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Annals of Economic end Social Measwrement. 6/4. 1977

MODELS OF RAILROAD PASSENGER-CAR REQUIREMENTS
IN THE NORTHEAST CCRRIDOR: AN APPLICATION
OF SESAME

By RoperT FOURER* JuDITH B. GERTLER,T
AND Howarp J. Sikowizt

We consider a general problem of deternining optimal car allocations given a fixed schedule
and predetermined denmands. Requirements for car movemients are modeled as a set of lincar
constraints having @ transshipment structure, and alternative linear objectives are formulated
Various optimization 1echniques are developred for one or mare objectives. and properties of the
sets of optimal solutions are demonstrated. The model and optimization techmques are applied
1o projected rail service in the Northeast Corrider ¢ Busten, New York. Philadelphia. Washing-
ron: derivation of a svhedule and demands are explained. and results of a mamber of eptimiza-
tions and analyses are displayed.

in 1973 Congress passed the Regional Railroad Reorganization Act.
which became law on January 2, 1974, This complex picee of legislation
called upon the U.S. Department of Transportation (o iIMprove passenger
rail service in the Northeast Corridor, which extends from Boston,
through New York and Philadclphia, to Washington, D.C. Subscquent
planning for the improved scrvice included engineering studies, financial
analyses, and demand projections [t.2.6].

The research described herein began as an attempt to determine the
minimum numbecr of passenger cars required to serve the Northeast Corri-
dor, given previously-determined schedules and estimates of demand. This
is naturally viewed as a problem of constrained optimization. When the
constraints imposed by demand and operating practices were expressed
mathematically as cquations and inequalitics, the problem was secn 10 be
an instance of a fairly gencral transshipment structure, as described in
Section 1 of this paper. Such a structure is not specific to the Northeast
Corridor, or to the movement of train cars (an application to locomotive
requircments, for example, is given in §1.7). In addition, the constraints
may be regarded as a fairly simple linear program, to which a fteasible
solution is casily found by standard mcthods.

Further analysis revealed that minimizing cars is but onc of several

Models :and computer routines deseribed in this report were developed it the Computer
Research Center of the Nutional Bureiu of Economic Research, under contract DOT-TSC-
11791 from the Transportation Systems Center. U.S. Department of Transportation.

*National Burcaun of Economic Research, Computer Rescarch Center for Economics
and Management Science, 375 Technology Square, Cambridge. MA 02139,

+Transportation Systems Center, U S. Department of Transportation. Kendall Square.
Cambridge, MA 02142,
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destrable ohjectives. and that cach such objective may be v
measure of cost ol a particular kind: opcraiing cost per mile. for Cxample,
or capital cost. Conscquently, it was neeessary to develop an approach 1.
minimizing the “total cost” associtied with two or more objectives, give,
a knowledge of the costs” relative magmtudces. This work s deseribed
Scetion 2: much of it is applicable to hncar programs generally, Mercove
the desired optimal solutions can be found by usc of a standarg “parng-
metric” algorithm commonly cmployed in lincar programming,

The remamder of this paper describes how the transshipment modej
was used te investigate rail service in the Northeast Corridor. For pur-
poscs ol demonstration. a hypothetical case representing service on busy
day in 1982 was chosen as a basis for o nalysis. Base data for this case were
estimated by the means described in Scetion 3. These data Were meorporg.
ted in an appropriaic instance of the model, which was solved and ang-
Ivzed by use of NBER's SESAME interactive lincar programming systen
[:’4,7.8] and supporting computer routines. Details of this base run. gng
some numerical results. are given in Section 4.

tewed ay g

The base run was not intended as a thorough analysis of 198 Corni-
dor scrvice. but as a test case (o prepare the wayv for further anmalyses,
Compilation of the base data. for example. led to development of teeh-
niques that are now available for more extensive studics. Output from the
base run revealed some special propertics of the Corridor nctwork which
in turn might be exploited in subscquent models (see. for example, §4.3
below),

In addition, application of the model requires an integrated set of
interactive computer routines. These were developed and tested for the
basc run and arc available to others via the NBERNET and TYMNET
networks. Instructions for usc of the computer routines arc given in [$),

I, FORMULATION OF TiE MonEs

[tis desired to allocate “cars™ of some sort in a transport network,

subject to a fixed schedule and known demands for service, This scetion
specifics the nature of such

a nctwork and the requirements that must be
met by any fcasible alloe

ation of cars. To keep the discussion reasonably
concrete, the model is described in terms of the railroad neiwork that
motivated it

Aninformal statement of ihe problem occupics §1.1. The constraints
are then formulated more preciscly, first as a transshipment netwoik
($81.2 1.3), then as a linear program (§1.4) to which the simplex method
My be applied.

The remainder of the scction is concerned with extensions of the
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original problem to modsl corridor service with turnaround delays (§1.5).
upper limits on train sizes (§1.6), and locomotive requirements (§1.7).

§$LY Swatement of the Constrainis

A uniform fleet of passenger cars provides railroad serviee to 2 set of
cities. Serviee is offered by means of a set of scheduled “trains™, cach com-
prising one or more cars and running between a given pair of cities. At
any given time, cach car in the fleet is cither part of some currently run-
ning train, or is sitting in storage at one of the citics.

Two requirements constrain the size and deployment of the fleet: a
fixed schedule, and known demands for scheduled trains.,

Fixed schedule.  The schedule lists all trains that depart in a chosen
schedule-period (a day, for example). During the schedule-period. every
scheduled train must be run, carrying one or more cars.

Itis assumed that cach schedule-period is followed immediately by
another, identical schedule-period. Moreover, the same service is to be
provided in every schedule-period: that is, the same sehedale must be run,
with the same allocation of cars to citics and trains.

Each ¢ntry in the schedule specifies a eity of departure and a city of
arrival, and corresponding departure and arrival times. In general, a train
may arrive during the schedule-period (e.g.. day) of depurture, or during
any subscquent period. For simplicity, however, it is assumed here that
every train arrives either in the same period. or at an earlier time in the
next period. (If the schedule-period is a day. this just says that @ train
arrives cither the same day that it leaves, or the next day: and that every
trip lasts less than 24 hours.)

A car that arrives at city ¢ at time 7 is free to leave ¢ in any scheduled
train that departs at 7 or later. (Stopover delays at the arrival city  to dis-
charge and board passengers, for example - are considered part of the pre-
ceding trip, and are reflected by adjusting the arrival time in the schedule
accordingly.)

Demands.  For cach scheduled train there is a known dernand which
must be met; hence there is a minimum number of cars required in cach
train. A train may be larger than its minimum size, however, if circum-
stances require that extra (deadhead) cars be shifted from one city to
another.

