.4.1 Measuring Using Probit-Logit

One of the first empirical papers in the contagion literature was Eichen-
green, Rose, and Wyplosz (1996). They considered the probability that
country y will face a speculative attack, given that country x is suffering one.
Their interpretation of contagion is natural and appealing.

To implement their test, they take three steps. First, they define an index
(capturing the strength of an speculative attack); second, they characterize
a crisis as large movements in such indexes; and third, they compute the in-
terrelationship across countries estimating a probit.15 In order to test for the
importance of the different channels of contagion, they interacted the right-
hand side crisis indexes with measures of trade, country similarities, etc.
The interpretation of their results are undoubtedly engaging. However, this
model encounters two problems, one that occurs when the residuals are het-
eroskedastic, and one that occurs when there are omitted variables and si-
multaneous equations problems.

Heteroskedasticity in yt’s Residuals

One of the most difficult problems to solve in limited dependent variable
regressions is the consistency of the estimates when the residuals of the se-
lection equation are heteroskedastic. Several procedures have been devel-
oped to deal with this issue: maximum score (see Manski 1985; Horowitz
1992, 1993) and symmetric trimming (see Powell 1986; Honore 1992; and
Honore, Kyriazidou, and Udry 1997). These methodologies are able to
handle the estimation biases. Nevertheless, they have not yet been used in
contagion applications. On the other hand, the lack of control for het-
eroskedasticity significantly affects the estimates. This is the discussion
highlighted in this section.

A Monte Carlo simulation is run to quantify the bias. Assume that the re-
turns are described by model 3a, in which the matrix A is given by

A � � �.–�
–�
1

–�
1

–�

1
–�
–�
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14. These channels are based on a large theoretical literature and they usually include trade,
country similarities, common lender, learning, liquidity, distance, and so forth. See Goldstein,
Kaminsky, and Reinhart (2000) and the references therein for a survey of the models.

15. Other papers have also used probit regressions to measure contagion. See Eichengreen
et al. (1996) in the context of measuring the probability of issuing foreign debt. See also Bae,
Karolyi, and Stulz (2000) for an application using multinomial regressions.



Assume that the third shock (�2,t) is the only one that suffers from het-
eroskedasticity.

The Monte Carlo simulation consists of 500 random-independent draws
of the three shocks, with sample size of 1,000 observations each. The sample
of �2,t is split in two and the second half is assumed to have higher variance.
Three different degrees of heteroskedasticity—increases by two, five, and
ten times—are studied, as well as three different values of � (0.1, 0.2, and
0.3).

The variables yt, x1,t, and x2,t are computed for each realization. The vari-
able yt

∗ � 1( yt 
 0) is calculated afterward, and the probit regression (equa-
tion [4]) is estimated: yt

∗ � 1(c � �1x1,t � �2x2,t ). The objective of the exer-
cise is to compare the estimates of the coefficients (�1 and �2) with and
without heteroskedasticity. The results are shown in table 6.1; here, the re-
sults for the first coefficient (�̂1) are summarized in the first four columns
and for the second coefficient (�̂2) in the next four columns. The first four
rows are the estimates when � � 0.1, the next four rows are the estimates
when � � 0.2, and the last four are the results for � � 0.3. For the four rows
present for each value of �, the first row holds the results under homo-
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Table 6.1 Probit Estimates of Both Coefficients for Different Values of α and Different
Degrees of Heteroskedasticity

First Coefficient: β̂1 Second Coefficient: β̂2

Point Std. Dev. Point Std. Dev
Estimate Diff. Diff. t-stat. Estimate Diff. Diff. t-stat.

True α = 0.1
Homoskedasticity 0.1897 0.1887
Increase in variance

2 0.1927 –0.0030 0.0071 0.42 0.1567 0.0145 0.0319 2.20
5 0.1965 –0.0067 0.0124 0.55 0.1241 0.0259 0.0646 2.50
10 0.1977 –0.0080 0.0160 0.50 0.1093 0.0311 0.0794 2.55

True α = 0.2
Homoskedasticity 0.3465 0.3493
Increase in variance

2 0.3624 –0.0159 0.0123 1.28 0.2875 0.0199 0.0617 3.11
5 0.3762 –0.0297 0.0205 1.45 0.2292 0.0323 0.1200 3.72
10 0.3825 –0.0360 0.0252 1.43 0.2042 0.0374 0.1450 3.88

True α = 0.3
Homoskedasticity 0.4728 0.4711
Increase in variance

2 0.5037 –0.0310 0.0225 1.38 0.3918 0.0329 0.0793 2.41
5 0.5320 –0.0592 0.351 1.69 0.3188 0.0444 0.1523 3.43
10 0.5429 –0.0702 0.0408 1.72 0.2956 0.0511 0.1755 3.43

Notes: For each simulation 500 draws are computed. The tranquil sample and the high-volatility sample
contain 500 observations each.



skedasticity, which is the benchmark for comparison; the next three rows
are the three heteroskedasticities studied.

For each coefficient, the first column shows the point estimates.16 The sec-
ond column is the difference between the estimates with heteroskedasticity
and the respective ones under homoskedasticity. The third column shows
the computed standard deviation of the difference, which was obtained
from the bootstrapping. The fourth column calculates the t-statistic.

Regarding the first coefficient, three remarks can be extracted from the
table. First, an increase in the heteroskedasticity of �2,t biases the estimates
of x1,t upward. Second, the larger the heteroskedasticity, the larger its bias.
Third, the larger the true coefficient (�), the higher the relative impact of the
heteroskedasticity. Nevertheless, even though these patterns are quite
strong, statistically it is impossible to reject the hypothesis that all coeffi-
cients are the same as those under homoskedasticity.

The results on the second coefficient are different from those of �̂1. First,
the bias is downward, as oppose to upward. Second, the patterns of the het-
eroskedasticity effects and � size on the bias are the same as before. Third,
changes in volatility on the order of ten times imply coefficients that are al-
most half the size of those under homoskedasticity. Fourth, and more im-
portant, the differences are statistically significant.

The last exercise performed is the comparison of the �̂1 and �̂2 estimates
for the same set of parameters. By construction (of matrix A), they should
be the same; in fact, under homoskedasticity the estimates are almost iden-
tical. However, (in this simulation) when one of the variables suffers from
heteroskedasticity, its estimate goes down, while the estimate of the other
goes up, and their differences are statistically significant.

This latter property is conceivably the most important regarding the in-
terpretation of the results from the contagion literature: If the hetero-
skedasticity is correlated with some channel, then we could be finding spuri-
ous relationships. For example, assume all contemporaneous coefficients
are the same and the heteroskedasticity is correlated with the exchange
rate regime; in this case the estimates might erroneously indicate that
countries sharing the same regime have stronger interrelationships, and thus
are more likely to suffer from contagion.

Identification of Parameters

A second difficulty in the estimation of equation (4) arises when the data
have either simultaneous equations or omitted variables problems alone. To
illustrate this issue, a Monte Carlo simulation, estimating model 4 where the
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16. Their standard deviations are not shown because the objective of the simulation is to
concentrate on the difference between the estimates. However, it is important to highlight that
all of the estimates were statistically different from zero.



underlying returns are given by model 3, is run.17 The bootstrap performed
follows the same procedure as the one described before.

In the simulations, the parameters chosen were as follows: � � 0.2; �1 �
0.1; �2 was varied from 0.1 to 0.5; the variances of εt, �1,t; and �2,t are each
equal to 1; and the variance of zt was changed as follows {0.1, 1, 5, 10}. For
the sake of clarity, there is no heteroskedasticity in this exercise. For each
choice of parameters, the variance of the shocks is constant across time.
The different volatilities of zt are studied to understand the implications on
the estimates when the (relative) importance of the omitted variable
changes.

By construction, if the estimates are consistent, �̂1 should be equal to �,
and �̂2 should be equal to zero. In the omitted variable case, when the vari-
ance of zt is small relative to the other shocks, it is expected that the bias is
small. The converse should occur when the variance of zt is large. The results
shown in table 6.2 confirm this intuition.

The first set of three columns shows the point estimate, standard devia-
tion, and t-statistic of the x1,t coefficient. The second set of three columns
shows the results for the coefficient on x2,t. The simulation is run for all five
values of �2 and four possible variances of zt. The results from each of the
parameters are reported in their respective rows.

As can be seen in table 6.2, it is possible (depending on the variances) to
obtain almost any relationship between �̂1 and �̂2. This result should cast
some doubt on contagion tests that have not controlled for simultaneous
equations and omitted variables. Indeed, in the theoretical literature of con-
tagion, unobservable shocks, such as liquidity shocks and shifts in risk pref-
erences, have constituted an integral part of the propagation mechanisms.18

As this section has shown, the existence of these shocks could change the
assessment of the size and importance of contagion.

6.4.2 Measuring Using OLS

A second strand of the literature measures the propagation mechanism
using OLS regressions.19 The problems are similar to the ones described in
the previous subsection. Thus, the paper does not present the results of the
simulations but concentrates mainly on the conclusions.
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17. The omitted variables problem is simpler to analyze, but similar conclusions are found
in simultaneous equation setups.

18. See Calvo (1999), Calvo and Mendoza (2000), and Kodres and Pritsker (1999) for theo-
retical models of contagion based on common unobservable shocks. The first model examines
liquidity shocks; the second, market sentiment shocks; and the third, all these shocks plus
other transmission mechanisms.

19. See Baig and Goldfjan (1998, 2000), De Gregorio and Valdés (2000), Favero and Gi-
avazzi (2000), Forbes (1999), Gelos and Sahay (2000), Glick and Rose (1998), and Van Rijck-
eghem and Weder (2000), to name a few.



Assume the data are described by model 3. The OLS estimates are given
(after some algebra) by

�̂1 � �1 � �
�

�

z
� �1��,2

�̂2 � �2 � �
�

�

z
� �2��,1

� � �z(�
2
2��,1 � �2

1��,2) � ��,1��,2

Note that if the true values are �2 � 0 and �1 � �, still the biases can pro-
duce any outcome on the estimates. Similar conclusions can be drawn if
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Table 6.2 Probit Estimates of Both Coefficients

β̂1: x1,t Coefficient β̂2: x2,t Coefficient

Relative Point Standard Point Standard
Variance Estimate Deviation t-statistic Estimate Deviation t-statistic

True γ2 = 0.1
0.1 0.2008 0.0411 4.89 –0.0006 0.0400 0.01
1 0.2112 0.0407 5.18 0.0672 0.0404 1.66
5 0.4469 0.0417 10.71 0.3969 0.0414 9.59
10 0.6079 0.0459 13.25 0.5731 0.0478 11.99

True γ2 = 0.2
0.1 0.2013 0.0425 4.74 0.0036 0.0403 0.09
1 0.2148 0.0411 5.23 0.1357 0.0373 3.63
5 0.3808 0.0451 8.44 0.6422 0.0423 15.16
10 0.4487 0.0584 7.68 0.8011 0.0546 14.68

True γ2 = 0.3
0.1 0.1999 0.0424 4.72 0.0038 0.0428 0.09
1 0.2109 0.0420 5.02 0.1971 0.0426 4.62
5 0.3230 0.0533 6.06 0.7527 0.0481 15.65
10 0.3544 0.0687 5.16 0.8649 0.0635 13.62

True γ2 = 0.4
0.1 0.2000 0.0393 5.09 0.0036 0.0415 0.09
1 0.2081 0.0404 5.15 0.2507 0.0398 6.29
5 0.2801 0.0556 5.03 0.8009 0.0503 15.94
10 0.2946 0.0775 3.80 0.8804 0.0658 13.39

True γ2 = 0.5
0.1 0.1991 0.0401 4.96 0.0033 0.0415 0.08
1 0.2059 0.0406 5.07 0.2970 0.0394 7.54
5 0.2574 0.0619 4.16 0.8058 0.0508 15.85
10 0.2672 0.0877 3.05 0.8686 0.0734 11.83

Notes: Standard deviations computed using bootstrap method. Simulations for different variances of zt

(relative variance). Variances of the other shocks have been normalized to 1. For each simulation, 500
draws are computed. The sample contains 1,000 observations.



model 3a is used; see appendix A for the derivation. One advantage of OLS
over probit is that OLS is robust to heteroskedasticity, whereas probit is not.
In the OLS case, the larger inconvenience that introduces the existence of
heteroskedasticity is to underestimate the standard deviations, but there are
several procedures that can handle this concern.

