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DISCRIMINATION BETWEEN CES AND
YES PRODUCTION IFUNCTIONS

By A. C. Harviy

{ nier cortail avsumptions dircct esumetion of the paramcrers of Pf.mlu(u“” Narctions is o~
able. For the CES function. estmares of the pardmeters gy he obrained via the tinear ap-
-!"""""’”””” suggesied by """"’v"’-' rather ’hll"l ’{l‘.u\uz_g' « sonlinear estimation procedure. In
this paper it I3 shoun that “ similar uppm.‘\‘umluuul eXiNty for the '.s{I’."JIH’.’III(III;'Rt'l'llllI\llr
VES functian. ”‘“‘"“'f' unlike the “ppm‘”m”“.‘” ".“,. Il“j Brimo VES funciion. 1his has a
differemt form to the Kmenia approxumation Discrimination berween the iwo funcrion, i
sherefore possibie by the compreheinive Fotes u”fl the non-nesied procedure develuped by
Pesaran. Some empirical results are presetited which show thar the Pesaran 1e:1 gy,
Whole. mare effextive thau the Frew

an the

1. INTRODUCTION

In a recent article. Corbo (1976) has shown thut the approximation
suggested by Kmenta (1967) for the CES production function also pro-
vides a good approximatien to Bruno’s VES function. However the
Kmenta approximation cannet be justified for all VES production func-
tions' and. in fact. the more widely known VES form developed by
Revankar (1971) and Sato and Hoflman (1968} has an entirely different
Taylor series expansion associated with it. This suggests that it is possibly
to discriminate between this particular VES function and the CES func-
ticn on the basis of their Taylor series approximations. In this paper it is
shown how this may be done statistically by means of the Pesaran test and
the comprehensive classical b test: see Pesaran (1974). The probabilities
of arriving at correct decisions by these procedures are then computed for
aparticular set of data on capital and labour. and a comparison between
the tests is made.

2. APPROXIMATIONS TO CES aAND VES PRODUCTION FUNCTIONS
The CES production function is:
(1) Q= 7[(! =&)L + 6k ")

where Q0 Is output. A is capitai. L is labour and 7. 8. 7 and » are param-
eters. On dividing through by L and taking logarithms the rather more
tnvenient formulation

'Corbo (1976, p. 66} anpears toamply that all VES functions have similar properties,
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(2) log g =logy + (n - Dog 1.~ vy og(l - 4 & ok "y

inwhichg = O/t and &k = A7 is obtained.
The approximation suggested by Kmenta ivolves Carrying oug 4
Tavlor series expansion around 7 - Otovield

(3) log g ~logy + (v - Dylog /. + rdlog k.. (0.5 gl - :S)H()g IS
The Bruno production function is:
(4) O = 3[6h "4 (1 = s)A "oy Dy

As Corbo shows « Taylor series expansion for (4) vields an - expression
having exactly the same form as the Kmenta approximation However
this isvperhup; not too surprising since the CES function is 3 special case
of the Bruno function. 1t is obtained from the Bruno function by setting
m = 0 and hence (1) may be regarded as being ‘nested” within {4)." On
the other hand the CI:S function is not nested within the Sato-1offmay .
Revankar VES function,

(5) () - 7‘[\-”!-6‘))[/_ & (/‘ _ I)A'}rbp.

This function only reduces to the CES form when the parameter. g, in the
CLS function takes certain specific values. lor example it n = 0in equa-
tion (1) the Cobb-Douglas function is obtained. and (5) reduces to the
Cobb-Douglas form when p = 1.

Dividing the Sato-Haetfman/Revankar function through by £ and
taking logarithms gives the equation:

(6} logg = logy + (v = Dlog 7. + »(1 - op)log k

+ voplog(l + (p - Dk
A Taylor series expansion around p = 1 then yields
(7) log g ~ logy + (v - NMog L + »(l — apylog & + op(p - k.