Table 1 shows a schedule and demands for a simple 2-city instance of
this problem. Total demand from A to B requires 22 cars, while only 20
cars are required from B to A; consequently. in any feasible soiution at
least 2 extra cars will have to be deadheaded from B to A so that the stock
of cars at A does not run out.
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FABLE 1

SCHEDUTE AND DEMANDS FOR A Stiptk 2-Cy INSIasce o 1y
Car-AlLOCATION ProBUES, THE SCHEDUTE-PERIOD 1v A DAy,
Nk riar e bast Tras FrROM B Leaves ar 2300 Bach Day

- AND ARRIVES AT 200 7HE NEXT Day,

(ll\ Ao LII\ B

Cars required

Leave A Arrive B Demand (75 pass./ear)
10:00 13:00 398 6
12:00 13:00 177 3
16:00 19:00 ;:'\9 4
18:00 21:00 3587 7
21:00 24800 121 >

CITY B w Lll\ A

Cars required

Leave B Arrive A Dem: md (75 pass.sear)
9:00 12:00 209 3
11:00 14:00 280 4
15:00 18:00 373 s
19:00 2200 421 6
23:00 200 90 2

§1.2. Formulation As a Transshipment Network

The train schedule 1s conveniently represented as a directed network
whose unit of flow is one car. Nodes of the network correspond to the
potential arrival or departure times at cach city. Ares represent the move-
ment or storage of cars over time.

More specitically, partition the schedule-period into 7 uniform inter-
vals beginning at times 0.1, ... 7 — 1. (I the schedule-period s a day,
time 7 couid be the beginning ol the 2th minute of the day.) Desceribe cach
train in the schedule by a departure city ¢, a departure time ¢ € 0. ... .
7 — i}, anarrivaleity ¢’ and an arrival ime ©” €40, ... 7 — I}, Clearh
the schedule may be made as precise as desired by choosing 7 sufliciently
large.

Detine one node in the network for cach time in cach city, I there are
qcitics and 1440 partitioning times. for example, the network has 4 x 1440
nodes.

Connecet the nodes by ares of two ty pus. representing cars i storage
and cars in trains. respectively:

Storage arcs.  Forcach city. run un are from the node for cuch time !
to the node for the next time, (1 + 1) mod 7. The flow along such an aie
represents cars held in storage at the city during the interval that begins at
time £ (The last time, 7 - 1 s connccted to the first time, 0. since the last
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interval of any schedule-perind is followed immediately by the first inter-
val ot the next period.)

T'rain arcs. For cach scheduled train, run an are from the node rep-
resenting the city and time of departure to the node for the city and time
of arrival. Fiow along this arc represents cars moving from onc city to
another in the scheduled train.

Flow around the network is constrained by the nature of the prob-
tem, in the following ways:

Conservation of flow.  Since the fleet size is fixed, the number of cars
in storage during interval 7 at a given eity must cqual the number in stor-
age in the interval immediately before, plus the number that arrived at
time ¢, fcss the number that departed at . Equivalently, the net flow at
every node must be zero: the network is built entircly of transshipment
nodcs.

Nornegativity.  All flows must be nonncgative. This amounts to re-
quiring that trains cannotl move backwards in time.

Integrality.  Since cars arc indivisible units, all flows must be inte-
gral.

Satisfaction of demand. The fiow on each train arc must be greater
than or equal te the number of cars nceded to meet demand for the train.
Demand thus places a lower limit on cach arc. These lower limits are what
force a positive flow around the network: they play the role of sourecs and
sinks in more conventional transshipment-network formulations. {Indecd,
an equivalent transshipment network without positive lower limits is
casily constructed. One adds an appropriate sink for cach departure at a
node, and a source for cach arrival)

The network equivalent of Table 1's example is shown in Figure 1.

§1.3. Reducing the Network

If no trains arrive at or depart city ¢ at time ¢, the node for ¢ at ¢ is
connccted to the rest of the network by only two storage arcs: an incoming
arc from the previous time, and an outgoing arc to the following time. The
flows on these two arcs must be the same in order to satisfy the conserva-
tion constraint. Consequently. onc may remove the node and replace the
two arcs with one. Other flows in the network arc as before, and rernain
feasible if they werc previously so: hence this transformation leaves the sct
of feasible solutions essentially unchanged.

When all such “inactive” nodes arc removed, there remains @ net-
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Figurc I A network equivalent of the sample problem. The day is divided into 7 = M iater-
vals. so that there is a node at cach city at cach hour

work of minimum size for the problem. Figure 2 shows a reduced network
ol this sort, tor the problem of Figure 1. When the number of intervals 7 is
quite large (the number of minutes in a day, for instance), reducing the
network to active nodes is imperative if the network js to be kept to a
manageable size. All cases run in the studies discussed later in this paper
employed reduced networks.

It is possible to formulate the reduced problem dircetly, in terms of
finite subsets of active times, one subset for cach city, chosen from the
interval [0,7). To promote simplicity of notation, however, the results of
the following scctions are expressed in terms of unreduced networks.

SV, Formudation as Linear Constrains

Any network of the sort Just outlined may be deseribed by an equiv-
alent hncar-programming (LP) model. To cach arc of the network there
corresponds a structury) variable, whose activity equals the are's flow.

Conservation consiraints on flows become linear cqualities in the van-
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12000

Figure 2 The reduccd equivalent of the netwerk in Figure 1.

ables, while common LP technmiques can mplicitly guarantee nonnega-
tivity, integrality, and satisfaction of demand at cevery feasible basic solu-
tion.

To express the LP formally, define the following sets:

C the set of cities

T=1{0,...,7 -1} the set of intervals into which the schedule-
period is divided

SClHet,e't) cECECHET 1 ETic = '}
the schedule: cach element represents a train
that leaves city ¢ at time ¢ and arrives at city
catt’

Represent the demands by
d.[t,t'} >0 the smallest (integral) number of cars

required to meet demand for train
(e, 0’y & S



Ixpress the nodes of'ihe network as:
G [1] torll e €~ Cor e T
The directed ares representing storage ol unused cars are then

WU t): @ fr) ~Q.[(r + 1)mod 7] foralle € Cr e 1

The ares representing movement of cars in trains are
XA’ Q] @, ('] forall(c,t,¢', 0y € §

Dcfine an LP structural variable corresponding to cach are, and rep-
rescnting the flow over the are:

u (1] flowoverU lr] foralle & Cr & F
X[t '] flow over Xofe o' Horall (e 1, ¢ 1) € §
The constratints en network flow arc expressed as follows:
Conservation of flow:

u (= 1)ymod 7] + Z Neelthit]

(€l1.enEs
= ut] + Z Kooy [0,05] toralle & Cre g
(c.r.cr). 1) S
Satisfaction of demand.:
X [tt'] > d o [r.1'] forall{c.r. e’y e §
Nonnegativity:
uft] >0 foralle € Crer
Integrality:
ut] mtegral ferallee Crer
X [ '] integral forall¢c. e’y € §

Nonncgativity of the x variables is insured by satistaction of demand.

Given thatall d,.-[t.1'] arc integral. a fundamental property of trans-
shipment problems guarantecs iat cvery basic solution to the above LP is
anintegral solution. Conscquently. a feasible solution to the above prob-
lem-—and henee a feasible allocation of cars to trains may be determined
directly by application of the (phase 1) simplex method. Given any hnear
objective function, the simplex method wild also find an optimal feasibie
allocation.