6.4.3 Measuring Using Principal Components

As was indicated in section 6.3.2, tests for changes in parameters based
on principal components are biased in the presence of heteroskedasticity. In
this section, a stronger claim is made: that the estimates, by themselves, are
also inconsistent.

Using the same example as in section 6.3.2, equation (7) is the first prin-
cipal component (reproduced here for convenience):

��
1

2
� �

� �

�ε

�θ
� �Θ3 � �Θ2� ��

1

Note that the first component is not a linear function of θ. Therefore, the
heteroskedasticity (volatility in θ) biases the loadings. For example, assume
the countries are positively correlated (which is almost always the case in
contagion: � and � are positive). Those countries in which idiosyncratic
variance changes more (larger volatility in θt) have higher loadings (all other
things equal). It is possible, therefore, that strong linkages are found be-
cause the heteroskedasticity is high for those countries.

A Monte Carlo simulation was run in this case, but for the sake of brevity
the results are not presented; only the conclusions from that exercise are dis-
cussed here. First, the heteroskedasticity in the second shock implies that
the loading of the first country in the first component is biased downward.
This should be expected because when � and � are positive, equation (7) is
a convex function of θ. An increase in the heteroskedasticity implies that the
second country becomes relatively more important in explaining their com-
mon component. Second, when the loadings are compared across different
degrees of heteroskedasticity, their estimates are statistically different. Fi-
nally, it is easy to show that if the structural errors are properly normalized,
the bias disappears. However, this normalization is possible only if the data
do not suffer from simultaneous equations or omitted variable problems. In
these cases, it is worth asking why one would use principal components
when OLS (or FGLS) is consistent. This is conceivably the highest weak-
ness of principal components as a procedure to test and measure contagion.
If the heteroskedasticity is not taken into consideration, then the estimates
and conclusions might be biased. On the other hand, the only circum-
stances in which heteroskedasticity can be corrected are those in which OLS
should be used.
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6.4.4 New Procedure

In the contagion literature, the issues of heteroskedasticity, simultaneous
equations, and omitted variables are unavoidable, especially because there
are no good instruments to correct for them.20 Moreover, the fact that most
papers use “indexes” instead of exchange rates or interest rates directly ex-
acerbates the problem even more.

In general, the index is constructed as a linear combination of the high-
frequency macrovariables. The advantage is, for example, that a speculative
attack might have different implications, depending on how central banks
decide to cope with it. The index captures the aggregate strength of the re-
sponse by looking at all its possible consequences. The disadvantage, on the
other hand, is that using prices and exchange rates jointly in an index ag-
gravates the endogeneity problems, making the inference about the trans-
mission mechanism more complicated. The use of an index to measure the
propagation of shocks has strong theoretical justification, and intuitive
appeal, but it is important to remember that it encounters equally strong
econometric problems.

In this section, a review of a new procedure developed by Rigobon
(2000a) is presented. The objective of the methodology is to provide a con-
sistent estimate of the contemporaneous relationship across variables even
if the data suffer from heteroskedasticity, simultaneous equations, and
omitted variables. Here, only the case of simultaneous equations is illus-
trated; for the general treatment see the original reference.

Assume there are K variables jointly determined satisfying the following
relationship:

AXt � εt

where A is a K � K nontriangular matrix, Xt is the matrix of country vari-
ables, and εt is the vector of idiosyncratic shocks. The diagonal of A is set to
1, which is the normalization assumption. Additionally, it is commonly as-

290 Roberto Rigobon

20. For example, the use of lag returns is not a valid instrument for simultaneous equations.
It is instrumenting for other problems, such as errors in variables, but not for endogeneity.

Arguing that lag-dependent variables are instruments is making the implicit assumption
that home stock market returns depend on own past returns and current foreign returns but
not on lag foreign returns, and that, conversely, foreign current returns depend on own lag and
current home returns, but not on lag home returns. The theoretical foundations for this as-
sumption are extremely weak. If foreign returns are informative about domestic returns at any
time and past home returns are informative about current home returns, then why are past for-
eign returns not informative about current home returns? In fact, I have not (yet) seen a theo-
retical model that has the three implications. Either all lag values explain contemporaneous re-
turns or not. In practice, the lag-dependent variables are instrumenting for other issues such
as errors in variables and the like, but they are not instrumenting for endogeneity. Moreover,
causality tests in this environment are biased. It is well known that simultaneous equations
with lag endogenous variables can have any implication on the Granger-causality tests.



sumed in macro-applications that the idiosyncratic shocks are uncorre-
lated: E(εi ,tεj,t) � 0 for all i � j. This is the covariance restriction used in
most macro-applications. Even with all these assumptions, however, A can-
not be estimated. The reason is that from the reduced form, only the co-
variance matrix from Xt can be obtained, which constitutes an underidenti-
fied system of equations.

Formally, the reduced form is

Xt � A–1εt � �t,

which implies a covariance matrix

� � A	–1�εA–1,

where �ε is diagonal due to the covariance restriction.
The value of � is estimated from the sample and provides K(K � 1)/2 in-

dependent equations. The unknowns are K from the variances of the idio-
syncratic shocks, and K(K – 1) from matrix A. Note that for any K 
 1 the
number of unknowns is strictly larger than the number of knowns. This is
the standard identification problem raised by simultaneous equations.

The key feature of Rigobon’s identification is the realization that under
the exact same restrictions the existence of heteroskedasticity adds addi-
tional constraints. The simplest case is one in which the heteroskedasticity
can be described by two regimes, high and low variance. In this instance,
there are two covariance matrices providing K(K � 1) equations, whereas
the number of unknowns is 2K from the variances of the idiosyncratic
shocks (K for each regime), but the same K(K – 1) from matrix A. Thus, the
system is just identified: K(K � 1) � 2K � K(K – 1). Moreover, it should be
clear that it is overidentified when there are more than two regimes. There-
fore, for richer descriptions of the heteroskedasticity, an overidentification
test can be used and the parameter stability examined.

The assumptions needed to achieve identification are the following: first,
heteroskedasticity of the structural shocks; second, stability of the parame-
ters; and third, uncorrelation of the structural shocks. This is exactly the
case in most macro-applications in which vector autoregression (VAR)
models have been used, and financial applications in which ARCH (auto-
regressive conditional heteroskedasticity) or GARCH (generalized ARCH)
models have been computed. In the derivation developed here, only uncon-
ditional heteroskedasticity has been studied. Similar arguments can be
extended to include the case in which only conditional changes in the
volatility occur.

Using this methodology, a consistent estimate of A can be obtained re-
gardless of the problem of endogenous and omitted variable biases. After-
ward, A can be explained as a function of the different channels of conta-
gion. This is the objective of the next section.
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6.5 An Application to Emerging Markets

This section examines the questions of stability in the propagation of
shocks across Latin American and Southeast Asian countries around the
recent crises, the importance of those linkages, and what determines them.
The first question is implemented as the test for parameter stability intro-
duced in section 6.3.4, while the other two questions are answered using the
methodology described in section 6.4.4.

Two data sets are used: sovereign bonds and stock markets. The data for
stock markets were collected from Datastream and consist of daily stock
market returns (in U.S. dollars) for fourteen countries, covering the period
from January 1993 to December 1998. The countries studied are Argentina,
Brazil, Chile, Hong Kong, Malaysia, Mexico, Peru, the Philippines, Singa-
pore, Korea, Taiwan, Thailand, the United States, and Venezuela.

The sovereign bond data contain the daily country bond returns from
January 1994 to December 1998, obtained from the Emerging Markets
Bond Index Plus (EMBI�) constructed by JPMorgan. The EMBI� coun-
try indexes track total returns for traded external debt instruments in
emerging markets. Most of the bonds covered are Brady bonds, but other
foreign-denominated bonds are also taken into consideration. The indexes
are computed by simulating a portfolio with the weights determined by risk,
market capitalization, liquidity, and collateral considerations. The coun-
tries included in the bond data are Argentina, Brazil, Ecuador, Mexico,
Panama, Peru, and Venezuela. The only two Southeast Asian countries in
the JPMorgan data are Korea and the Philippines, but the number of their
observations is small in comparison to the other countries. Thus, they were
dropped from the analysis.

Information on U.S. interest rates is obtained from Datastream. For all
the results presented in this paper, the ten-year U.S. government bond was
used. This bond has the closest maturity to the average sovereign bond in
the data. However, robustness checks were performed by using shorter hori-
zons (one-year and three-month), and the results were qualitatively the
same.

The objectives of looking at these two markets are to compare the trans-
mission mechanisms, to determine how much trade explains about the
propagation mechanism in each of them, and to compute the importance of
liquidity shocks in both.

6.5.1 Test for Stability

The stability of parameters for both the stock and the bond markets is
studied by performing the determinant of the change in covariance (DCC)
test described in section 6.3.4. This test is based on the assumption that, in
a subsample, the heteroskedasticity is explained by the heteroskedasticity in
only a subset of the shocks. Moreover, it must be a subset of either the idio-
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syncratic shocks or the common shocks. The easiest way to satisfy this con-
dition is to concentrate the analysis around the crises. During these periods,
the assumption that the increase in the variance of all emerging markets is
caused by the country producing the crisis is a reasonable one.

As will become clear, a considerable amount of time is devoted to the def-
inition of these windows. The main reason is that, if a rejection is found in
a poorly designed test, its interpretation becomes cumbersome.

The Model

It is assumed that returns in stock and bond markets are described by a
latent factor model

AXt � �(L)Xt � �zt � εt,

where Xt represent the country returns, A is the contemporaneous linkages
(the coefficients of interest), �(L) is a matrix of lags, zt is a one-dimensional
unobservable shock, all � are the parameters of how common shocks affect
country returns (or vulnerabilities), and all εt are the idiosyncratic shocks
assumed to be uncorrelated among themselves and with respect to the com-
mon shock.

For normalization purposes, the diagonal of A is assumed to be equal to
1, and the coefficient on the United States in � is set to 0.1. The imposition
of this normalization means that studying the relative importance of com-
mon shocks versus idiosyncratic shocks cannot be performed by looking at
the standard deviation of the shocks. Rather, a variance decomposition ex-
ercise must be conducted.

The reduced form of this model is the following:

(8) Xt � A–1 �(L)Xt � A–1(�zt � εt) 

� �(L)Xt � �t

where the reduced-form residuals satisfy

(9) A�t � �zt � εt.

Note that the procedure developed in section 6.3.4 deals with the stability
and identification of parameters in equation (9). Because the reduced-form
residuals share the same contemporaneous properties as the returns, in the
estimation, a VAR is first run in the whole sample to eliminate the serial cor-
relation (equation [8]). After the residuals, �t, are recovered from the esti-
mation, the regimes are defined, and the test for stability is performed on
the residuals. This procedure is testing for the stability of A, �, and �(L). At
first glance, the inclusion of �(L) in this list this might be surprising, but see
appendix B for a formal derivation.

For the sake of brevity, the results from the VARs are not presented.
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Definition of the Windows

To implement the DCC test, one must define a high- and a low-volatility
regime. Moreover, for the alternative hypothesis to be informative, the pe-
riods must be determined in such a way that the assumption about the het-
eroskedasticity is likely to be satisfied. In practice, concentrating around the
crises should increase the likelihood of satisfying such assumptions.

From 1994 to 1998, international markets faced three major crises; these
are used to define the regimes. In table 6.3 the low- and high-volatility dates
are shown.