Thus a term in & replaces the term in {log k] in the Kmenta approxima-
tion. If data on K and /. are available a regression® run on the basis of
equation (7) will give indirect estimates of all four parameters. v §. 4 and
p.n the VES function. Furthermore the hypothesis that the appropriate
functional form is Cobb-Douglas may be tested by i test of significance on
the regression coeflicient of k. This is analogous to the test based on the

2Mizon (1974) gives a generq

tl discassion of the concept ol nested by patheses in the
context of production functions,

3 The circumstances under which such regressions on production functiony are justitied
are well known and will not be dealt with bere,
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Kmenta approximation® which has been widely used,
Griliches and Ringstad (1971).

One final point about equation (7) is that itis of the same form as the
transcendental® production function proposed by 1 ovell (1963 lfcncu
Lovell’s VES function may be viewed as an approximation to the Sato-
Hoffman/Revankar form.

for example, by

3. DISCRIMINATION BETwErN CES anp VES Funcrons

Since the lincar approximations to the CE§ and Sato-Hoffman /
Revankar VES functions are non-nested, an appropriate statistical lcch’-
nique for discriminating between them is cither the Pesaran test or the
classical F test. These procedures may be described for the general ¢
follows.

Suppose we have two possible regresston models. which may be
written in conventional matrix terms as )

ds¢ as

(8) Hl:}' = .‘D‘ -+ G,y ~ x\(()(ffl)
) Hyy = Zv + . u, ~ .‘\"(().o_%.’).

where X and Z arc assumed to be fixed in repeated samples and are not
nested within each other. ic. all columns of ¥ cannot be obtained from
those of Z and vice versa. The problem is 1o obtain a test on the specifica-
tion of H, which has high power against alternatives belonging to A, .

The classical procedure consists in forming a comprehensive model
which includes both H, and I, as special cases. The hypothesis H, is then
reiected if the variables which appear in the comprehensive model but not
in H, are jointly significant according to the ¥ test.

An alternative test procedure has been developed by Pesaran (1974).
Let 57 and &3 be the estimated variances from H; and H, respectively:
let b denote the OLS estimator of 3 and let ey be the vector of OLS re-
siduals in the regression of Yhon Z: let ey be the vector of OLS residuals
in the regression of e,, on Y and fnally let &3, = &} + n'eye,, where n
is the sample size. Then defining 7, = (n/2) log (63/61) and ¥, = (51
#n)ehien it can be shown that the statistic

(10) Ny =T/
is asymptotically N (0, 1y when H, is true. A significant negative value of

Nyimplies a rejection of 11 in Favour ol H,.

4Dcspilc the ditferent forms of (3) and (7) some computations by the author shm\Ax‘h:'l
the Kntenta t test may still have a high probuability of rgeeting the Cobb-Douglas specifica-
tion when the true model is VES. Conversely the i test in (7) may have @ high power when
the true model is CES. See Harvey (1976).
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The above procedure can be applied to the problem of disurimin;ning
between CES and VIS functional forms .b_\' using tvhc. Favlor series 4p-
proximations, (3) and (7). The comprehensive model is simply

Y=o+ wlogl; + aslogk; + ag(logk,)

+ (15‘(, + U, o= |

and the F otest reduces to a ttest, irrespective of whether the CES or
VES form is taken as the null hypothesis. Thus the CES form s rejected
if' @s. the OLS estimate of as, is significantly different from 2210, while
VES is rejected if a4 is signiticant.

Two N statistics are calewlated: one taking CES as the nul) hypothesis
and the other taking VES as the null hypothesis. As with the ¥ test there
are four possible outcomes to the procedure: both specifications may be
rejected, neither may be rejected or one may be rejected while the other
1S not.

4. EMPIRICAL RESCLTS

The relative performances of the two tests described in the previous
section were evaluaied for a particular data sct. The data, obtained from
Pyatt and Stone (1964) consisted of observations on capital and labour for
22 British industries in the year 1960, and although it is perhaps of limited
value to fit production functions across mdustries, it was felt that these
figures provided a reasonably good reflection of the kind of data sets fre-
quently encountered in production function studies. The same data were.
in fact, used by Mizon (1974) in his study except that he took 24 indus-
tries. However, we preferred to omit two industries {"Coke Ovens’ and
"Mineral, Oil and Refining’) since these both had very high capital /labour
ratios compared with the other industries and it was felt that the 22 ob-
servation set, having a higher degree of multicoltinearity, was probably
more “typical’.