Both satisfaction of demand wnd noncgauvity express simple lower
bounds on the variables. Constramnts of this sort arc castly handled im-
plicitly by the simplex method, Henee only the conservation-af-Now equa-
tions need appear explicitly as rows in the 1P

374



§V.5. Corridor Service and Turnaround Deluys

A corridor ™ is a set of cities related by a dircctional ordering that is
complete. transitive, and irreflexive. In other words. the citics of a corridor
may be dndexed ¢, ¢y o000 ¢, such that ¢ s inthe given direetion frons ¢
thand only if 7 > j. The Northeast Corridor s a corridor in this sense,
ordered by the relation “north of ™

Every train tna corridor must run in the ordering direction. or in the
opposite dircction. For convenicence. these directions are here called north
and south: they could just as well be cast and west. or clockwise and
counterclockwise. Trains are thus labeled northbound or southbound. ac-
cordmgly.

In the inital fornulation. stopover delay at the arrival city is implicit
in the schedule and. therefore, itis the same for every car in a train.
Within a corridor. however. it is reasonable to specify that the stopover
delay for a car that changes dircetion is some numbcer of intervals greater
than the delay for a car that continues in the same direction along the
corridor. Thus cars in a train from. say, Philadclphia to New York may
continue to move north. after a minimal stop. in a train from New York
to Boston: but cars in the Philadelphia-New York train that arc to be
taken off and sent back to Philadelphia are delaved in New York for a
somewhat longer time. A similar “turnaround delay™ is cncountered in re-
suming scrvice after one end of the corridor (say. Boston) is reached.

Turnaround dclays cannot be modeled by simply adjusting the
schedule because. in general, some cars i a train may continue in the
same dircction. while others are detached and turned around. A simple
and feasible approach. however. is to duplicate the original network.
creating two separate but similar parts: onc for nerthbound trains. and
one for southbound trains. Arcs connccting the two parts are added to
represent cars being turned around.

Specifically, partition the schedule into two scts S™ and $° of north-
bound and southbound trains. respectively. For the northbound trains.
construct a full network as before:

aNi) forallc ¢ C.t & T

(nodcs representing potential arrival and
departure imes of northbound trains)

UN{e): @[] — @F[(r + 1)wmod 7] foralce C.r e T

(ares representing unused northbound cars
in storage at cach city and time)

X[t} @Y} — @1’ forall {(¢c.t.¢'.1")y € SN
(arcs representing cars moving in northbound trains)
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In the same way. define a separate network for seuthbonnd trains:
a3 foralle ¢ Core - T
wppat) > @ + Hymod 1) foralle (- C,r ¢ T
o$C,lt.1): Qf’{[} - @.[1’] tarall (c.r.e’1") ¢° 8

Represent the number of intervals required to change a car's direction by
8. Connect the northbound and southbound networks by two sets of gres
that represent unused cars in storage that are being turned around:

UNSLe): @[] > @1 + 8) mod 7] foralle € C.re 71

(arcs representing formerly northbonnd cars. in
storage at time . that will be switched to run
south é intervals later)

WSN(): @3[e) > @M + Hymod 7] foralle & Cr e T

(arcs representing formerly southbound cirs. in
storage at ttme ¢, thit will be switched to run
north é intervals later)

The construction of these connecting ares gaarantees that northbound
cars reaching city ¢ at ime ¢ must wait at feast 8 intervals betore they can
be incorporated in a southbound train.

The constraints on this expanded network are analégous in every
respect to those on the original one: flow must be conserved at all nodes,
all flows must be nonnegative and integral. and demand must be satistied
along the XN and XS arcs. As before, the network has a transshipment
structure, and can be modeled by a lincar program all of whose basic solu-
tion arc integral,

For practical purposcs, one can apply the methods of this section ta
the reduced network of §1.3, to produce separate reduced northbound and
southbound networks having a reduced sct of connccting arcs.

The corridor model is not fundamentaily limited to the case of a
single, fixed turnaround delay. One could casily incorporate a set of delays
that vary with time, city, or dircetion. by making appropriatc changes to
the definitions of the U and U™ ares. Extensions of these methods might
also be applicd to scts of citics that are not corridors.

§1.6. Upper Limits on Train Sizes

The modcl developed so far insures only that cach train is allocated
cnough cars. One may also wish (o specify that it is not allocated too
many. For example, the number of cars in a train could be limited to twice
the number necded to meet demand. to keep toad factors at reasonable
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levels. Stations' platform lengths might also dictate some absolute bound
on train sizes.

Upper limits arc casily incorporated in the lincar programs ol §1.4 or
§1.5. Define

h  fe, ) > d.-e )

as the maximum feasible size of the train (¢, f,¢',¢') € 8. Then the con-
straints on the x variables in the lincar program ire augmented to

d|t ') < xet') < bt

forall (¢,1,¢°,t') & S.

Upper limits of this sort do not destroy the model's transshipment
structure. Hence all basic solutions are still integral, and the simplex
mcthod may be applied as before. Morcover, the augmented constraints
on the x variables are still simple bounds that can be handled implicitly
by the simplex method; the number of explicit rows in the LP is un-
changed.

§1.7. Modeling Locomotive Requirements

In general, the number of locomotives required to haul a scheduled
train depends on the number of cars assigned to the train. Since the num-
ber of cars may vary between feasible solutions, so may the number of
locomotives.

Bv judicious choice of upper limits A [£,2'] (§1.6), however, onc may
be able to restrict the size of each train (c,f,¢’,t') € § so that its re-
quirement for locomotives, e[t '], is fixed. Then the flow of locomotives
may be modeled in cxactly the same way as the flow of cars. One simply
replaces car demands d.[t,¢'] in §§1.1-1.5 by the locomotive demands
e..[t,t']. Upper limits on the numbcer of locomotives pulling cach train
may also be imposcd, in the manner of §1.6.

Any of the optimization techniques described in section 2 may be
applied to the locomotive-demand casc. Many of the results expressed in
terms of cars arc also meaningful in terms of locomotives.

Application of these ideas to locomotive requirements in the North-
cast Corridor is described in §4.7.

2. OBIECTIVE FUNCTIONS
A feasible sct of car allocations for the problem formulated in the
preceding section - if such a set exists—may be determined by application
of the simplex algorithm, phase 1. Given that a feusible allocation exists,
the next step is to scek an allocation that optimizes some functional in the
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x and u variables. This paper is concerned with functionals of one particy.
larly useiul and tractable sort: lincar objective functions related to costy,

' Minimizing cost is a natural obhjective for any pl:.umnllg mf)dcl, Since
seetion s network model, in particular, fixes the Tevel (\'! serviee and re-
quires that all demands be met, costis the principal cr!lcrlgn QI'- diffcrencee
between feasible allocations. In addition, certain classes of minmum-cosy
sohlutions may be characterized in particularly revealing wavs,

Lincar fimclimmls have a purely practical justification: they may he
minimized by straightforward application of the simplex 'mclhod, lFor-
tunately, scveral reasonable measures of cost are proportional to liney;
functionals, as shown in §2.1. ' .