For the Mexican crisis, the low-volatility regime is defined as the period
from June to December of 1994 right before the devaluation. The high-
volatility regime begins with the devaluation on 19 December 1994; the end
of this period, however, is unclear. After the Mexican devaluation several
other shocks occurred (e.g., the discussion of the rescue package in Janu-
ary). These shocks maintained the high volatility for several months. There-
fore, two possible crisis regimes are studied: one ending on 8 January, and
the other lasting until 31 March. The choice of 8 January is based on the fact
that on 9 January the nonrollover of the short-term debt was announced,
producing a large shock in bond markets around the world. Indeed, the
EMBI� dropped by almost 6 percent that day. This shock could be inter-
preted as a liquidity shock, and thus, in the model estimated here, as a com-
mon shock. The DCC would reject if there is heteroskedasticity in both an
idiosyncratic and a common shock. Therefore, these samples should be
considered separately. In fact, three cases are studied, one beginning with
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Table 6.3 Windows for the DCC Test

Tranquil Window High-Volatility Window

Begins Ends Begins Ends

Mexican crisis
Currency devaluation 06/01/1994 12/16/1994 12/19/1994 01/08/1995
No rollover 06/01/1994 12/19/1994 01/09/1995 03/31/1995
Currency devaluation + no rollover 06/01/1994 12/16/1994 12/19/1994 03/31/1995

Asian crises
Hong Kong 01/02/1997 06/02/1997 10/27/1997 11/14/1997
Korea 01/02/1997 06/02/1997 12/01/1997 01/09/1997
Hong Kong + Korea 01/02/1997 06/02/1997 10/27/1997 01/10/1997
Thailand 01/02/1997 06/02/1997 06/10/1997 08/29/1997
All 01/02/1997 06/02/1997 06/10/1997 01/10/1997

Russian crisis
Russia 03/02/1998 06/01/1998 08/03/1998 08/21/1998
LTCM 03/02/1998 06/01/1998 08/21/1998 09/30/1998
Russia + LTCM 03/02/1998 06/01/1998 08/03/1998 09/30/1998
Brazilian speculative attack 03/02/1998 06/01/1998 10/01/1998 10/30/1998
All 03/02/1998 06/01/1998 08/03/1998 10/30/1998



the devaluation and ending before 9 January, another one beginning on 9
January and lasting until the end of March, and another that includes both
periods.

Looking at these two samples together has the following advantages. It
should be expected that the DCC test will produce a rejection in the bond
market data for the two periods together; this implicitly indicates how pow-
erful the test is with these data. However, if indeed there is a shift in the
parameters after 9 January but not before, then the test is rejected when
that period is under consideration, as well. In other words, if the rejection oc-
curs only when the two high-volatility samples are put together, one may ar-
gue that the rejection is due to the failure to satisfy the heteroskedasticity
assumption. On the other hand, if there is a rejection in one of the sub-
samples, it must be the case that together the two subsamples are also re-
jected. This will allow us to identify the period in which the parameters
have shifted. Similar exercises are implemented in the next two crises.

The Asian crises began in June 1996 with Thailand’s devaluation, and
lasted into 1998 until the end of the Korean crisis. For the particular case of
the Asian crises, the tranquil period is always defined as the six months
prior to Thailand’s devaluation. Several high-volatility periods are defined.
The Thailand crisis began at the start of June 1997; the Hong Kong crisis
began on 27 October 1997; and the Korean crisis began around 15 Decem-
ber 1997. The Hong Kong crisis is the only one that has a clear initial date,
which is the day on which short-term interest rates increased dramatically.
For the other two crises, however, the initial day is unclear because impor-
tant action took place on the bond and stock markets prior to the exchange
rate devaluation.

During the Asian crises several combination of windows are studied.
However, it is important to highlight that even though some of these win-
dows include several crises, they should not become a violation of the het-
eroskedasticity assumption. In the bond market data, all Southeast Asian
countries are excluded from the regression; thus, these crises are summa-
rized by the common unobservable shock. Therefore, the common shock is
a subset of the shocks and no rejection should be obtained because the het-
eroskedasticity assumption was not satisfied. On the other hand, for the
stock market data, all the countries are included in the regression. There-
fore, the Southeast Asian crises can be modeled as changes in the volatility
of a subset of the idiosyncratic shocks. Again, the DCC should not be re-
jected because of ill-specified heteroskedasticity.

Finally, the third crisis studied is the combination of the Russian and
LTCM collapses. The tranquil period extends from March to July of 1998,
and several high-volatility periods are studied. First, the pure Russian col-
lapse started at the beginning of August. Second, the LTCM problems ap-
peared at the end of August and lasted until the end of September. Finally,
in October, another shocks (a speculative attack on the Brazilian currency)
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occurred. Hence, as in the Mexican case, the LTCM collapse has been as-
sociated with an aggregate liquidity shock.

Several sensitivity analyses were performed to evaluate the robustness of
the results to (minor) changes in the definition of the windows. The results
are robust to those, but robustness to a random definition of regimes should
not be expected. It is crucial, and I hope this discussion has made it clear,
that in order to implement the test one must first impose a comprehensive
view of the changes in second moments. Otherwise, rejections are mean-
ingless.

Stock Markets

Given the regimes and windows, the next step is to estimate the covari-
ance matrix of the residuals from the reduced form and perform the DCC
test.

In table 6.4, the change in covariance matrices is shown for all the choices
of windows. This table shows how large the heteroskedasticity (on average)
is. In order to compute the change in the covariance matrix, two different
norms were used. The first column represents the average change in the
variances. The relative change for all countries is computed from the co-
variance matrices and the average is reported. The second column shows
the increase in the maximum singular value, which is perhaps the most in-
formative measure.

As can be seen, the volatile regimes represent important changes in vari-
ance. For example, during the Mexican crisis an average increase in vari-
ance of eight times was observed. Similarly, during the Hong Kong specu-
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Table 6.4 Changes in Variances Measured as Several Matrix Norms

Average Increase Increase in Maximum
in Variances Singular Value

Mexican crisis
Currency devaluation 3.36 9.23
No rollover 3.61 7.93
Currency devaluation + no rollover 3.59 7.90

Asian crises
Hong Kong 6.96 12.80
Korea 5.99 20.08
Hong Kong + Korea 1.84 2.05
Thailand 2.15 3.41
All 0.99 0.97

Russian crisis
Russia 2.70 2.77
LTCM 5.29 4.78
Russia + LTCM 4.34 3.62
Brazilian speculative attack 3.44 3.07
All 4.04 3.17



lative attack the increase in stock markets was almost twelve times. These
increases in volatility represent a significant rise in volatility in emerging
markets. Remember that the data include countries such as the United
States, Singapore, Chile, etc., where the increases in volatility during this
sample were smaller than two times.

After the covariance matrices are estimated, the determinant on their
change is computed. The results for the stock market test are shown in table
6.5. The first column indicates the point estimate, the second column is the
computed standard deviation, the third is the mass below zero, and the
fourth is an indicator for which a value of 1 means that the test of stability
was rejected. The standard deviation and the mass below zero are computed
using a bootstrap. The procedure uses the changes in conditional variance
across the windows to produce several covariance matrices, then computes
the determinant on the change and estimates both the standard deviation
and the mass below zero. Standard deviations are large because the small
sample distribution of the determinant is not normal; thus, to give the test
some chance of rejection, the mass below zero is used. The dummy is set to
1 if the proportion of the simulations with determinants smaller than 0
(mass below zero) is either 10 or 90 percent.

Observe that in table 6.5, there is no single case in which the test is re-
jected. The immediate question is whether the test has power. Two remarks
should be made in this respect. In Rigobon (2000b) it is shown that for the
size of these windows and the observed changes in variance, the test is quite
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Table 6.5 DCC Test for Stock Markets 

DCC in Stock Market

Point Standard Mass
Estimate Deviation Zero Rejection

Mexican crisis
Currency devaluation –1.4632877 49.559015 0.357 0
No rollover 34.918946 182.90394 0.762 0
Currency devaluation + no rollover 16.135432 63.385381 0.778 0

Asian crises
Hong Kong –8,131.1469 5,140.3177 0.381 0
Korea 8.022301 192.47444 0.675 0
Hong Kong + Korea 2.808E-06 0.00078 0.566 0
Thailand –0.0023061 0.3208153 0.465 0
All –7.162E-21 2.011E-07 0.408 0

Russian crisis
Russia –28.163079 5,145.213 0.668 0
LTCM 2,926.3835 73,705.659 0.418 0
Russia + LTCM 3,171.8639 16,813.048 0.358 0
Brazilian speculative attack 7.6768399 27,581.466 0.676 0
All –2,091.3015 19,540.064 0.615 0



powerful (type II errors were smaller than 10 percent for a test with size 5
percent). Second, as will be seen below, there are some rejections when bond
data are used. Therefore, the lack of rejection could not be blamed entirely
on the power of the test. This evidence suggests that the propagation of
shocks across stock markets is (relatively) stable during the recent crises.

Bond Markets

This section turns its attention to the bond market. The same windows
used before were used to test for the stability of parameters among EMBI�
indexes.

In table 6.6, the change in covariance matrices is shown again to highlight
the changes in variances experienced in the sample. The interpretation of
the columns is the same as before. Note that in this case, however, the shifts
in the variances are larger than the ones found in stock markets.

In particular, observe that during the Mexican crisis after the non-
rollover announcement the variances doubled. Likewise, the LTCM col-
lapse implied an increase in volatility above the one already experienced by
the Russian crash. Take into consideration that this pattern was absent in
the stock market data (see table 6.4); this confirms the common wisdom
among market participants that the aftermath of the Mexican crisis and the
LTCM shocks consisted mainly of shocks to the bond markets.

On the other hand, an interesting aspect of this table is that, excluding the
Hong Kong speculative attack, the Asian crises had almost no impact on
the variance of Latin American bond markets, at least in their volatilities.
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Table 6.6 DCC Test for Bond Markets

Average Increase Increase in Maximum
in Variances Singular Value

Mexican crisis
Currency devaluation 12.71 10.14
No rollover 19.96 22.92
Currency devaluation + no rollover 18.56 20.21

Asian crises
Hong Kong 13.69 15.73
Korea 2.39 3.11
Hong Kong + Korea 1.14 1.28
Thailand 0.82 1.04
All 1.00 1.01

Russian crisis
Russia 49.15 47.72
LTCM 58.89 56.75
Russia + LTCM 51.54 50.69
Brazilian speculative attack 13.31 11.88
All 38.79 37.53

Notes: Changes in variances measured as several matrix norms.



Remember that if the heteroskedasticity is small the DCC test has little
power. Thus, a lack of rejection should be expected during the Southeast
Asian crisis for the bond data.

The results for the bond market DCC test are shown in table 6.7. The in-
terpretation of the table is the same as for the stock market. In this case,
there are two instances in which the parameters are unstable: the 9 January
shock and the LTCM collapse. Note that the DCC test is rejected when
these crises are analyzed separately or jointly with other events, suggesting
that the test is rejected because of a shift in the parameters during those
times, and not because of misspecification of the alternative hypothesis.

In the Mexican case the test is rejected if the sample covers the period
from January to March, or from 19 December to March. Similarly, the test
is rejected for the LTCM crisis alone (end of August plus September) or if it
is included with the Russian crisis, or with the Russian and Brazilian at-
tacks. However, no instability was found after October 1998, indicating that
the changes in the transmission mechanism across bond markets occurred
shortly after the LTCM collapse.

In summary, the events for which the test is rejected reflect incidents of
important common shocks occurring in the bond market. Market partici-
pants have identified these two particular events with liquidity shocks. In
the setup estimated here, there is more to these shocks than a pure liquidity
shock. In equation (9) the presence of a liquidity shock has already been
taken into consideration by the inclusion of zt. The fact that the DCC is re-

Contagion: How to Measure It? 299

Table 6.7 DCC Test for Bond Markets

DCC in Bond Market

Point Standard Mass
Estimate Deviation below Zero Rejection

Mexican crisis
Currency devaluation 1.3062012 2.1833245 0.76 0
No rollover 14.264603 18.034845 0.94 1
Currency devaluation + no rollover 16.541713 15.496773 0.981 1

Asian crises
Hong Kong –0.0002571 0.0008754 0.24 0
Korea 6.841E-10 5.164E-08 0.345 0
Hong Kong + Korea –1.306E-12 7.95E-11 0.549 0
Thailand –2.812E-10 5.66E-09 0.325 0
All 1.028E-19 2.00E-11 0.616 0

Russian crisis
Russia –0.0005737 0.0011142 0.549 0
LTCM –6.8381042 5.7270025 0.04 1
Russia + LTCM –6.3514527 4.5857572 0.021 1
Brazilian speculative attack 0.0029295 0.0009354 0.264 0
All 8.307991 3.1489852 0.993 1



jected implies, then, that either the relationship is nonlinear or there is a
change in the intensity with which the liquidity shocks are propagated. With
the techniques available, unfortunately, there is no procedure that can dis-
entangle these two explanations.