CES and VES fuactions of the form (2) and (6). respectively, were
considered with additive disturbance terms, independently and normally
distributed with mean zero and constant variance. o, Suitable values of
o® were chosen as follows. Denoting the n x | vector of expected values
of the dependent variable, in deviation from the mean form, by r,. we
may define the quantity

(ll) Ri =1 - 02{”71)}-:-‘_"’ + U'z)ﬁl.

2 - - . .
Although R is not the expectation of R% it mav still be regarded as an
indication of an “average™ value of R? since, provided n 'vpy, s

boundedas n — « i may be shown that plim R? = R%: see Koerts and
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TABLE
Progasittens Toal CoMPRENENSIY (k) asp Prsaras (N1 Brggs
REjbCr CFS ane VES Wiy FRUE Mopg; gy ks
(3 =027 =108 - g9

6.83 0.67 050 S, w
Prob. of e
rejecting 92 316 L6635 175
VES N 245 610 899 ax
Prob. of .
I'CjCC[ing I3 054 {0583 060 07
CES N 073 06K 048 215

TABLE 2
PROBABILITIES THAT CoMPRENENSIVE (F) aNn Prsapax (N) Tesrs
Resrcr CES anp VES Wiy Trier Mobee 1s VS '
tp = 0270 = 1.0, R < (.99,

3 0.83 0.67 ¢.50 200
Prob. of - )
rjecting F 0%0 REY 927 104
CES N 203 595 990 288
Prob. of
rejecting  F 050 055 103 063

VIS N 103 058 035 180

Abrahamse (1969. p. 135 6). The value of R was then sel equal to 0.99,
and the appropriate value of ¢? was obtained by solving (11). Suitable
values of the parametcrs (required for calculating y,) were obtained from
a regression on the original data, but in all cases constant returns to scale
were assumed. ie. v = |

Table I presents results for the N and F tests when the true model s
CES, whiic Table 2 gives the corresponding results for a VES model. Aj-
though there are four outcomes to the test procedure. only the prob-
abilities of rejecting each of the two models are given. Very little is lost
by doing this (c.f. the presentation in Pesaran, 1974). since the prob-
abilities of rejecting both models are very small in all cases; on the other
hand a certain amount is gained in clarity of presentation.

The F test probabilities were computed exactly by the method of
Imhof as set out in the Appendix. The N test probabilities® were esti-

3A one-sided test was assumed. This is in contrast to Pesaran (1974). who in his cmpiri-
cal results used a two-sided N test “in order to imake the two tests comparable.” The ra-
tonale bebind this is somewhat unclear
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mated by Monte Carlo methods. Four hundred independent replicationg
were llSL:d in cach case. Thus the 95° confidence interval for an eg;.
mated probability of 0.50 is approximately 050 + 0.05. whijle for 3
probabtlity o 0.101tis 0.10 ¢+ 0.03.

The results in the Tables are given for four difterent valueg of the
elasticity of substitution. ¢. In thie VIS case ¢ depends on £ as

(12) d =1+ (1 -68p) ' (p -~ k.

However. by setting & equal to the average vilue over all observations,
and treating 6p as a fixed parameter (equal to | — § in the CES funclion)_
an average elasticity of substitution. ¢. was defined together with a cor.
responding value of p.

The results in both tables indicate that when ¢ = 0.67 or 0.50. the N
test is clearly superior to the F test in that it gives a much higher prob-
ability of rejecting the incorrect model while having a probability of
rejecting the true model which is not significantly larger (and for ¢ =
0.50 it appears to be smaller) that that of the I° test. However as ¢ in.
creases the greater ‘power” of the N test is only achieved at the expense
of a high probability of rejecting the true model. Nevertheless its per-
formance is still better if the criterion adopted is the proportion of correct
decisions, i.e. incorrect model rejected and true model aceepted. As pre-
viously indicated this proportion is. in all cases. only marginally below
the estimated probability of rejecting the incorrect model.