Approaches to minimizing more than onc lincar cost objective yre
discussed in §2.2. The case of two objectives is deveioped in §§2.3 2.4 4ng
the results ave applied in §2.5 1o two objectives of particular interest,

For convenience of exposition, the schedule-period s hereafter taken
to beaday. A sct of solution activitics ot the x and u variables is writien
(x,u), and the value of a functional Z at the solution is Z(x . u).

§2.1. Linear Functionals Representing Costs

There is more than one sort of cost associated with railroad serviee,
and conscquently one may devise a number of lincar forms that are pro-
portional to cost of some sort. Three functionals of particular interest.-
associated with capital. operating, and switching costs, respectivedy - are
formulated as follows:

Capital cost. The daily cost of amortizing the passenger-car fleet,
here referred to as the “capital cost™, may be considered proportional to
the number of cars in the flect. chu nuinimizing fleet size serves 1o min-
imize capital cost.

The number of cars is casily represented by a lincar form. Pick any
time(* 0 <(* <7~ I, and sum (a) the number of cars in storage at each
city ininterval £*, and (b) the number of ears in cach train that is in transit
during interval £* This sum is the total number of ¢ irs in the system at
™. For a feasible solution, this sum must be the s: me at any £* since cars

1y not enter or leave the system. For convenienee. take 1% = 1 — I then
th capital-cost objective is a linear combination

Zear = Z ulr — 1] + Z Xl

¢ [N LR
it
The first sum covers all cars in stor: age during interval 7 — 1. The latter
counts cars in oniy those trains which depart during one day and arrive

the next: these are exactly the trains that arcin transit during the lastinter-
val. 7 — 1, of the day.
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Operating cost.  Costs proportional to the number of car-miles run
in a day, here called “operating costs™, are another logical candidate for
minimization. Letting the distance from ¢ to ¢ be m -, total car-miles per
day is equatd to the linear form

Zag = z m X000
lencna’ . 8
Note that at any feasibic solution Zyy is alse a sum of integral multiples
of the distances m... Morcover, when the cities form a corridor (§1.5),
Zywy s @ sum of integral multiples of the round-trip distances:

Mo+ M 1<)

since conservation of the flow of cars requires that the number ol cars run
north from ¢; 1o ¢; during a day is the same as the number run south from
c;to ;.

Zwne 18 also closely related to load factor. Given fixcd demands. it s
reasonable to try to maximize system load factor in order to mintmize the
cost of providing scrvice. By definition. system load factor is

passenger-miles / day
scat-miles / day

Z]j. =

_ (passenger-miles / day) / (scats / car)
car-miles / day

Since both passenger-miles/day and scats/car are fixed by the problem.
Z,, is inverscly proportional to car-miles/day = Zyyy. Hencee minimizing
operating cost is cquivalent to maximizing the system load facter.

Switching cost. For the corridor model of §1.5, onc may postulate an
extra fixed “switching”™ cost incurred each time a car’s direction s re-
versed. The number of car-reversals in a day is counted by the following
lincar form:

Ziurn = Z ulse] + Z ™Mt

ceCre T ce=Cae T
The first term sums all northbound cars turned south, and the sccond all
southbound cars turnced north.

§2.2 Combining Measures of Cost

It was shown in §2.1 that there are several reasonable “eosts” that are
proportional to lincar functienals in the # and x varables. As a conse-
quence, no solution that merely minimizes onc of these functionals is en-
tircly satisfactory. For example, an allocation that minimizes the number
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of cars (capital cost) may nonctheless cmploy zhcm_ ncticiently. runnie.
them morz than the minimum car-miles/day (operating cost).

Some means is necded. therefore. of optimizing with respect to moy;,
than onc cost objective. Two methods suggest themselves. combining o).
jeetives so that they re minimized sinultancously, and ordering ohjec
tives so that they may be minimized sueeessively,

|
|
1

Combizing objectives. A ny n objective functions 7, AT Z, can
be combined by choosmg factors p,, p,, ... Pa > 0, and Mmimizing (),
lincar combination

L=piZi+psZy 4o+ p, 7,

Minimizing 7 tends to minimize cach of the Zi. The vulu_c of Z, at min »
is, howcver, gencrally greater than min Zi; the extent of the discr(;punq
depends on the size ol p,with respect to the other lactors.

Z has a natural interpretation when there is Some cost proportiony|
to cach Z;. Let p; be the constant of proportionality. so thag P.7, s the
cost (in dollars. siy) corresponding to any given level of Zio (I Zy s
car-miles /day. for cxample. p, could be opcrating expense in dollars feyr-
mile.) Z is thus a “total variable cost™ Tor the system. and minimiu’ng /7
cin be seen as minimizing total cost.

The difficulty with this approach lies in determining true valyes lor
the constants p,. Even small changes to the p, can produce significant
differcnces in the solution tomin Z: yct. especially when a hypothetical
systemis being modcled. costs are often poorly known and the p, can be
determined only to within a widc tolerance. Hencee it s neeessary to treat
the p; as somewhay variable, and to find solutions for ranges of thejr
values. (An efficient and cxhaustive way of doing this when togal cost s
the sum of two costs is described in the following seetion.)

Ordering objectives. Another approach is (o rank the objectives.
minimizing Z, subject to Zy,.. . 7, being fixed at their previously at-
tained valucs. Onc firgg computes min 7, the absolute mintmum value of
Zy; then min Zy| Z,, the minimum value of Zy given 7, = min Z:
then min Z,) 7, | 7, the minimum value of Z; given 7, = min 7,12,
and Z, = min Z,: and so forth. In gencral. min 2z [ Z, is
greater than the absolute min Z;, and the discrepancy tends (o become
greater as i does.

A solution to mijn VAL ARD found, in clleet, by adding i new cquality
constraint (2, = min Z,}. The original problem’s pure transshipment
structure is thus viojated. Nevertheless. an optimal intcgral solution s
guaranteed by the following Proposition.

Proposition | * For anv linear forms 7, iy, Z.,. there s an
tntegral basic solution (o minZ, | Z, | -..| 7.
*Proofs of 5] Propositions in this SCCHOn are given in {4].
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Scquentiai eptimization has the advantage of requiring only a prefer-
crtial ordering of costs, rather than a full determination of their relative
sizes. IUis disadvantageous primarily in being tess gencral than the “total
cast approach above, (The two approaches are closcly related, however,
as shown below in §2.4.)

§2.3. The Case of Two Objective Functions

When attention is restricted to two cost objectives, the sct of all pos-
sible allocations can be deseribed in a simple way. Morcover, the represen-
tative optima are casily found by usc of an algorithm for parametric pro-
gramming on the objective.