6.5.2 Estimation of the Propagation Mechanism

In this subsection, the contemporaneous relationship between stock
markets and bond returns is estimated. The questions of interest are three-
fold: What is the estimate of A? How much do trade and regional variables
explain A? Finally, what is the relative importance of the common shocks
(zt) across crises and regimes?

Model and Identification

As before, it is assumed that returns are described by the same latent-
factor model

(10) AXt � �(L)Xt � �zt � εt.

Assume that there are C common shocks and K endogenous variable.
Again, a VAR is estimated first and the tests are performed on the reduced-
form residuals equation (9).

Identification. The procedure described in section 6.4.4 shows that under
orthogonality of the structural shocks and the existence of heteroskedastic-
ity, it is possible to identify an equation such as equation (10) if the het-
eroskedasticity is high enough.

Given the number of endogenous and omitted variables, the unknowns
in the system of equations are as follows: K(K – 1) unknowns are the pa-
rameters from matrix A; C(K – 1) unknowns are the parameters from � af-
ter normalization; K times S variances are from the idiosyncratic shocks
(there are K variances of idiosyncratic shocks for each regime in het-
eroskedasticity [S ]); and C times S variances are from the common shocks
(there are C variances of common shocks for each regime). Therefore, the
total number of unknowns is

(11) K(K – 1) � C(K – 1) � KS � CS .

from A from � idiosyncratic shocks common shocks

The first condition for identification is that each regime in the het-
eroskedasticity should add more equations than unknowns. This is required
for the order condition to be satisfied. Each new covariance matrix adds
K(K � 1)/2 equations (which is the covariance matrix estimated on the
residuals), while it adds K new idiosyncratic variances and C new common
shock variances. Therefore, each regime adds more equations than un-
knowns if and only if

{{{{
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� 1)
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 K � C

K(K – 1) 
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This is the “catch-up” constraint.
After the condition of equation (12) is satisfied, there must be a minimum

number of regimes that imply that there are at least as many equations as
unknowns. The number of knowns is provided by the covariance matrix in
each regime and is equal to

(13) �
K(K

2

� 1)
�S.

Therefore, imposing that equation (13) is larger than or equal to equation
(11), and solving for S, the minimum number of regimes required for iden-
tification is

(14) S � 2�
(K

K

�
2 –

C

K

)(

–

K

2

–

C

1)
�.

In the two examples studied here, one common shock is allowed. There-
fore, the number of regimes required for identification in each case is as fol-
lows:

1. There are eight countries (endogenous variables) in the bond markets.
The catch-up constraint (equation [12]) is easily satisfied and the minimum
number of regimes is S � 14/6.

2. There are fourteen countries in the stock markets. Thus, the inequal-
ity in equation (12) is satisfied and the number of regimes required is S �
13/6.

In summary, three regimes are enough to achieve identification in both ex-
amples.

Estimation. From the reduced form, equation (9), the covariance matrix of
residuals is given by

(15) �t
� � A–1��t

z�	A	–1 � A–1�t
zA	–1,

where the left-hand side is the estimate of the covariance matrix in regime t ∈
(1, . . . , S ), and the right-hand side expresses the coefficients of interest. This
is a nonlinear system of equations that is estimated by generalized method of
moments (GMM), in which equation (15) is the set of moment restrictions.21
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21. Actually, instead of computing inverses of A, the moment restriction estimated is A�t
�A	

– ��t
z �	 – �t

ε � 0, which is simpler and more stable. However, the invertibility of A must al-
ways be checked.



After the VAR has been estimated and the residuals (which in fact are the
same residuals as those used in the previous section); have been recovered,
the regimes are defined, the covariance matrices are calculated, and the sys-
tem of equations is estimated. An important aspect of the identification
through heteroskedasticity is that the estimates are consistent even if the
regimes are misspecified. Thus, the windows are defined by the periods of
medium and high volatility derived from the conditional volatility. Further-
more, the identification is obtained regardless of whether the changes in
variance are conditional; thus, the use of the sample covariance matrices to
determine the regimes is easily justified.22

For stock markets the sample studied runs from July 1994 to the end of
1998. For bond markets, we exclude the Mexican and Russian crises; thus
the sample runs from 1 April 1995 until 31 July 1998. The assumption of pa-
rameter stability is crucial for the identification, and the previous subsec-
tions have already shown that bond markets had unstable parameters dur-
ing the first quarter of 1995 and after 21 August 1998.

Again, the results from the VAR are not shown.

Stock Markets

Definition of the Regimes. First, taking the residuals from the VAR, a
twenty-day rolling window covariance matrix was computed. A norm on
the covariance matrix was defined (in this paper, the maximum singular
value was used; however, other measures produced very similar splits in the
regimes). Second, using the conditional covariance matrices, the regimes
were defined as follows: the low-volatility regimes are those dates on which
the matrix norm is smaller than the average; the high-volatility regimes are
the dates on which the norm is larger than 2 standard deviations of the
mean; and the medium-volatility regime is the rest of the sample.

In figure 6.1 the three regimes are shown, with 1 corresponding to the
low-volatility, 2 to the medium-volatility, and 3 to the high-volatility peri-
ods. There are 848 observations in the low, 329 in the medium, and 95 in the
high-volatility regimes. It is important to note that the regimes coincide
with most of the crises and events in which contagion is suspected to have
existed.

Finally, after the windows are defined, the covariance matrix in each
regime is computed and the GMM is implemented to estimate equation
(15).
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22. In a separate paper, I have already solved the problem of identification when only con-
ditional heteroskedasticity exists. The proof is very similar to the one shown here. Deriving the
reduced form from a structural model where the residuals have GARCH effects and the struc-
tural shocks are uncorrelated produces a restricted GARCH equation that fully identifies the
simultaneous coefficients in the level equation. The estimation in this case is simpler because
the maximum likelihood estimator (MLE) can be used directly. The intuition of the identifica-
tion, however, is exactly the same as the one derived here (see Rigobon 2001).
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Distributions and standard deviations were computed by bootstrap in
order to draw several covariance matrices and solve the system of equations
for each realization. However, the assumption that the covariance matrices
across regimes are independent is unsatisfactory; thus, in order to take into
consideration the serial correlation in the covariance matrices, it was as-
sumed that only the change in the covariances was independent across
regimes. Therefore, conditional on the point estimates of the covariance
matrices of the reduced form, random draws of covariance matrices were
obtained consistent with the sample size in each regime and its covariance
structure. For each set of covariance matrices the system of equations is
solved (using GMM) and the process repeated 100 times. The distribution
of the coefficients is the solution to each of the realizations of the system of
equations.

Contemporaneous Transmission Mechanism. The results of estimating A are
shown in table 6.8. The diagonal is omitted because it is known that it is
equal to 1, and the signs of the coefficients have been changed so they can
be understood as the elasticities in the right-hand side (its natural interpre-
tation).

The rows represent the equations of each country, and the columns are
the regressors. Therefore, the reading of the coefficients is as follows: The
row country (Argentina) is contemporaneously affected by the column
country (Mexico) by a coefficient of 0.234. The coefficients that are statisti-
cally significant different from zero at the 90 percent confidence interval are
in boldface type, where the confidence interval is computed using the boot-
strapped distribution.

Several remarks on table 6.8 are worth making. First, the coefficients in
the U.S. equation are all nonstatistically significant. Note that this was not
imposed on the estimation procedure, even though our prior would have
suggested so. On the other hand, the United States importantly affects some
of the emerging markets.

Second, the coefficients are relatively large, explaining the high comove-
ment that exists among international stock markets. In fact, these coeffi-
cients explain correlations of an average of 22 percent among all countries.

Third, in the table, 32 of 182 coefficients are statistically different from
zero. Among the Latin American countries, there are 13 significant esti-
mates out of 30 possible coefficients. Similarly, among the Southeast Asian
countries, 12 of 42 are significantly different from zero. Interestingly, only 3
(of 84) coefficients across regions (excluding those from the United States)
are statistically different from zero; these are the propagations from Chile
to Korea, from Chile to Thailand, and from Korea to Mexico. This con-
firms, quite strongly, the common wisdom that the propagation of shocks
across countries was concentrated within geographical regions.

Table 6.9 shows the standard deviations of the coefficients, which are ob-
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tained from the bootstrap. One appealing fact from table 6.9 is that the pre-
cision of the estimates depends on how severe the country was affected by
the crises.

For example, Argentina, Brazil, Hong Kong, Malaysia, Mexico, Korea,
and Thailand were either the originators of the crises or the main countries
affected. The standard deviations for these estimates is 0.063. On the other
hand, U.S. estimates are less precisely estimated; the average standard devi-
ation is 0.1366. The reason for this outcome is the way the identification
problem is solved: the heteroskedasticity is the identifying device. The qual-
ity of the estimation, and thus its precision, depends on how large the het-
eroskedasticity is. The larger the shift in the variance of that country, the
better-estimated the coefficients of the propagations from that country are.
The increases in volatility in emerging markets are almost an order of mag-
nitude larger than those from the United States (or Singapore), which is
why those standard deviations are smaller.

Finally, in table 6.10, the quasi–z-statistic was computed. Even though
the test of significance was implemented by looking at the distribution, it is
informative to calculate the ratio of the average bootstrapped distribution
to the standard deviation because the conclusions of both procedures are
similar, and this one is much easier to implement. The inconvenience is that
the z-statistic tends to overestimate the significance of the coefficients.

For example, if a 90 percent confidence interval is used (as was the case
with the bootstrapped distribution) then more coefficients are significant
under use of the z-statistic than use of the bootstrapped distribution. In
table 6.8, there are 32 out of 182 significant coefficients; using the z-statistic,
47 would have been significant. It is important to mention that all the co-
efficients that are significant under the bootstrapped distribution are also
significant using the z-statistic. On the other hand, if a 95 percent confi-
dence interval is used as the criterion on the z-statistics, then 31 coefficients
pass the test. The coefficient that loses significance is the transmission be-
tween the United States and Peru.

At first glance, Chile has as many significant coefficients as the United
States. Does this mean that Chile is more important than the United States
in these data? Certainly not. What this does mean is simply that those co-
efficients are estimated with more efficiency. To answer the question of im-
portance of countries, however, a different exercise must be performed. The
interpretation of the coefficients requires a variance decomposition (per-
formed below). This is the correct measure to evaluate the relative impacts
of countries and shocks in this model.

Finally, the patterns shown by the coefficients estimated in matrix A im-
ply unconditional correlations that are relatively large. What are the expla-
nations underlying them? In this interpretation, it is important to remem-
ber that these coefficients are the combination of several possible channels
of contagion. The question, then, is what are the possible explanations

Contagion: How to Measure It? 307



T
ab

le
 6

.1
0

z-
st

at
is

ti
cs

 o
f A

E
st

im
at

es H
on

g
T

he
U

ni
te

d
C

ou
nt

ry
A

rg
en

ti
na

B
ra

zi
l

C
hi

le
K

on
g

M
al

ay
si

a
M

ex
ic

o
P

er
u

P
hi

lip
pi

ne
s

Si
ng

ap
or

e
K

or
ea

T
ai

w
an

T
ha

ila
nd

St
at

es
V

en
ez

ue
la

A
rg

en
ti

na
2.

98
3.

91
0.

85
1.

47
2.

79
1.

20
1.

38
1.

75
0.

56
0.

71
1.

37
3.

91
0.

47
B

ra
zi

l
3.

42
3.

59
1.

11
0.

25
2.

06
2.

46
0.

67
1.

67
0.

88
0.

87
1.

15
2.

78
1.

