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Annals of Economic and Social Measurement, 6/3, 1977

LOW PROFILE ECONOMIC POLICY WITH
GUARANTEED RETURN

B D. D. SWORDER*

When the system to be controlled is stochastic, it is usually impossible to select a control
policy which maximizes the utility function for all possible system realizations. There do exist
algorithms for synthesizing regulators with maximum mean utility and these are often used
even when other measures of system performance are more natural. Exclusive concern with
mean performance often masks the inherent variability found in the response characteristics
of stochastic systems.

This paper takes a djfferent approach and for a restricted class of. random parameter
linear systems provides a control policy which minimizes the worst possible cost of operation.
If a system must operate satisfactorily in a variety of different modes, such a policy gives
guarant eed performance without regard to the actual evolution of the system dynamics.

1. INTRODUCTION

The consequences of a specific economic program are often difficult
to predict when the program is initiated. It is common knowledge that se-
lecting a policy based on the continuation of extant conditions may yield
untoward results when there are exogenous changes in the dynamic struc-
ture of the system. Through failure to modify policy to match system en-
vironment, conditions that the analyst seeks to ameliorate may instead
be made worse.

One way in which the uncertainty that surrounds econometric mod-
els may be made quantitative is to employ a stochastic model of the eco-
nomic entity of interest. The sample functions of the model parameters
are selected to display the salient features of the uncertainties actually
encountered in depicting the system. A difficulty, immediately encountered
with this approach is that the utility function, which is sample function
dependent, no longer serves to order the decision policies. To pose a
meaningful problem, expected value of the utility is customarily used
performance index. Although this may yield analytically tractable
algorithms for finding the best policy, such an approach suffers from the
philosophical objection that concern actually centers on the performance
attained during a single period of evolution of the system rather than the
average performance over an ensemble of possible evolutions. In some
cases a more conservative, worst-case, approach to policy synthesis is thus
appropriate.

*Thjs research was supported by the National Science Foundation under Grant
GK-398 17.
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The use of "linear-quadratic" synthesis techniques creates subtle dif-
ficulties of a different sort. Policy derived using a quadratic utility func-
tion depends parametrically on the weights used in the performance index.
Choice of these weights is often subjectively based and particularly the
weights associated with control are hard to justify. Commonly, the
weights are made proportional to one over the square of the maximum
permissible value of the associated control input. Although this tech-
nique enables the analyst to deduce a policy which yields acceptable levels
of performance with permissible values of control, in many cases the po-
litical realities surrounding the use of the control variables may produce a
desire for less active policy when the performance degradation is not too
severe.

In this paper a linear-quadratic regulation problem is considered in
which the system model is subject to a stochastic exogenous influence. A
control policy is derived which minimizes the worst possible cost of sys-
tem operation. Of the many policies which provide minimax risk, that one
is chosen which requires least control effort.

2. PROBLEM DESCRIPTION

The system to be controlled will be assumed to be adequately de-
scribed by a linear, differential equation

= Ax + By
x(to) x0.

Equation (I) typically represents the equation of evolution of the devia
tions from a desired trajectory of a nonlinear system of equations which
delineate the behavior of the dynamic economic model, It will be assumed
that the analyst seeks to maintain x and v as close to zero as possible.
The specific measure of closeness will be quadratic. Define

= + v'v)dt.

The best feedback policy will be that choice ofv(t) as a function of (x(t), t)
which minimizes J.

It may happen that the analyst is uncertain about how the system
dynamics will vary with time. For example, if (I) represents the perturba
tion variables of a macroeconomic model of the national economy, the
state of the economy and hence the matrix [A,B}, cannot be known with
certainty for times very far into the future. Selection of the endogenous
variables must be made with an appropriate discounting of future events
of uncertain occurrence. Suppose

(I)

(2)
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[A(t),B(t)] = [A,B1] if r(t) = 1; i = 1./V
where r(t) is an indicator variable describing the dynamic state of the
system given in (I). To express the initial uncertainty about the behavior
of the process, r will be assumed to be a random process. In fact it will be
assumed that r is a Markov jump process with finite state space and
transition matrix Q;

(3) Prob(r(t + ) = I I r(t) = 1) =
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l+q11+O(i) i=j
q11+O(.) ij

If the elements of the Q matrix are constant, the residence times of r in
each state are exponentially distributed.