Denote the two objectives by Y oand 2, and their respective expensces
perunit by pyand p,. A total cost determined by Y and Z is thus p, Y +
7. The minimum total costis:

min[pyY + p, 7] = pymin[Y + (p,/p)7]
= pymin[¥Y + pZ]

where p = p,/py is the ratio of cxpenses per unit. Henee the minimum
total cost is determined entirely by the choice of p.

The set of all solutions that can minimize total cost, given some
choice of p, is characterized in the following Proposition:

Proposition 2. Let Y and Z be objectives for which min Y und min Z
arc finite. For any (x*, u*), definc

Ry ye = 1k > 01 (x* u*) minimizes ¥ + kZ|
Then:
(a) There 1s @ unique sequerice
0= poP1y- PatsPn = %, n>l opiy<pi=1,...n
and there is a corresponding sct of distinet basic solutions
(xF,uf) i=1,....n
so that

l,....n

RI..U: = [pi-lvpll i
(b) for any selution (x*,u*). cxactly onc of the following holds:
(l) Rx‘,u’ = d)
(i) Reye = {nid forsomci ¢ {0....,n - I}

(ii1) Ryege = [pioy. 0. forsomci € {1,... n}
ISl



(¢) Forevervi= 1. n -1
Yix*. uk) . Y(xX,.ux))
ZxFouky - 2K ek )

What de the values p, signiiv? They are the eritical ratioy Pripy a
which the alfocation of cars must change to maintain optimal total coy
Solong as p,/p, stays between some p, | and g, however. a singie allogy.
ton (x* u})is puarantecd optimal.

Another way of looking at things is to note that. at critical poiy
PPy = b

)(‘A*ul*) + p:Z(xl*’u:*) = )’(xl*cl-ufcl) + /)l‘./'(xl*ll'u:*ll)
which may be rewritten
l’![};(-‘l*»l-u:*»;) - ).(-\.:*-u:* ” = /’/[Z(-\'l*-ul*) - /(xl*olwul*ol)l

Proposition 2(¢) savs that changing from (x* u¥) 1o (x* LU ) invoives o
tradeofl: Z decrcases while ¥ oincreases. At the critical point. the added
costfrom the increase in ¥ (Ieft side of above cquation) equals the cosg
saved by deercasing 7 {night side). At p < p,. the saved cost docs not
make up the added cost. and so (x*.u¥) is preferable: at P o, the
saved cost more than makes up the added cost, and henee (X5 uf )0
better.

The critical ratios p, and solutions (X7, u¥) arc castly found by ap-
plying the standard parametric algorithm o the objective. In conventiongl
terms, ¥ s the “base objective” and 7 the “change objective”. The
algorithm starts with a solution for min ¥.oand “parameter” poat 0. Sue
cessive pivots cither feave p unchanged. or step it 1o a new critical vdlue
thatis generaily one of the critjcal ratios p,: the basis just before the step
o p, s {x* u*). The algorithm terminates when it finds a solution that
is optimal for all parameter values greater than somce critical value: this
solution is (x*, u*). and the critical vatue is p, .

In some instances. the paramctric algorithm identitics o suppused
critical ratio p, such that

FOFouf) = Yxp w2y

Z(xFur) = 7(xx uk¥)
This cannot be 4 true critical ratio. however, since the above cqualities
viokate Proposition 2(0). Indeed. these cqualities imply that both (x* . u?)
and (X | uX ) minimize Y+ pZ forall psuch that p, | <~ p - Poi. S0
that p, is actally not critical at a1, Spurious ratios of this sort are a side
clect of degencracy in the lincay program.
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§2.4. Conditional Optima for the Case of Two Objectives

The solutions (x¥,u¥) derived in Proposition 2 also have an interpre-
tation in terms of min Z 1Y, min Y| 7, and other conditional optima
This 1s shown in the following Proposition:

Proposition 3. The solutions (x¥,uf) defined in Proposition 2 have
the following propertics:

(a) (x¥.u¥) minimizes Y

(x¥,u¥) minimizes Z | Y

(b) (x¥.uf) minimizes Z

(x¥,u}) minimizes Y | Z
(¢) (x}.u})minimizes Z{(Y + pZ)whenp,, < p < p;
fori=1....,n
(x¥,u¥) minimizes Y {(Y + pZ)whenp, , < p < p,
fori=1,...,n
Proposition 3(a) says that minimizing Y | Z yiclds the best solution when
p = py/pyis small cnough. In other words, when py s sufliciently taree
rclative to p,, Y dominates the total cost: the best solution is onc that
minimizes Y outright, then Z as much as possible. Proposition 3(b) makes
the cquivalent statement for the case where p = p,/py is sufficiently large
that Z dominates total cost.

Note that if 7 > 2 there is at least one middle region of p where the
best solution minimizes neither ¥V onor Z absoluteiy. When # = 2, the
optimal solutions for total cost minimize cither Y {Z (for p < p,) or
Z1Y(forp > py). When i = 1, there is a single solution that minimizes
both Y and Z absolutely, and hence minimizes any ¥ + pZ.

§2.5. Tradeoffs between Capital and Operating Costs

Of spccial interest is application of the preceding section’s results o
functionals Z¢ag and Zwy, defined in §2.1 as proportional to notions
of capital cost and opcrating cost, respectively. Total variable cost with
respect to these two objectives is

pCARZL'.-\R + pMIL!’ZMll_!'
where
Pear = Capitai cost/car/day

Ziag = number of cars

fl

PuiLe = operating cost/car-mile
Zyne = car-miles/day

The choice of a solution that minimizes total cost depends upon
Pear/Pyice. the ratio of capital cost/day to operating cost/mile.
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The critical ratios tor this problem have a speeial form relted
. Y i b L
the inter-city distances. as demonstrated by the follow ing Proposiiion:

Proposiiion 4. (a) For objectives of the form
iy + (Pear/ Py ) Lears

the criticai ratios of p = Pear/Pyne (as defined in Proposition 2) have

the form
!
pl = ; ‘YU""”UI

o' O
cre’

where e, are integers, and & is a positive interger satistying:
-, . * *
K< Zear(xFouf) - Zear(xt o uX )

(b) 11 the citics constitute a corridor (§1.5) ordered G0 then

under the assumptions in (a) the critical ratios have the form
l
p: = _ Z ‘Y(‘t'l(,'ll"(" + ,"C]"I)
GgeC '
o f
wherea . arcintegers, and « is a positive integer satistying the inequality
[} -

in (a).

Proposition 4 offers a characterization of the critical ratios for Zyiie
and Zegg. At ratios p = Pear/Pye such that p, < P < piyy, adding o
cars to the system makes possible a nct saving of Xa,.m,,. car-miles/day,
So long as Pear /Py > pi, however, the proposition implics that

KDcar > (Zﬂw-”lm)l’mua

The cost of adding « cars (left-hand side) is greater than the cost saved
by the reduction in car-miles (right-hand sidc), and henee adding the cars

is uncconomical, For Pear/Pang < p,. the incquality is reversed, so that

total cost is less when the cars arc added. When Pear/Pae = p,, however,
KPcar = (xacr""u-')[’MIU{

Henee p, s the ratio of capital to operating eXpense at which the capital

cost of adding cars is exactly balanced by a resultant saving in opcrating

Cost.