35
C

hi
le

1.
78

1.
94

1.
38

0.
99

0.
64

0.
97

1.
39

1.
46

0.
59

1.
01

1.
18

3.
32

0.
70

H
on

g 
K

on
g

1.
06

0.
43

0.
71

0.
33

1.
05

2.
18

1.
62

4.
52

1.
95

1.
29

1.
61

0.
57

0.
90

M
al

ay
si

a
0.

94
0.

52
0.

78
3.

65
1.

29
1.

74
0.

94
1.

58
2.

16
0.

91
1.

73
0.

32
1.

20
M

ex
ic

o
2.

67
1.

83
2.

85
1.

33
0.

63
2.

06
1.

14
1.

93
2.

11
1.

02
0.

88
2.

89
0.

52
P

er
u

0.
61

0.
72

2.
50

0.
99

0.
89

2.
05

1.
16

0.
45

1.
00

0.
80

0.
84

1.
93

1.
17

T
he

 P
hi

lip
pi

ne
s

1.
32

0.
94

1.
04

1.
39

0.
94

1.
47

0.
75

3.
53

2.
66

1.
38

2.
40

1.
23

0.
48

Si
ng

ap
or

e
0.

87
0.

95
4.

47
2.

89
2.

72
0.

83
0.

84
1.

82
0.

26
0.

82
1.

89
1.

71
0.

99
K

or
ea

0.
87

1.
03

2.
49

0.
98

0.
83

1.
04

1.
50

1.
13

1.
53

1.
63

2.
29

2.
68

1.
15

T
ai

w
an

0.
46

0.
64

0.
75

1.
15

1.
09

0.
82

1.
27

1.
09

0.
97

0.
98

0.
84

1.
31

0.
90

T
ha

ila
nd

0.
49

0.
67

2.
66

1.
08

1.
54

0.
55

1.
81

1.
90

2.
53

1.
65

0.
84

1.
19

0.
74

U
ni

te
d 

St
at

es
1.

40
1.

49
1.

70
1.

14
0.

33
1.

46
1.

32
1.

47
1.

35
1.

50
1.

27
0.

57
1.

47
V

en
ez

ue
la

0.
95

0.
53

4.
04

0.
46

0.
35

0.
62

1.
59

1.
44

1.
73

0.
92

1.
57

0.
86

1.
40



behind them? Later in this section, a partial structural model is provided
using the analysis of the importance of trade and regional variables.

Vulnerabilities. The GMM procedure also provides an estimate of the sen-
sitivity of countries’ stock markets to common shocks. These coefficients
are identified only up to a normalization, and in this particular case, the
U.S. elasticity was chosen to be equal to 0.1. The results are shown in table
6.11. The first column corresponds to the point estimate. The second col-
umn shows the standard deviation computed from the bootstrapped dis-
tribution. The third column is the z-statistic, calculated as before.

As was claimed in the introduction, the common shocks represent
changes in risk preferences, liquidity shocks, etc. Note that all coefficients
(except the one from Hong Kong) are larger than 0.1, suggesting that
emerging economies are more vulnerable to common shocks than the
United States. For example, Argentina, Brazil, and Mexico are close to four
times more vulnerable than the United States to the same common liquid-
ity shock. Even though this pattern is quite informative, it is impossible to
reject the hypothesis that the estimates are all equal to zero.

Because the coefficients estimated are difficult to interpret, the next sub-
section—rather than studying their aspects—analyzes a variance decom-
position. First, the proportion of the variance explained by the common
shocks versus idiosyncratic shocks is analyzed, and later, the proportion of
the variance explained by each country within the idiosyncratic shocks.

Variance Decomposition: Common versus Country-Specific Shocks. The
variance decomposition indicates the relative importance of the common
shock in each of the regimes and countries. Thus, the analysis of vulnera-
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Table 6.11 Vulnerabilities (estimates of �)

Country Point Estimate Standard Deviation z-statistic

Argentina 0.39 0.26 0.84
Brazil 0.41 0.35 1.05
Chile 0.34 0.14 0.97
Hong Kong 0.09 0.10 0.60
Mayalsia 0.27 0.22 0.87
Mexico 0.44 0.28 0.88
Peru 0.52 0.25 1.01
The Philippines 0.35 0.14 1.02
Singapore 0.38 0.34 0.90
Korea 0.68 0.32 1.02
Taiwan 0.30 0.22 0.71
Thailand 0.64 0.19 0.94
United States 0.10
Venezuela 0.55 0.28 1.06



bility can also be studied in this context. Moreover, given the interpretation
of the common shock as liquidity or risk preferences, this disaggregation
can be useful to understand the relevance of those shocks in the explanation
of the recent crises.

The variance decomposition was estimated by calculating the total un-
conditional variance per regime and comparing it with the implied uncon-
ditional variance, assuming that the common shocks do not exist. The pro-
cedure is as follows: Using the estimated coefficients and variances in each
regime, the unconditional covariance matrix is estimated using equation
(15). Then the same equation is estimated, but �z\t is set to zero. This is the
unconditional covariance with only idiosyncratic shocks (in other words,
without common shocks). In table 6.12, the ratio between the variance of
each country explained by idiosyncratic shocks alone to the variance when
common shocks are included. This procedure is repeated for each regime.

Three remarks can be extracted from the table. First, notice that the
United States is almost unaffected by common shocks (surprisingly, Venezu-
ela is also equally unaffected by common shocks). In all three regimes, close
to 90 percent of the variation in U.S. stock returns is explained by idiosyn-
cratic shocks. This does not mean that liquidity shocks or risk preferences
are unimportant in the United States. What it does mean is that the common
component of these shocks can be described mainly as idiosyncratic shocks
to the United States. Therefore, in this exercise, the common liquidity shock
not affecting the United States is the one that is being evaluated.

Second, the high-volatility regime includes a larger proportion of com-
mon shocks: the average decomposition during the high-volatility regime
implies that 74 percent of the variation is explained by idiosyncratic shocks.

310 Roberto Rigobon

Table 6.12 Variance Decomposition (percentage explained by idiosyncratic shocks)

Variance Decomposition

Country Low Medium High

Argentina 89.4 78.8 75.0
Brazil 94.0 88.6 85.5
Chile 92.0 83.7 80.8
Hong Kong 73.4 65.4 57.6
Malaysia 71.5 72.4 64.4
Mexico 86.8 77.5 75.1
Peru 92.6 83.9 81.2
The Philippines 77.4 67.1 49.4
Singapore 72.6 56.8 51.1
Korea 89.2 84.1 89.6
Taiwan 98.1 95.3 87.3
Thailand 72.1 60.8 53.2
United States 95.8 92.7 89.0
Venezuela 97.8 93.3 97.1



This should be compared with 86 percent, which is the average of the idio-
syncratic-shock explanation during the low-volatility regime. This pattern
suggests that during the recent crises a component common to emerging
markets contributed to the comovement across stock markets. As will be
seen below, this stylized fact is even stronger in bond markets.

Third, during the high-volatility regimes, the countries having the largest
component of common shock were the Asian countries. Surprisingly, for
the Latin American countries the change in the common component is
small from the low- to high-volatility regimes.

Variance Decomposition: Country Idiosyncratic-Shock Contribution. The in-
terpretation of the matrix A coefficients is more easily understood in a vari-
ance decomposition exercise. Table 6.13 computes the proportion of the
idiosyncratic variance of each row country explained by the country shock
column. The total idiosyncratic variance is calculated as A–1�εA	–1. To com-
pute the contribution of country j shocks on the other countries, all ele-
ments of �ε (except �ε, jj) are set equal to zero. Table 6.13 presents the ratio
between the diagonals of these two matrices for each country.

The table does not include standard errors on the variance decomposi-
tion, and its interpretation must be taken cautiously. However, it has inter-
esting patterns. The reading of the table is as follows: The row country is the
variance to be explained, while the columns indicate the shock that is ana-
lyzed. For example, Argentinean shocks explain 68 percent of the idiosyn-
cratic variance of Argentina, 18 percent of the Brazilean variance, and 19
percent of the Mexican variance.

Two remarks are worth mentioning. First, note that in more developed
markets (the United States and Hong Kong) the majority of the variance is
explained by each country’s own shocks.

Second, most of the variation per regions is explained by regional idio-
syncratic shocks. For example, 73.6 percent of the variation of the Latin
American countries is explained by their own regional shocks, 23.0 percent
is due to shocks to Asian countries, and 3.4 percent is due to U.S. shocks.
On the other hand, 71.0 percent of the volatility in Asia is due to Asian
shocks, 18.1 percent is due to Latin American shocks, and 10.9 percent is
due to U.S. shocks. In the particular case of the United States, 80.5 percent
is accounted for by U.S. idiosyncratic shocks, while 12.5 percent and 7.0
percent are explained by Latin American and Asian shocks, respectively.

Estimating the Importance of Trade. The final exercise is to explain the co-
efficients from the A matrix by trade and regional variables. Thus, an eval-
uation of the strength of these channels of contagion is performed in this
section.

The additional data collected are the following: Information on trade is ob-
tained from Feenstra’s World Data Flows. The trade share is computed as the
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average trade share of the countries in the 1990s. Information on distance,
border sharing, and belonging to the Latin America (LA) or Southeast Asia
(SEA) dummy is also included in the regression. The left-hand side represents
the point estimates from matrix A, and the regression run is the following:

�i , j � c0 � c1LA � c2SEA � c3TRADEi , j � c4BORDER

� c5 log(DISTANCE) � εt

It is likely that this regression has heteroskedasticity because the A coeffi-
cients were estimated with different degrees of precision. Therefore, a GLS
was estimated in which the covariance matrix of the coefficients obtained in
the bootstrapping was used to weight the regression. In table 6.14, the re-
sults are shown.

Note that TRADE is almost significant and with the correct sign: high
trade share tends to imply a larger contemporaneous coefficient. The point
estimate is 0.33 with a standard deviation of 0.17. This estimated will be
compared with the one obtained in the bond regression.

The estimates on distance are also (almost) significant and with the cor-
rect sign. Surprisingly (at least to the author) is the fact that the regional
dummies are not statistically significant. The R2 is quite low even though
the F-test shows that the regression is significant as a whole. Therefore,
trade, although it has some explanatory power on the coefficients, has only
a limited role in explaining most of the contemporaneous relationship
across countries. Future studies should extend the present analysis to pro-
vide a better understanding about the transmission mechanism across stock
markets. These results, however, contrast with the findings from the bond
market; this is the topic that follows.

Bond Markets

The data on bond markets are restricted to the period between April 1995
and July 1998. However, the estimation methodology is the same as in stock
markets. In figure 6.2, the volatile regimes are shown (determined with the
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Table 6.14 Explaining A-coefficients

Variable Coefficient Standard Error t-statistic Prob.

C 0.504718 0.162908 3.098 0.002267
TRADE 0.333628 0.169129 1.972 0.050104
log (DISTANCE) –0.032304 0.01664 –1.941 0.05382
BORDER –0.018185 0.058949 –0.308 0.758069
LA 0.36155 0.057056 0.633 0.527122
SEA –0.020357 0.056898 –0.357 0.720934
R2 0.06632
Prob (F-statistic) 0.03241

Notes: See text for explanation of variables.
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procedure highlighted earlier). In this case, there are 526 observations in the
low- to medium-volatility regime, 268 in the medium-volatility regime, and
41 in the high-volatility regime. (Notice that the high volatilities occur dur-
ing the Hong Kong crisis and in June 1995.23)

Contemporaneous Transmission Mechanism. In table 6.15, the results from
estimating matrix A are shown. The diagonal is omitted and the sign of the
coefficients have been changed so they can be interpreted directly as the
right-hand-side elasticities. The table should be read as before: the row
country (Argentina) is contemporaneously affected by the column country
(Mexico) by the coefficient 0.37.

Those coefficients that are statistically significant at the 90 percent confi-
dence interval are in boldface type. As before, the distributions and the
mass below zero are obtained by bootstrapping, using the same procedure
as the one described above.

Several lessons can be extracted from the table. First, notice again that
the United States is unaffected by any Latin American country. Observe
that not only are the coefficients not significant, but the point estimates are
very small. This was not imposed in the estimation procedure, but our pri-
ors would have indicated that indeed this should be the case.