The stochastic model complicates the selection of good policy. The
observation will be assumed to be (x(t), r(t), t). The selection of the
endogenous variable at time t is contingent on the value of r at time t, but
only probabilistic information is available on how r will behave in the
interval [t, T]. Let r be defined on the probability space . Then the cost
function given in (2) is a random variable, J(w).

Since no feedback policy will minimize J uniformly, an analyst must
often content himself with minimizing E(J). While this may be a rational
course of action in some situations, such a policy does lead to sudden
changes in the closed loop dynamic behavior of the system. If r(t) is in a
favorable dynamic state in (I), the closed loop performance is very good.
Ifon the contrary r(t) is such that (I) is difficult to control, the closed
loop system may have very poor dynamic response. This is particularly
true when the expected lifetime in the disadvantageous state is expected
to be short. Since the performance index attaches importance to only the
mean of J, there is no explicit control over how big J may be.

There is another more subtle difficulty with the mean optimal policy.
The first term in (2) weights state deviation and the matrix Q can often be
justified by the importance accorded to deviations in different state var-
iables. The positive matrix , on the other hand, weights the size of the
endogenous variable. One common choice is

R(t) = diag(V .....V)
where km is the maximum permissible magnitude of the i'th endogenous
variable. Such a choice is very subjective. It encourages the Over use of
control through the endogenous variable in those dynamic modes not
requiring such external control to provide satisfactory performance. Po-
litical considerations often make it advantageous to use as small a value
forv as dynamic conditions permit. Generation of such a "low profile"
policy is the aim of this paper.
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It will be assumed that there is a worst dynamic state of operation
of (I). To be precise, it will be assumed one of the dynamic states w

N]issuchthat
(4) (A - A,)'K + K(AW - A1) + K[BIR'B, - BR'B]K

for all nonnegative symmetric K. As will become apparent later, the
matrix [A, B] is least favorable state of system operation.

Equation (4) appears to be rather technical, but it has a natural in-
terpretation in some special cases.

(a) If A = A1, condition (4) B11'B: BR'B
(b) If B = B1, condition (4) =A

If the two systems have identical A matrices, the less favorable system
has a smaller gain matrix (see 4a). If the gain matrices are the same, the
less favorable system has poles uniformly to the right of those of the more
favorable system (4b). It will be assumed that Q is such that all states of r
lead to w.

The basic problem can now be delineated. A policy v is sought which
minimizes the maximum cost; i.e.
(5) J(v* w*) = mm max J(v, w)

The minimum is taken over all decision rules, and the maximum is over
all sample functions or r.

3. SOLUTION ALGORITHM

The method of solution to this problem uses a well known result of
decision theory which states that if v* is a decision rule such that
(6) J(v*w) = Cforallw
and v is a Bayes rule with respect to some probability measure on , then
v is minimax il]. The measure with respect to which v is Bayes is termed
least favorable, and a decision rule satisfying (6) is called an equalizer.

An equalizer decision policy will first be constructed. Let K be the
solution of the matrix differential equation
(7) = AK - KA - Q + KWBW)'BKW

K(T) = 0

It is well known that K is the cost matrix associated with the optimally
controlled deterministic system satisfying r w.
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Suppose a decision rule of the form

v(t) = RBFx ifr(t) = i

is used in this problem, Direct calculation leads to the conclusion that

E {f(x'x + v'v)dt I x(t) = x, r(t) = r} = X'Kr(t)X

where

K1(t) = (A - BI B,F1)'k - k,(A1 - BIEB,F,.) - Q

FB1]'BF, +

K(T) = 0 1 = I,..., N

Let the FI} be selected in such a way that
(II) K1(t) Kjt) i = I,..., N
From (3)

= 0

To satisfy (II) then

- (A1 - Bfi[1F1)'K - K(AI - BRT1B;F) - FBIR'B;F,

= (A - BRBK)'K
- K(A - BBK) - KBR'BK

or equivalently

F,BIP'B1F1 - F;B1R-'B;K - KBIA-'B;F,
= (A1 - A)'K. - K(A - A) - KB'B,K

Completing the square on the left hand side of (12)

( - K)'B'B;(F, - K) = (A - A)'K + K(A - A)
- KB'BK + KBI-'B;K.