For the Northcast Corridor data duscribed later in this paper, all
critical ratios had the especially simple form x = | a . = 0or 1. At
these ratios the capital cost of onc added car cqualled the operating cost
over one round trip that was saved by adding the car: see further in
$$4.4, 4.6. (It may be that under certain assumptions about the network

and schedule, criticyl ratios must have simplc forms like this; but such has
not been shown formaliy )
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3 Bask DATA #OR THE NORTHEAST CORRIDOR

As a demonstration case, the gencral transshipment structure was
applied to anticipated Northeast Corridor service for 1982, This section
deseribes how Corridor operations: were modeled (8831 3.2), and how
hase data for 1982 were derived (§§3.3 3.8).

The primary reference for data-gathering techniques is a pair of
Corridor studics prepared by Peat, Marwick, Mitchell and Company
[1,6]. These are referred to in the scquel as the “PMM studies™.

§3.1. Characteristics of the Northeast Corridor

The base-run Northeast Corridor comprises fous terminals: Boston,
New York, Philadelphia, and Washington. Scheduled trains connect these
terminals on three north-south segments as follows:

Segment Length jmiles)
Boston- New York 232
New York - Philadelphia 90
Philadelphia- - Washirgton 135

Cars arriving at a terminal may move on immediately in the same diree-
tion, or may be stored for usc in later trains in cither dircetion. A tixed
minimum amount of time (in addition to the normal stopover time) is
required to change the direction of a car.

Also in the Corridor are seven intermediate siations. as shown in Fig-
ure 3. Trains are scheduled to stop at these stations. but cars may not be
stored or switched there. Including both terminals and intermediate sta-
tions, the corridor comprises 11 cities, connected by 10 north-south links.

For purposcs of the 1982 base run, cars in Corridor SCTVICe are as-
sumed to have a uniform capacity ol 75 passengers. Station size is taken
{o be 14 cars; trains requiring more than 14 cars arc o be run in multiple
sections of 14 cars or less each. Each scction is assumed Lo require one
locomotive.

§3.2. Modeling Northeast Corridor Service

The Northeast Corridor is modeled as a corridor network with turn-
around delay, as defined in §1.5.
The set of C of cities in the model comprises the four Corridor
terminals:
C = {Boston, New York, Philadelphia. Washington}
Intermediate stations can be omitted from this sct, since they are not
points at which cars inay be stored or switched. (Demands to and from
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intermediate stations are used o determine the minimum size ol cach
train. however. See §§3.4 3,60

The model's schedule-period is one day. partitioned into a set of
intervals 7 representing minutes of the day. Henee the number of parti-
tion intervals. 7. 1s 1440

Thie schedule. 8, lists the arrival and departure terminal of cach train
and the corresponding arrival and departure times to the nearest minute.
1ts construction is described in §3.3.

The demand for cach train is calenlated Trom annual patronage fore-
casts by the methods described in §§3.4 3.6, A Tower limit d,.[t, 1] and
apper imit #..[4, '] on cach train’s size is then derived from its demand.
as explained by §3.7.

The turnaround delay 6 is lixed at 20 minutes. for reasons sct forth
in §3.8.

§3.3. The Schedule

The 1-city base schedule is an updated version of that cmploved i
the PMM studics [1,6]. It assumes gencrally half-hourly scrvice o the
terminals and major intermediate statioss (Providence. New Haven. Balti-
morc). and hourly scrvice at minor stations (Ncw London, Stamlord.
Trenton. Wilmington). Appropriate reductions are made late at night and
carly in the morning, when demands are very low.

Scgment trip times Tor 1982 are assumed to be approximately as fol-
lows:

Segment Trip time
Boston - New York 3 hours 40 minutes
New York -Philadelphia 1 hour 1 minute
Philadclphia  Washington ] hour 38 minutes

Trip times for individual links arc caleulated accordingly. Allowance is
made in addition for stopover times of about 5 minutes at New York. and
1 25 minutes at other stations. 1t is assumed. however. that trains do not
save any time when they skip stops at minor stations.

The full H-city schedule is used in caleulating demands. as described
below (§§3.4 3.6). In forming the transshipment actwork. however, only
the arrival and departure times at the terminal citics arc employed. (The
full base schedule is printed in (4])

§3.4. Design-day Patronage

Annual patronage for 1982 was calculated by use of a computer-
bascd model developed in one of the PM M studics [6]. The input data

were those derived from PMMTs “basc assumptions’™ with the exception
of trip times, which were increased 1o rellect the base schedule (§3.3).
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The PMM model estimates annual two-way patronage for indjy
station-pairs in the Northeust Cornidor, .»'\nnzful One-wiy patrop
computed by halving the two-way figares. A few possible
arc omitted. cither beciuse they could not be separiated from

iduy
SN
SNy

other Pairy
or hecanse competitive commute service is avilable for their trayv

Aol these excluded pairs are short distance
tively insignificant 1o Corridor service,

"l'hc l;;l.x‘c run models patronage for o design: day . Cileubuted o /27
of the annual amount. This coneept of design day, representing Ppproy;.
nuately the 10th busicst day of the year. has been employed in ¢ngincering
studics of the Northeast Corridor (2. pp. 3 35) and in ﬂccl—sizing CXperj.
ments [1. Appendix C).

clery

cand are deemied 1 pe rely.

S50 Demand Distribitions

The base run employs :set of cumulative demend functions o
the patterns of demand between station-pairs over a4 day,
mcthod of the PMM studics [t.pp. C7 C. 14], demand for
larger station to 4 smller oncis tiaken to be departure-based (that iy, de.
pendent upon the time of departure). while demand for sery
smaller to a Lrger station i arrival-based (

derive
}-'ollowing !
sCrvice from 4

ice from 4
dependent upon time of ur-
stz is determined by
ng arrivil-based nd departure-bused distribution functions.

The demand distributions cmploved in the base rup are derived from
himod:l gaussiain-like probability distributions* Bt o actual arrjyy) and
departure counts for Tuesday, Muy 211974, This date wius chosen be-
cwse it afforded aetuy ticketing data. and was uninfluenced by special
weekend or holiday pauerns, Counts coutd be made,
sl number of sttion-puirs, especially as no information wug available
for trips passing through New York. In consequence. actual distributions
were it for ten particular pairs only. and (hese are used o uapprosimate
the distributions for other Station-pairs {see [4] for further details),

:i\'crag~

howcever, for only 3

8.6, Effective Demands Over Sezments

For every scheduled train over ; seement. there is an effective de.
mand: the number of passengers that the train
guarantee everyone a seat at
determined for the base run i

must accommodate to
all points on the route. Effective demands are
n the following steps:

Station-pajr demands. Gy n

One-way patronage daga ($3.4) and
cumulative dem:ng functions (§3.5)

- design-day demand s caleulated
*These distributions were derived ang estimzited by Wolter Messcher sind Alan Welling-
ton at the Trzm\p-.)r(:llion Swst

t ems Center, US, Departmeny of Transportiition. See further
in the Appendi 1o 4],

RIS



for cvery scheduled trip between a pair of stations in the T1-city scheditle
(excluding certain station-pairs as explained in §3.3).