Second, bond market participants agree that the two most important
countries in the sovereign bond market are Argentina and Mexico. The
bonds from these two countries are generally used as benchmarks to define
prices for other countries. The results from table 6.15 confirm this common
wisdom. Mexico affects all Latin American countries in the sample except
for Ecuador, while Argentina significantly influences all countries in the re-
gion except for Peru and Venezuela.

Third, the United States has an important impact on Latin American
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23. In June 1995, the rescue package was under way, and good news about Mexico was re-
leased; its access to international financial markets was renewed. Thus, laughter is also conta-
gious.

Table 6.15 A Estimates

United
Country Argentina Brazil Ecuador Mexico Panama Peru Venezuela States

Argentina 0.33 0.18 0.37 0.04 0.02 0.19 0.11
Brazil 0.20 0.14 0.51 0.06 0.12 0.18 0.47
Ecuador 0.36 0.28 0.20 0.12 0.35 0.44 0.62
Mexico 0.21 0.22 0.10 0.07 0.11 0.29 0.19
Panama 0.26 0.25 0.02 0.46 0.29 0.44 0.73
Peru 0.38 0.13 0.23 0.43 0.15 0.09 0.61
Venezuela 0.40 0.07 0.06 0.35 0.26 0.10 0.32
United States 0.03 0.07 0.01 0.04 0.04 0.01 0.02



countries. These data were constructed to reflect the country risk premium
(in the first stage, the indexes were regressed on U.S. ten-year bond rates).
Hence, the fact that the U.S. coefficients are positive and significant indi-
cates that the country risk premium in these countries increases with U.S.
interest rates. In other words, the pass-through on international interest
rates is greater than 1 (see Frankel 2000).

Finally, notice that the coefficients are similar to those obtained from the
stock markets. Even though a direct comparison cannot be made because
the samples are very different, it is informative to concentrate on a couple
of countries:

1. The Mexican coefficient in the Argentinean equation, for example, is
0.37 here and 0.23 before. Both estimates are statistically different from
zero, but their difference is not. The Brazilian coefficient in the same equa-
tion is 0.33 here and 0.26 before.

2. Before, Mexico significantly affected Argentina, Brazil, and Peru;
here, the same three countries (and two others) are affected. The regulari-
ties across the two exercises is worth further exploration.

In table 6.16, the standard deviation of the coefficients is shown. Note
that even though the standard deviations of the U.S. equation are quite
small, the estimates are not statistically significant from zero. Therefore, the
reason for the lack of significance is not the need for precision. As opposed
to the stock market case, there is no further pattern among the precision of
the estimates.

In table 6.17 the quasi–z-statistic was computed. As before, the statistic
tends to overestimate the significance of the estimates. For example, if a
single-sided 90 percent confidence interval is used (as was the case with the
bootstrapped distribution), then more coefficients are significant. In table
6.15, twenty out of fifty-six coefficients are significant; using the z-statistic,
twenty-six would be significant. Again, all the estimates that are significant
using the bootstrapped distribution are also significant with the z-statistic.
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Table 6.16 Standard Deviations of A Estimates

United
Country Argentina Brazil Ecuador Mexico Panama Peru Venezuela States

Argentina 0.11 0.09 0.13 0.06 0.04 0.11 0.11
Brazil 0.13 0.09 0.15 0.07 0.08 0.12 0.16
Ecuador 0.18 0.15 0.15 0.14 0.13 0.21 0.25
Mexico 0.12 0.13 0.10 0.08 0.09 0.13 0.16
Panama 0.17 0.19 0.05 0.21 0.18 0.19 0.20
Peru 0.21 0.12 0.13 0.18 0.14 0.10 0.22
Venezuela 0.14 0.08 0.06 0.15 0.09 0.09 0.18
United States 0.04 0.08 0.03 0.06 0.05 0.03 0.03



The size of the test is incorrect, but if a coefficient is not significant assum-
ing normality then it will not be so using the small sample distribution.

Before explaining the coefficients with trade and regional variables, the
next subsections examine the vulnerability coefficients and the variance de-
composition.

Vulnerabilities. The second set of coefficients estimated from the structural
equation (10) are the elasticities to aggregate shocks. The coefficients are
identified only up to a normalization; thus the United States was equated to
0.1. In table 6.18 the results are shown. The first column corresponds to the
point estimate, in which the coefficients with mass above zero larger than 90
percent are highlighted in bold. The second column shows the standard de-
viation computed from the bootstrapped distribution. The third column is
the z-statistic, calculated as the ratio between the point estimate and the
standard deviation.

Before discussing the coefficients is important to clarify what is, in this
case, the interpretation of the shock zt. In these data, the unobservable com-
mon shocks are (as before) changes in risk preferences, liquidity shocks, etc.
However, these shocks also include shocks to other countries that are not
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Table 6.17 Z-statistics of A Estimates

United
Country Argentina Brazil Ecuador Mexico Panama Peru Venezuela States

Argentina 2.95 2.09 2.84 0.74 0.59 1.72 0.98
Brazil 1.50 1.53 3.43 0.92 1.53 1.54 2.95
Ecuador 1.98 1.88 1.32 0.84 2.74 2.14 2.51
Mexico 1.78 1.66 1.03 0.86 1.17 2.27 1.17
Panama 1.54 1.33 0.41 2.23 1.67 2.36 3.63
Peru 1.85 1.16 1.85 2.38 1.09 0.87 2.79
Venezuela 2.94 0.85 1.06 2.35 2.86 1.16 1.77
United States 0.59 0.83 0.50 0.68 0.87 0.32 0.65

Table 6.18 Vulnerabilities (estimates of �)

Vulnerability

Country Point Estimate Standard Deviation z-statistic

Argentina 0.15 0.11 1.32
Brazil 0.29 0.17 1.72
Ecuador 0.17 0.26 0.65
Mexico 0.36 0.17 2.14
Panama 0.60 0.29 2.08
Peru 0.57 0.26 2.17
Venezuela 0.31 0.17 1.86
United States 0.10



included in the sample, in particular, all the Southeast Asian countries.
Therefore, the common shock aggregates all these disturbances, and the co-
efficient is the average response of the countries in the sample to those
shocks. This implies that, unfortunately, these estimates cannot be directly
compared with those obtained for the stock markets.

An interesting aspect of table 6.18, however, is that the estimates of all
countries are larger than the U.S. coefficient. Again, it is impossible to re-
ject the hypothesis that the coefficients are the same as the U.S. one,24 but
they share a pattern similar to the ones obtained from the stock market
data.

Variance Decomposition: Common versus Idiosyncratic Shocks. Instead of
concentrating on the vulnerability coefficients, it is better to compute the
common-shock contribution to the variance. The variance decomposition
is estimated as before: The predicted unconditional variance in each regime
is computed by using the estimated coefficients and variances; then the pre-
dicted variance assuming only idiosyncratic shocks is calculated; and fi-
nally, the ratio between these two variances is calculated for each country.
The results are reported in table 6.19.

The objective of this exercise is to evaluate the relative importance of
common shocks across regimes. Given the range of the data (mainly cover-
ing the Southeast Asian crises) and the interpretation of the common
shocks in the bond market (mainly SEA as well as liquidity and risk-
preference shocks), it should be expected that the contribution of these
shocks increases during the high-volatility regimes more than in the stock
market case. This intuition is confirmed by the results: In the low-volatility
regime (excluding the United States), idiosyncratic shocks explain an aver-
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24. Remember that the test performed in the table is to determine whether the coefficient is
different from 0, not from 0.10.

Table 6.19 Variance Decomposition (percentage explained by the
idiosyncratic shocks)

Variance Decomposition

Country Low Medium High

Argentina 50.13 43.48 17.28
Brazil 67.18 53.41 30.36
Ecuador 57.34 40.66 24.30
Mexico 66.30 52.42 31.47
Panama 78.94 65.48 46.27
Peru 79.07 69.67 41.49
Venezuela 66.46 51.65 28.93
United States 99.98 99.94 99.90



age of 66.49 percent of that variation. During the medium-volatility regime,
they explain 53.82 percent, which reflects a small drop in the importance of
idiosyncratic shocks. In the high-volatility regime, the contribution of idio-
syncratic shocks falls to 31.44 percent—less than half of their importance
during the low-volatility regime.

Additionally, observe that the United States is almost unaffected by com-
mon shocks. In all three regimes, more than 99 percent of the variation in
U.S. interest rates is explained by idiosyncratic shocks. This is in sharp con-
trast with the emerging-market countries, where the common shocks always
explain at least 20 percent of the variation.

An interesting comparison between the variance decompositions of
bond and stock markets is that the relative importance of the common
shocks in this data is significantly larger than in stock markets. However,
this comparison should be made with caution.

Variance Decomposition: Country-Idiosyncratic Shock Contribution. We re-
peat the other variance decomposition for stock markets. Again, we are in-
terested in improving the interpretation of the coefficients in matrix A by
looking at the contribution of each shock to the total idiosyncratic shock
volatility. This is important, because by looking at the coefficients directly
one could draw some misleading conclusions. For example, in table 6.15,
the coefficient from the United States to Mexico is nonstatistically signifi-
cant. Does this means that U.S. interest rates have no explanatory power on
Mexican interest rates? The answer is no.

In table 6.20, the results from the variance decomposition are reproduced
for the bond market. Note that U.S. interest rates explain a sizeable pro-
portion of the idiosyncratic shocks in each of the Latin American countries
in the sample. Indeed, the United States explains as much variance in Ar-
gentina as in Mexico, even though one of the coefficients is statistically sig-
nificant and the other is not.

From the table can be extracted the conjecture that countries whose ex-
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Table 6.20 Variance Decomposition (percentage explained by each country shock in the total
idiosyncratic shock variance)

United
Country Argentina Brazil Ecuador Mexico Panama Peru Venezuela States

Argentina 24.2 10.4 11.0 10.2 7.5 10.4 4.8 21.4
Brazil 3.9 8.8 6.8 0.1 2.5 29.6 23.2 25.1
Ecuador 0.8 6.0 12.1 8.8 9.6 15.8 15.9 31.1
Mexico 2.9 17.4 8.7 15.7 15.1 11.6 7.4 21.1
Panama 3.9 6.2 13.7 0.3 38.5 12.9 5.5 19.1
Peru 2.4 4.4 19.4 9.0 2.9 12.8 17.8 31.3
Venezuela 1.6 7.2 11.9 13.3 8.7 15.0 7.0 35.4
United States 0.7 3.7 0.5 5.9 3.9 8.4 0.0 76.9¡



change rates are fixed to the dollar (Argentina and Panama) tend to have
larger proportions of their own variance explained by their own idiosyn-
cratic shocks. This does not seem to be the case for the other countries in the
sample. Additionally, if the variance decomposition is used as a measure of
the pass-through of interest rates, these results suggest that countries with
strong fixed regimes have a smaller pass-throughs. Another interpretation
is that the pass-through is the same across all countries but that the volatil-
ity of the fixed exchange rate countries is greater.

Further research should look at the patterns arising from this estimation
and should offer not only theoretical explanations, but more conclusive ev-
idence.

Estimating the Importance of Trade. The last examination of the data is a
consideration of how much trade can explain the coefficients of matrix A.
The procedure is to run a simple linear regression in which the coefficients
are explained by trade between the two countries, their distance from one
another, and a dummy representing whether they share a border. The in-
formation about trade is the same as before.

Again, the coefficients on the left-hand side are estimated with varying
degrees of efficiency; in this regression there exists heteroskedasticity that
could produce the wrong standard deviations. Therefore, from the first step,
the covariance matrix of the estimates is used to estimate a GLS.25

In table 6.21 the results from the estimation are reported. First, note that
the coefficient on TRADE is significant and with the correct sign. More-
over, notice that the coefficient is 0.449, which is close to the one reported
for the stock markets (0.333). The coefficient on the distance is equally sig-
nificant and with the correct sign. One difference between this regression
and table 6.14 is that here the border dummy is very significant. However,
the coefficient seems to suggest that it goes in the wrong direction.
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Table 6.21 Explaining A-coefficients

Variable Coefficient Standard Error t-statistic Prob.