Overall the results indicate that statistical discrimination between the
CES and Sato-Hoffman/Revankar VES functions is possible. However
the tests are unlikely to be effective unless the variance of the disturbance
has a relatively small value. The figures presented were obtained with
R} = 0.99 and corresponding calculations for R} = 095 gave con-
stderably lower ‘powers - see the results for the F test set out in Table 3.

TABLE 3
PROBABILITIFS THAl COMPREHENSIVE (F) Tests REJECT CES anb VES
WHEN: 1) TRUE Mobgr Is CES. (b) Trus MobEL Is VES

(R2 = 0.95)
Modui pore 0.83 0.67 050 200
Prob. of
() rejecting 050 031 LIAR] KN
{h) CES 057 104 ERR 060
Prob. of
(1) rejecting 058 100 82 073
{b) VES 030 031

060 052
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5. CoNCLUSION

The Sato-Hofflman/ Revankar VES production function has o Taylor
series expansion which is different to the Kmenty approximation l‘l~;c‘d ,:),
ine CES function. This essentially involves adding o term iy £ rulhn.-r lh-u;
[log k)’ to the Cobb-Douglas equation. Statistical discrinmination bclwc:.n
the two functians on the basis of these linear approximations iy possibv]c
by means of the Pesaran test and the comprehensive Fiest, botp of which
are designed to deal with discrimination between ‘ron-nested” hypotheses
The empirical results presented indicate that, although the Pesaran (c_;;l.
requires rather more computation than the ¥ test, its performance js bet-
ter in the sense thatit gives a higher proportion of correct decisiony.

University of Kent ar Canterbury

APPENDIX

Calculation of the Power of the F Tes:

Consider a model of the forn;
(A.l) y=AXg + X8, + n.
where X and X, are n x k and n x p matrices respectivelv. 2 and B, tre
respectively & x 1 and p x 1 vectors of parameters. and y is an n x|
vector of disturbance terms which are assumed to be normaily and inde-
pendently distributed with mean zero and constant variance. In the clagsi-
cal I test the hypothesis that 8, = 0 is tested. When p = 1 this is simply
the conventional ¢ test.

The test statistic, which follows an  F-distribution with {p.
n - k — p)degrees of frcedom under the null hypothesis. may be written

e — e, n—k—p

'
ekbpclwp 14

(A.2) w =

where e and ¢; , , are the vectors of OLS residuals obtained from regres-
sing y on X and [ X: X, ] respectively.
Now suppose the true model is

(A.3) y= X8+ /f+0, o~ N(0.g%1).

where 8,15 an r x 1 parameter vector and X, is an 1 x r (fixed) matrix.
with 0 < r < k. the columns of which are contained in X. Each element
inthe n x 1 vector fis a (possibly nonlinear) function of a set of fixed
ebservations. some of which may be observations in the corresponding
row of X,.
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Now
¢ =My = MX, 8 + fH )= M(f vy = M
where 3 = 1 - Y(4'y) 'y Defining My in asimilar manner we have
Gap = My v = M, ¢
Thus (A.2) becomes

(M — M, ¢ o :!\' A

w = -

M P

and this is a quadratic form in independent normal variables sipce
O~ N(fall).

If ¢, is the appropriate signiticance point for g (one-tailed) F e
with a Type 1 error of size « and g3 =1+ q,-p/n - k _ ») the power
of (A.2) when (A.3)1s the true model js

(A.4) I — Prob. {¢"(M — qadi, )¢ < 0).

Now let the ith characteristic rootof (M - g*Af, .») be denoted by
A;and let P be an orthogonal matrix of corresponding characteristic vec.
tors. Denote the ith element of 4! P’fby 7,. Expression (A4) may then
be rewriiten

| - Pr()b.{z Awl < O}.

i=l

where the w,’s are independent non-central Chi-square variates with one
degree of freedom and non-centrality parameters. i, This probability
may be evaluated by the method of Imhof as described in Koerts and
Abrahamse (1969, p- 81 2. 15560). From the point of view of computa-
tion it is important to note that n — & - p ol the characteristic roots are
equal to (1 — ¢*. & are zero and the remaining p take a value of unity:
.l a similar result in Koerts and Abrahamse (1969 p. 141 3)

Received Jenuary 1977
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