Link demands.  Votal demand for any train over 2l piven Hink s com-
puted as a sum of all station-pair demands that involve travel over that
link.

For cxample. total demand for a typical scheduled train over the Wil-
mington-Philadelphia link does not include only passengers who get on at
Wilmington and discmbark at Philadeiphia. Some passengers who get off
at Philadelphia began their trip in Washington or Baltimore: some who
start at Wilmington will stay on to Trenton, New York, or a station
further north; and some passengers both start south of Wilmington and
terminate north of Philadelphia. Demind for the train for all such station-
pair trips must be added to determine total demand for the train over the
Wilmington-Philadclphia link.

Maximal-link demands.  For cvery train over a particular segment,
there emerges from the link demands a maximal link over which demand
is highest. A train accommodates all passengers over a segment only if it
meets demand over the maximal link, since cars cannot be added within
the segment. Henee the effective demand for cach train is equal to the
train’s maximal link demand.

For instance, say demand for a Washington-Philadelphix train is 197
passengers over the Washington-Baltimore link. 237 over the Baltimore-
Wilmington link, and 225 cver the Wilmingtan-Philadelphia link. The
maximal link for that train is then Baltimore-Wilmington. and cfiective
demand for the train is 237.

§3.7. Minimum and AMaximirm Train Sizes

For the base run, cars are assuined to hold 75 passengers. Henee if d
is the cffective demand for a train, its minimum size is:

<df15>

(Here angle brackets denote the teast integer greater than the enclosed
value.)

The maximum size of a train for the base run is the lesser of two
limits. one related to load factor, the other to station length:

Load-fuctor limit. Duc 10 imbalances in demand throughout the
day, some trains will have to be run with more than the absolute minimum
number of cars. [t is reasonable. however, to limit the number of these
deadhead cars to some proportion of the train. Specifically . in the base nin
no train is allowed to have more cars than reguired 1o meet twice 1t cl-
feetive demand, with the proviso that every train may have at least 2 cars.
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Interms of &, this limit is:
mas < 2d/73 >

Its effeet is to require load factor over the maximal link (o by at ey
reasonably ncar 30Y ., the requirement becoming stricter at larger (.
mands.

Station-lengih limir.  Plans for 1982 assume that stations wijj hold
most d-car trains (§3.1). When more than 14 curs are assigned (o train,
One Or morce extra scetions must be puton, cmploying an cqual numbper of
extra locomotives. To prevent Unneeessary eXtra sections. the basc rup,
requires that the number of sections actwally run be no greater thyy
<(d/73)/14 > the number of sections required to meet ¢ffectiye demang,
This transtates to an upper imit on cars of:

< /75714

Wd/751s 12,6, for mstance, this upper hmit is 149: byt if d/78 s 152, twe
sections are needed in any event. and the limit s 28

The load-factor upper himitis the lesser one for demands under 323
passengers (7 cars). At farger demands. the station-length limjy predom-
mates.

For the basce run, only 5 trains require as many as two sections: three
from Philadelphia to New York i the morning. and two from New York
to Philadcelphia in the afternoon. Most other trains of 7 or more Gilrs are
also on the New York-Philadelphia segment,

§3.8. Turnaround Delay

For the base run a delay of 20 minutes (in addition to the regular
Stopping tinic built into the schedule) is postulated whenever the dircetion
of a car is changed. This time is deemed sufficient Lo cover switching under
1982 conditions plus any lags in the arrival of extra scctions.

Ithappens that for the base schedule anyturnaround delay from 9 10
20 minutes has the sime cffeet. A delay of more than 20 Minutes requires
additional cars a4t Philadelphia,

4. BASE Runs Wity e NORTUHEAST CORRIDOR DATA

Computer processing and its resuls for the base run are discussed in
this section. The principul computing tool was the SESAME lincar pro-
gramming system developed ot the Nationa| Burcau of Economic Re-
scarch [3,7 8],

Generation of the base datu (§4.1) and the LP model (§4.2) were
necessarily performed first. Optima| solutions were then found for a
variety of objectives: minimum cars and car-miles, and maximum lead
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factor (84.3); minimum total operaiing and capital cost (§4.4); and min-
imum turnaround switching (§4.5). Further analyses included sensitivity
to demands (§4.6) and reguirements for locomotives (84.7).

§4.1. Computing the Base Data

Estimates of 1982 rail patronage (§3.4) were produced by running a
computer simulation prog-am adapted specially for the PMM demand
study [6]. This program projects business and non-business use of four
modes of travel: rail. bus, air, and car. A subroutine was added to file total
rail patrenage only, in a format suitable for subscquent processing.

The patronage data file. plusa file representing the full schedule, then
served as input to @ demand-calculating program. This program cmploys
cumnlative demand functions for statien-pairs o compute effective de-
mands. and conscquent upper and lower s, for cach train (as de-
scribed in 8§3.5-3.7).

Principal outpui from the demand program is a sct of tables. repre-
senting the schedule and other information, that can be read by an LP
matrix generator (§4.2). In addition. scts of alternative train-size limits are
filed in a form that allows any onc sct to be read into the matrix.

§4.2. Generating the Model

An LP cquivalent of the nctwork model was generated in a form suit-
able for compnter processing by DATAMAT. a subsystan of SESAME
13)..A program in the DATAMAT macro language was written for this
purposc.

Upper and lower limits on irain-size variables are not generated as
explicit constraint rows: they arc incorporated in a “bound set” that 1s en-
forced implicitly by SESAME's simplex algorithm. Actual Timit valucs are
also absent at this stage: they are read in from a separate file just before
the moddl is solved or analyzed. This arrangement facilitates working with
several sets of limits, as was done. for example, in the sensitivity analysis
described in §4.6.

The LP generated by the DATAMAT program represents a reduced
network. duplicated to distinguish northbound and southbound cars in
the corridor (8§§1.3, 1.5). For the basc schedule, the LP representation re-
quired 1275 structural variables and 528 constraint rows.