C 1.098510242 0.24084432 4.561 5.99E-05
TRADE 0.448457005 0.19432761 2.307 0.027045
log (DISTANCE) –0.091464254 0.02850499 –3.208 0.002852
BORDER –0.262485462 0.06064281 –4.328 –0.00012
R2 0.749
Prob (F-statistic) 0.000246

Note: See text for explanation of variables.

25. If the covariance matrix is not used and a straight OLS is estimated, the point estimates
are close to the ones reported, but the standard deviations are larger. In that regression, only
the constant is statistically significant.



More important is the fact that these three variables explain almost 75
percent of the variation of the coefficients. This is in sharp contrast to the
results obtained from the stock market exercise.

6.6 Future Research

The question of how to measure contagion is far from answered. Never-
theless, there has been plenty of research in exchange rates, interest rates,
and stock markets. The results are not conclusive, but suggestive: propaga-
tions are relatively stable trough time, and trade and regional variables pro-
duce a sizeable explanation of the observed comovement. The results in this
paper confirm these two views, but more must be done.

There are, however, other aspects of contagion that have not been ex-
plored with the same intensity. Indeed, these are areas in which there is hope
that some of the inconveniences of the price data can be overcome. The fol-
lowing is a set of questions that, in my opinion, the contagion literature
must address; (they are arranged according to my own opinion of their im-
portance and are of uncertain feasibility, but clearly this is almost a random
order).

6.6.1 Pattern of Correlations

One unstudied aspect of contagion is the pattern of correlations across
different instruments. In particular, the correlation among bond markets
returns is twice as large (on average) as the one on stock markets, which is
double the one that exists among exchange rates.

As far as I know, this fact has been reported in only two papers: First,
Kaminsky and Reinhart (2000) compute the principal components and
show that the proportion explained by the first component is larger in bonds
than in stock markets. Second, in an earlier paper with Eduardo Fernandez
Arias (Arias, Haussman, and Rigobon 1998) we reported this finding by
simply looking at the correlations. As was mentioned in the previous sec-
tions, if the variances of bond and stock market returns are different, then
both the correlation and the principal components estimates are biased.
However, the results in this paper confirm this finding. It is the case that the
coefficients and unconditional correlations across bond markets is larger
than in stock markets. In order to provide some evidence I concentrate on
Argentina, Brazil, Mexico, Peru, and Venezuela, which are in both data
sets. The correlations among these countries, implied by the unconditional
variance regime, are documented in table 6.22.

First, note that the correlations increase with the regimes, as should be
expected by the increase in variance implied by the crises. Nevertheless, the
correlations obtained in bond markets are an order of magnitude larger
than those from stock markets. Remember, this is the predicted correlation
given the A and � coefficients.
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The previous discussion indicated that common shocks explain a sizeable
proportion of the changes in the pattern of correlations across time. It is
possible that this is also the explanation for bond prices. That question
could not be answered here because the two data sets are not comparable,
and the question is beyond the scope of this paper. However, with the tech-
niques illustrated here it is possible that an answered could be provided.

Future research should concentrate on developing the theories and em-
pirical tests to report and explain the stylized facts.

6.6.2 Measurement of Contagion, Revisited

Most of the discussion of contagion has concentrated on the simultane-
ous reaction across countries; thus, this has been the emphasis in this paper.
However, the propagation mechanism could take important lags not fully
captured in the A matrix, but in the �(L) coefficients.

Regarding the question of stability, the test highlighted in subsection 6.3.4
can detect changes in parameters of the lag variables. However, the measure-
ment of the propagation mechanism was estimated entirely by the contem-
poraneous relationship (most papers look at weekly, two-day, or daily effects).

In the model estimated in the previous section, all the dynamics from
�(L) have been disregarded. There are at least two reasons that the previous
literature (and this paper) did so: First, the pattern of contemporaneous
correlations is puzzling enough. Second, without estimating the simultane-
ous coefficients, there is no way of estimating economically meaningful lag
coefficients. With the methodologies highlighted above it is now possible to
estimate the contemporaneous relationship properly, and a closer look at
the dynamics of the propagation of shocks could be fruitful.

In this process, reporting the facts and understanding the dynamics be-
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Table 6.22 Unconditional Correlation per Regime

Stock Market Correlations Bond Market Correlations

Low Medium High Low Medium High

Argentina-Brazil 0.61 0.71 0.73 0.78 0.70 0.91
Argentina-Mexico 0.52 0.63 0.64 0.72 0.64 0.85
Argentina-Peru 0.25 0.46 0.44 0.46 0.40 0.82
Argentina-Venezuela –0.01 0.17 0.08 0.76 0.71 0.92
Brazil-Mexico 0.51 0.59 0.58 0.36 0.60 0.68
Brazil-Peru 0.30 0.44 0.41 0.33 0.43 0.74
Brazil-Venezuela –0.04 0.08 0.07 0.52 0.62 0.81
Mexico-Peru 0.33 0.51 0.46 0.36 0.42 0.70
Mexico-Venezuela –0.07 0.05 –0.02 0.57 0.61 0.79
Peru-Venezuela 0.02 0.13 0.15 0.31 0.30 0.76

Average 0.24 0.38 0.35 0.52 0.54 0.80



come aspects of the discussion of the propagation of shocks. Not only does
the estimation of impulse responses play a crucial role, but the definition of
sensible statistics over those responses will represent an important part of
the discussion of what should (or should not) be considered contagion.

6.6.3 Prices versus Volumes

A third important point is that most of the papers in the area examine
prices rather than volumes, mainly due to the easy availability of high-
frequency data on the former, and the almost complete unavailability of the
latter.

There have been some papers, however, that have studied the behavior of
quantities around the recent crises. The three most influential papers in this
are Eichengreen and Mody (2000); Froot, O’Connell, and Seasholes (2000);
Karolyi and Stulz (1996); and Stulz (1999).

Further research in this area is promising. Most of the theories of conta-
gion have strong implications about trading volumes and investor posi-
tions. In fact, the implications on prices are derived from those volume de-
cisions. Looking only at prices misses this rich set of implications. The main
limitation is data availability, but it should be clear that if prices encounter
important econometric problems, volumes will, as well.

6.6.4 Is the Propagation through the Means or the Variances?

Fourth, the question of whether the shocks are transmitted directly
through prices or the fall in prices reflects higher volatilities has not been
raised with the emphasis it deserves. The only paper (to my knowledge)
looking at these issues is Edwards and Susmel (2000). Unfortunately, they
have to make the necessary assumption to avoid the identification problem.
The models studied here have highlighted the direct propagation of prices,
but they could perfectly represent a reduced form of a volatility transmis-
sion model. So far, the procedures emphasized are unable to disentangle the
exact channel.

From the theoretical point of view, this is an important question. How
the propagation occurs has portfolio (as well as policy) implications. For-
mally, an extension of model 1, including lags and ARCH effects, is as fol-
lows:

A� � � �(L) � � � � �,

where

A � � �,

and where �ε, �� follow a bivariate ARCH:

–�
1

1
–�

εt

�t

yt

xt

yt

xt
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B� �t � ��(L) � �t � �ε(L)� � � � �,

where vε ,t and v�,t are uncorrelated, and the matrices A and B are not diago-
nal.26 A reflects the propagation through prices, whereas B explains the
propagation through variances. Because in the reduced form only condi-
tional covariance matrices are computed, there is in general no procedure
to separate A from B. Future research should develop techniques that could
deal with this question.

6.6.5 Nonlinearity and Distribution-Free Techniques

Finally, even though some of the procedures highlighted here are not de-
pendent on a particular distribution of the residuals, most of the papers as-
sume linear models and normal distributions.

A casual look at the data clearly indicates that either the distributions are
not normal, or the models are nonlinear (or both). There have been some
attempts to look at extreme realizations as a way to compare the behavior
of the statistical model in this situation with the model under normal cir-
cumstances; see Bae, Karolyi, and Stulz (2000) and Longuin and Slonik
(1995) for evidence. Further research in the area is clearly warranted.

6.7 Conclusions

The empirical question of contagion is one of the most difficult to arise in
international macroeconomics in recent years. The data suffer from the
worst of (what I call) macroproblems: simultaneous equations and omitted
variable biases. Moreover, the data also exhibit the worst problems of fi-
nance: conditional and unconditional heteroskedasticity, nonlinearity, non-
normality, and serial correlation.

This paper has several objectives. First, it provides a critical view of the tech-
niques used most frequently in applied papers of contagion. The first two sec-
tions discuss the biases and inconsistencies that arise in OLS, probit, and (es-
pecially) principal components and correlation estimates. In those sections, I
propose the use of two new techniques to deal with some of the problems, but
certainly further research should continue to improve the procedures.

The second objective of the paper is to use these new techniques in a
broad application of contagion (the original papers concentrated on very
special cases, or only on simulations). Section 6.5 tested for parameter sta-
bility and the importance of trade in bond and stock markets. Two surpris-
ing results in this section are as follows: (1) The parameters are stable in

�ε,t

��,t

εt

�t

�ε

��

�ε

��
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stock markets across very different crises and periods of time. However, the
propagation of shocks across bond markets was not stable during the first
quarter of 1995 and during the LTCM crisis. Both instances represented im-
portant liquidity shocks to bond markets. The parameter instability could
be either a change in the coefficient or a nonlinearity. With the current tech-
niques, unfortunately, no answer can be provided. (2) Regarding the impor-
tance of trade in explaining the contemporaneous coefficients, it was found
that trade and regional variables are (almost) significant and with the cor-
rect sign in explaining contemporaneous coefficients on the bond and stock
market returns. In the stock market, these variables explain only 6 percent
of the variation, but for bond coefficients they explain almost 75 percent.

Finally, this paper has discussed extensively a list of further areas of re-
search in which new stylized facts, new data, and probably new techniques
will have to be developed to gain a better understanding of how shocks are
propagated internationally.

Appendix A

Measuring the Channels under Simultaneous Equations
using OLS

Assume a simple setup in which

A� � � � �
where

A � � �.
Note that in this case the interrelationships among all variables are the
same. Assume we estimate yt � �1x1,t � �2x2,t. The OLS estimates of each of
the coefficients are (after a great deal of algebra):

�̂1 � � � �(1 � �)�ε

�̂2 � � � �(1 � �)�ε

where the difference in the estimates is

���2 – (1 – �)��1
���
�2��1�ε � �2��2�ε � ��1��ε

���1 – (1 – �)��2
���
�2��1�ε � �2��2�ε � ��1��ε
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1

–�

1
–�
–�

εt

�1,t

�2,t

yt

x1,t

x2,t

Contagion: How to Measure It? 325



�̂1 – �̂2 � (��1 – ��ε) .

Note that if the variances of countries x1,t and x2,t are different, then the es-
timates are also different. Moreover, the country with the higher variance
has the larger coefficient. In the limit, assume that the variance of x1,t goes
to infinity; then the estimates are

�̂1 � � � �(1 � �)�ε��2�ε

�

� ��2

�

�̂2 � � � �(1 � �)�ε ��

–
2�

(1

ε �

– �

��

)

2

�.

As can be seen, one of the coefficients is biased downward while the other
one is biased upward.

Appendix B

Stability Test on the Reduced Form

The structural model is

AXt � �(L)Xt � �zt � εt,

but the stability test is performed on the reduced-form residuals:

Xt � A–1�(L)Xt � A–1[�zt � εt]

� �(L)Xt � �t

A�t � �zt � εt.

The question is whether testing on the reduced form also is testing for the
parameter stability of the structural equation.