But K, from (7), and consequently (4) implies that the right side of
(13) is nonequative. Taking the nonnegative square roots in (13),

P = ± (BR'Bi)-"2[(AW - A)'K. - K(A - A1)

+ K(BIR'B; - BRB)K,]"2
If either of the values for F1 given in (14) are substituted into (8), a

decision rule is produced which has constant mean cost independent of r.
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The matrix F1 can be viewed as the gain of the policy, and (9) indicates
that E{J x, r can be made insensitive to r with a high gain (the positive
sign in (14)) or a low gain (the negative sign in (14)). This latter policy will
be referred to as a "low-profile" policy and its properties investigated.

The statement that (8) yields constant mean performance is not
sufficiently strong for the purposes of this paper. Let t,_1 be the (random)
time at which r makes the transition from ito i - 1. It was shown in [2]

that
VarJ = E {X(t.l )' K(t11i ) x(t1

) }

where
= K1(t.1) -

By selecting F1 according to (14)

zK(t) 0

and as a consequence
VarJ 0

Thus (8) yields not only a cost that has constant mean value independent
of r, but the realized value of the cost is independent of r with probability

one.
Since (8) has constant cost independent of w, it is an equalizer. To

prove it is minimax, it need only be shown that (8) is Bayes with respect to
a probability measure on . Let w0 be characterized by

(15) r(t,wo) w

Since (8) with F, K is the optimal solution to the nonstochastic prob-
lem satisfying (15), (8) is Bayes with respect to the measure assigning
probability one to w L' Thus (8) is minimax.

It is interesting to note that the policy given by (8) is not necessarily
admissible in a decision theoretic sense. The classical theorem on the
admissibility of minimax rules (see [1], Theorem 2.3) requires that the
support set of the least favorable probability measure be broad. The sin-
gular measure found to be least favorable here certainly violates the
broadness hypothesis.

4. AN EXAMPLE

To illustrate the mechanics involved in finding the low gain, minimax
controller for a stochastic system, consider the following problem. Sup-

fr(i0) w, (8) is actually extended Bayes. The conclusion of this section is still true

in this case (see [I], theorem 3.9).
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pose the system to be controlled is described by the scalar differential
equation

x=ax+v
x(0) = x0

The coefficient process a(t) is a Markov jump process with two possible
states

a(t) =
10; r(t) =

4; r(t) = 2
The state r(t) = I is absorbing. (q = 0) and the residence time of r in
state 2 is exponentially distributed with mean value 0.125.

The cost functional J is giveli by

J
=

(x2 + v2)dt

The mean-optimal control for this system was derived in [3] and is given
by

v(t) =
1-x; r= I
3x; r=2

Further

EIJIX0, r(0) = l = x
E{Jjxo, r(0) = 2 = 3x

Substituting (17) into (16) it follows that the closed 1oop, mean opti-
mal system satisfies the equation

x
1x r=l

x r=2
Although mean optimal, it is still true that

max J(w) = if r(0) = 2
0

From (4), the state r = 2 satisfies the criterion for being the least
favorable state. From (7) (using the positive stationary solution)
(21) K 8.12 = F2
From (14)

F1 = 8.IZ /8(8.l2)
= 0.10
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Hence, the "low profile" control is

1O.10x ifr = 1
L-8.12x ifr 2

The policy given by (22) is minimax;

max J = 8.12x2

The gain used in (22) is far higher in the "worse" mode than is that used
in (17). This stabilizes the system on all sample functions. The gain in the
"better" mode is decreased in (23). Since operation is permitted to take
place at increased incremental cost, a very low gain yields acceptable per-
formance. The guaranteed performance (23) is inferior to the mean per-
formance given in (18), but (23) is an assured level of performance rather
than an average over the set of all possible system realizations,

4. CONCLUSION

This paper presents a policy which employs a minimal expenditure
of energy to achieve acceptable performance. This policy makes perfor-
mance insensitive to the realization of the exogenous disturbance which
acts upon the system. The resulting system is inferior in average utility to
that derived using the policy derived in [3], but the uncertainty surround-
ing the value of J is eliminated. Although the performance index is path
invariant, the penalty associated with control utilization is a random
variable,
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