It should be obvious that if there is a change in A or � the test on the re-
duced form is detecting them. The question is whether changes in �( ) can
be found, as well. Assume there is a shift in the structural coefficients

A1Xt � �1(L)Xt � �1zt � εt for t � T

A2Xt � �2(L)Xt � �2zt � εt for t 
 T,

which implies the following reduced forms:

Xt � A1
–1�1(L)Xt � A1

–1�1zt � A1
–1εt for t � T

Xt � A2
–1�2(L)Xt � A2

–1�2zt � A2
–1εt for t 
 T

� (1 � �)�ε
���
�2��1�ε � �2��2�ε � ��1��ε
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Because in the VAR we are requiring the lag coefficients to be the same in
both samples, the actual estimate is an average of  A1

–1�1 and  A2
–1�2. Denote

this estimate as �̂. The residuals from the reduced form, then, will be de-
scribed by

�t �
[A1

–1�1(L) – �̂(L)] Xt � A1
–1�1zt � A1

–1εt for t � T

[A2
–1�2(L) – �̂(L)] Xt � A2

–1�2zt � A2
–1εt for t 
 T.

As can be seen, the residuals of the reduced form are a function of �i. For
simplicity, assume that A1 � A2, and �1 � �2. Then the covariance matrix of
the reduced form in each regime would be

�1 � �1XtX	t�	1 � A–1��z
1�	A	–1 � A–1�ε

1A	–1

�2 � �2XtX	t�	2 � A–1��z
2�	A	–1 � A–1�ε

2A	–1

�1
�
� A1

–1�1(L) – �̂(L)

�2
�
� A2

–1�2(L) – �̂(L).

Note that if the change in the covariance matrix is explained by the shift in
� (for example), then the change in the covariance matrix is

�� � �2XtX	t�	2 – �1XtX	t�	1.

It is unlikely that this transformation of coefficients would be less than full
rank, in the same way that the determinant is not necessarily less than full
rank when the coefficient A or � changes.
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Comment Enrique G. Mendoza

One of the most widely discussed issues in the context of the research and
policy debates that emerged from the emerging-market crises of the 1990s is
that of contagion. Yet, as the opening paragraphs of Roberto Rigobon’s pa-
per note, there is no consensus on the definition of contagion and even less
consensus on how to model it or how to think of its policy implications. This
analytical vacuum has not deterred empiricists from torturing financial
markets data until results in support of or against one form of contagion or
another can be obtained. In this context, Rigobon’s article is one of the
most thoughtful that the recent empirical literature on the subject has pro-
duced.

Rigobon begins with a true scientist’s approach and sets aside the ideo-
logical controversy on the definition of contagion so as to focus on two key
measurement questions at the core of empirical tests of contagion: First,
what are the international propagation channels by which shocks from as-
set markets in one country spill over into those of other countries? Second,
is the international transmission mechanism of shocks unstable during pe-
riods of crisis? These two questions are critical because the existing litera-
ture tends to evaluate whether there is contagion depending on whether the
propagation channels feature a certain set of fundamental variables, and on
whether during periods of crisis there is a sudden increase in the tendency
of markets to move together.

Rigobon’s paper evaluates whether the three econometric methods most
commonly used in the literature to address the above questions (linear re-
gression, logit-probit regressions, and tests of principal components and
correlation coefficients) are useful tools, given the serious statistical prob-
lems posed by the data used to conduct the tests. In particular, he explores
whether they are well-suited to handle the problems of simultaneous-
equation bias, omitted variables, and heteroskedasticity (conditional and
unconditional) that are pervasive in the data with which the methods need
to work. The paper shows clearly that none of the three methods can han-
dle these problems simultaneously, thus casting serious doubt on the results
reported in many existing empirical studies on contagion. Rigobon moves
on to propose his own robust estimation method and to develop its statisti-
cal foundation.

The objective of my comments is not to take issue with the method, but
to highlight the message of its results and to raise some issues that seem very
critical and yet are still unresolved by the development of a more accurate
method to test for something that remains undefined (i.e., contagion). My
interest in focusing on these controversial issues, however, does not under-
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mine either the significance of the flaws that Rigobon’s work has identified
in existing tests of contagion or the merits of the method he developed.

The paper uses daily returns data from equity and sovereign bond mar-
kets for several countries in Asia and Latin America and for the United
States, and produces four key results:

1. Volatility in equity and bond markets increases sharply during periods
of crisis.

2. Propagation parameters are stable during crises in equity markets but
not during those in bond markets (in the cases of the Mexican crisis and the
Russia/long-term capital markets [LTCM] crisis).

3. Unconditional correlations of returns across emerging markets are
generally high.

4. Trade and regional variables are important for explaining contempo-
raneous comovements in the returns of equity and bond markets, although
much more for the latter than for the former.

The flaws in the application of the three widely-used econometric meth-
ods that Rigobon identified in the empirical literature on contagion are not
disputable, and the robustness of the method proposed in the paper to deal
with the statistical problems posed by the data is also not subject to debate.
What is more controversial is the author’s interpretation of the scope of the
method and the message of the results. Rigobon’s paper stated as one of its
goals to try to measure contagion without defining it, but it is unclear that
he succeeded. The definition of contagion is difficult, if not impossible, to
separate from assessments of the econometric methods used to study it and
their ability to cope with the problems present in the data. Still, for the def-
initions and measures of contagion that have been adopted in several exist-
ing studies of the subject, this paper, and Rigobon’s previous work with
Kristin Forbes, raise serious issues with the validity of econometric tests
and propose effective ways to address them.

If the author’s position that one can proceed without defining contagion
is taken at full value, the interpretation one can give to the results is that
they shed light on important properties of the variance-covariance struc-
ture of asset returns across emerging markets, on the variables that deter-
mine it, and on its stability during crisis periods. Yet it is difficult to argue
that they help us understand or test contagion, unless a definition of conta-
gion is, after all, adopted. For instance, if contagion is defined as the crisis
instability of propagation parameters, then one can say that Rigobon’s
method is a statistically correct approach that measures, tests, and largely
rejects the existence of contagion.

The complex issues raised by the aim to study contagion without defin-
ing it explicitly emerge again when one tries to draw lessons from the results
on the significance of trade and regional variables in driving comovements
of returns. Does this mean that contagion is irrelevant? Or that contagion
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“unrelated to fundamentals” is irrelevant? Clearly, the answers to these
questions depend on how we define contagion. If it is understood to be co-
movement in returns driven by “nonfundamental” variables, and the only
fundamentals considered of relevance are trade and regional variables, then
once again the results reject contagion. However, this requires a very model-
specific notion of contagion.

The above issues also plague the rest of the empirical literature on conta-
gion, and Rigobon is right in that the definition itself varies widely from one
paper to the next. Some authors confuse contagion with correlation. For ex-
ample, the notion that, in the presence of nominal rigidities, a large devalu-
ation in one country could spark crises in neighboring countries that happen
to be competitors in export markets provides a reasonable channel of co-
movement, but it is one that it is very well understood and hardly worth be-
ing surprised about. The surprise, rather, was how little of this we observed.
Korea experienced several weeks of declining export volumes in the after-
math of the crises in Southeast Asia (despite its very competitive exchange
rate), mainly on account of a total loss of access to international credit mar-
kets, including the market of trade credits. Observations such as this favor
other commonly used notion of contagion as comovements driven by some
form of speculation driven by “animal spirits” or market psychology.

This notion of contagion originated in Keynes’s view of speculation as re-
sulting from assessing asset values, and economic prospects in general,
through “the activity of forecasting the psychology of the market,” rather
than through attempts to forecast “the prospective yield of assets over their
whole life” (Keynes 1936, 158–59). The problem with this Keynesian notion
is that, to make it operational, one needs an explicit economic model to iden-
tify precisely what is speculation or contagion, and what is enterprise. Once
this separation is made, contagion can be measured with familiar concepts
such as the excess volatility of asset returns or macroeconomic flows across
countries that is not explained by the fundamentals listed under “enterprise.”
Under this definition of contagion, it follows that contagion need not be cor-
relation. High correlation of returns does not necessarily indicate contagion
and contagion does not necessarily imply high correlation. Contagion is
model-specific. For instance, a theory of asset prices determines which vari-
ables are fundamental variables and how they enter into the determination
of equilibrium asset prices; and if the theory features contagion vehicles, it
can also determine what is to be measured as excess volatility. Economic
models with features like these do exist and typically require different forms
of asymmetric information and frictions in financial markets.

One example of a macroeconomic model of contagion was proposed re-
cently by Paasche (2001). He proposes a two-country extension of the
Fisherian-deflation model developed by Kiyotaki and Moore (1997). In his
setting, a small productivity shock in one country translates into an ad-
verse terms-of-trade shock for a neighboring export-competing country.
The neighboring country suffers a sharp adjustment in the current account
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and output, not as a result of the competition for the export market, but as
a result of financial frictions in the form of tightening collateral con-
straints. For an analyst looking casually at the data, trade and terms-of-
trade changes will be associated with these adverse developments, but the
channel of transmission is one of “excess volatility” inasmuch as it results
from effects of the terms-of-trade shock that are largely magnified by fi-
nancial frictions.

An example more related to equity markets follows from the work of
Mendoza and Smith (2001). They examine an open economy variation of
the model of margin requirements and asset-trading costs proposed by
Aiyagari and Gertler (1999). Here, households in a small open economy
trade equity with specialized foreign securities firms. Due to credit market
frictions, households face a margin requirement that limits their ability to
leverage their foreign debt on the value of their current equity holdings. For-
eign traders face portfolio adjustment costs, intended to capture the notion
that foreigners are at a disadvantage relative to domestic agents when trad-
ing emerging-markets equity. This disadvantage may result from informa-
tional frictions or from explicit institutional arrangements. In this setting,
an adverse shock such as a productivity slowdown or a sudden increase in
the world’s real interest rate may switch the economy into a state in which
the margin constraint becomes binding. Households must then fire-sell eq-
uity to meet their margin calls, but when they fire-sell equity they meet in
world markets with foreign traders that adjusts their portfolios slowly. As a
result, there is a sudden reversal in the current account and a collapse in eq-
uity prices below fundamental levels in the small open economy. The model
dictates exactly how much of the change in net foreign assets, equity hold-
ings, and equity prices is driven by these excess-volatility features, relative
to the amount accounted for by fluctuations in the “fundamentals” (which
is also pinned down exactly within the model).

The point of these examples is not to argue that they provide the models
of contagion we need to focus on. Instead, the idea is simply to show how
the Keynesian notion of contagion can be put to work in practice in partic-
ular economic models, and to note that the measure of contagion, the list of
variables that are included in the fundamentals, and the magnitude of ob-
served asset return comovements that fundamentals account for are all
model-dependent concepts. It seems, therefore, that studying the statistical
properties of the data with the adequate econometric techniques that
Rigobon proposes—but in the light of the predictions of a specific analyti-
cal framework that sets a definition of contagion and its appropriate mea-
sure—would be a very interesting project for further research.
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Discussion Summary

Sebastian Edwards raised a few questions on the estimates in matrix A,
namely, how the stock market (or bond market) returns in one country are
affected by returns in all other countries in the sample. In particular, he
pointed out two counterintuitive findings: First, the bond market returns in
Mexico were unaffected by the returns in the United States; and second, the
stock market returns in Chile did have a big effect on returns in most other
Latin American countries. This is surprising because, in practice, Chile had
capital controls during the sample period and a relatively small capital mar-
ket.

Linda S. Goldberg commented that the estimation of the importance of
trade in explaining the coefficients of matrix A through a simple gravity
equation–like regression is not as aggressive as other parts of the paper. She
suggested putting more structure in the regressions.

Aaron Tornell suggested using H-infinite robust estimation to get around
problems caused by nonlinearity of the specification or by nonnormal dis-
tribution. Nouriel Roubini suggested that the author investigate the relative
importance of trade and region in explaining the propagation mechanism.
Amartya Lahiri raised questions on geographical explanation for unstable
propagation parameters. Giancarlo Corsetti asked why the paper does not
use factor model directly.

Roberto Rigobon recognizes that the two empirical findings pointed out
by Edwards (namely, the nil effect of the U.S. bond market returns on the
Mexican stock market returns and the large effect of the Chilean stock mar-
ket on other countries) are different from our prior, and he promises to in-
vestigate it. In response to Tornell’s question, Rigobon said that linear tests
reject nonlinear specification.

Regarding Corsetti’s question, Rigobon said that the factor model is a
better specification in the case of heteroskedasticity, but not when the dis-
turbance is nonnormal.
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