§4.3. Minimizing Cars and Car-Miles

The basc-run LP was solved by use of SESAME's stundard primal
simplex algorithm. A feasible solution was obtained (starting from an all-
slack basis) in 665 iterations, and an optimal solution for the minimum-
cars objective. Z¢ag, I an additional 28 itcrations. An optimal solution
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Figure 4 Cars and car-miles when tetal cost is minimized, as a function of the ratio of capital cost/day to operating cost/mile. The critical ratios are

180 and 450,

for the minimum-car-miles objective, Z gy, was also found. A maximum
system load factor. Zyp. was determined from Zyp. as these two objee-
tives arc inversely proportionald (§2.1).
The values of the objectives at their optima for the base data are:
min Zgag = 164 cars

min Zyy = 131388 car-miles
max Zyp = 74.15°,

§4.4. Minimizing Operating Plus Capital Cost

Following the analysis sct forth in §§2.3 2.5, the next step was to min-
imize total “operating” and “eapital” cost of the base model. SESAME's
algorithm for parametric analysis of the objective function was cmployed
for this purposc. Part of the process was automaied by usc of small pro-
grams written in the SESAME command langaage.

The propertics of an optimal solution depend upon the value of
Pear/Pae- the ratio of capital cost/day 1o operating cost/mile. For the
base data. there are three significantly dilferent regions into which this
ratio may fall:

(1) Capital cost/day > 450 x operating cost/mile. Hcre capital cost
dominates: in any optimal solution the number of cars is at its absolutc
minimunt. 164. The minimum number of car-miles per day, given 164
cars, is 135978 and the system load factor (which is inversely propor-
tional to total car-miles) is 71.65%,..

(2) 450 x operating cost/mile > capitel cost/day > 180 x operating
cost/mile. At this level the influenee of capital cost declines somewhat.
The number of cars in an optimal solution increases to 167: car-miles per
day decline to 134628 (system load factor 72.37%,).

cost dominates. In an optimal solution car-miles/day is at its absolute
minimum. 131388 (system load fuctor 74.15%,). while the number of cars
in the system increases to 185,

The results are shown graphically in Figure 4. Clearly the biggest
jump is at critical ratio pear/Pane = 180. the round-trip distance be-
tween New York and Philadelphia. At ratios below this point. buying an
extra car is ceonomical cven it it saves just one New Y ork-Philadelphia
run. At higher ratios it pays to buy a smaller flect. running cach car (on
the average) more miles every day. The size of the jump about a 167,
diffcrence in flect size -is not surprising. Demand s heaviest along the
New York-Philadelphia scgment. and is highly unbalanced: northbound
travel peaks in the morning. while southbound deniand is highest in the

(37 Capital cost/day < 180 x operating cosifmile. Hcrc operating
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The other jump, A Pear/Pany = 450, represents
vost of a car cquals the cost of runming it from New York to Washington
and back. This iy fairly insigniticant critical ratio. however,
optimum at ratios below 450 requires only three cary
optimum above 450

Several estimates of the
financial analysis (1], are plotted against the eritical ratjos in Figure 3. The
estimates suggest that Pear/ Py probubly falls into region (1), and henee
that capital cost js probubly predominant. (Morcover. if the ratio is not m
region (1) it appears very likely to be in region (2). where the optimal safu-
tion is not much diffcrent.)

air amount of dc;idhcuding vitn be avoided if

a point at which the

a the
more than the

actual pege /pany . derived from a PMM

§4.5. Minimi-

Ziurs. the number
changed ($2.1), w

mg Turnaround

of times per day th

at the dircction of a ear is
as also considered.

Since capital cost seemed likely 1o
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predominate, a solution was found to:
min Zpeps | Zaine 1 ar

The optimal value of Z g 18 not particularly revealing: but the flow
of cars being turned wronnd gt New Yaork and Philudelpbin is of terest.
No northbound car is ever turned around at Philadelphia. and no south-
bound ear is cver turned at New York. Cars running north from Philadel-
phia arc held in storage at New York mostly in the morning, when north-
bound travel on the Philadelphin-New York scgment predominates. Cars
running south from New York are held at Phitadeiphia mostly in the
afternoon, when southbound traflic is dominant on the segment.

In eflcet, many cars are necded only for the Philadelphia-New York
scgment, Lo satisfy peak demand northbound in the morning and south-
bound in the aftcrnoon. This suggests a revised schedule in which New
Y ork-Philadclphia shuttle trains are run at peak hours, in addition to the
usual through trains.

§4.6. Sensitivity to Demand

Demand projections are inherently uncertain. They are based on
approximate data, and their postulations are open to question. A PMM
study of Northcast Corridor demands (6] for example, cstimates 1982
patronage at anywhere from 11 to 23 million passengers, depending upon
assumptions about costs and travel times.

Itis thus essential that the model be soived Tor a range of demands.
Fortunately. this can be done by SESAME in an especially efficient way.
by taking advantage of two characteristics of the modcl.

First, a change in demands does not change the modcl’s row and
column structure: demands affect only the lower and upper limits on the
(rain-size variables. Consequently, the LP matrix need be generated only
once for each combination of schedule and turnaround delay. Scts of
limit values arc liled separately: just before the model is to be¢ solved or
analyzed, SESAME is instructed which sct of limits to usc with the pre-
viously-created matrix. Any different sct of limits is casily substituted
whencever desired.

Sccond. different scts of demand limits for the same model tend to be
similar, and hence their optimal solutions are generally close together. As
a result. it is not necessary to solve from scratch for cach sct of demands.
An optimal basis for onc demand set is a very good starting basis for
iterating to an optimum for any similar sct. SESAME’s dual simplex
algorithm is especially usclul for this purposc. since changing upper and
lower limits does not violate dual feasibility.

For the base run. alternative estimates of cffective demands were
first derived through scaling the base patronage estimates by a constant
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Figure 6 Min Z¢ag (right scale) and min a2 eap et scale) as a function of
annual patronage. The small graph shows the general forms of these functions as patropage
approaches zero and infinity.

factor; then wpper and fower limits were determined as before. Nine
factors, ranging from .7 to 1.3, were chosen. For cach. a separate set of
upper and lower limits was filed by the demand program (§4.1).

An analysis of total capital and operating cost was performed, in the
manncer of §4.4, for cach set of scaled demands. The overall pattern s the
same as that for the base demands: the only large jump is at peag/Frany =
180, where the capital cost of a car cquals its operating cost from New
York to Philadclphia and back. There is some variation in the minar
jumps, the onc at 450 {(New York-Washington) sometimes omitted. and
onc at 462 (New York-Boston) occasionally appearing: but nonce of these
Jumps is associated with a significant change in the solution.

Figure 6 shows cars and car-miles plotted against total annual
patronage for the case in which capital cost predominates. These shghtly
convex curves are fairly close to lines through the origin, especially within
a limited range (say. 20", around the basc data). Henee as a rule of thumb
one may say that both the minimum fleet size, and the minim um number
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of car-miles that must be run with minimal feet, are roughly proportional
to total patronage:

Min Zeap = 0000103« (total annual patronage)
min Zyuy | Zeax == 0086 - (total annual patronage)

Y
\

(In fact. both cars and car-miles do approach proportionality o patron-
age as the latter goes toinfinity. This is because at very high demands the
problem is virtually continuons. so that any increase in total demand can
be met by just increasing the size of cach train in the same proportion.
with rounding in negligible amounts. At fairly small demand. on the other
hand, the integrality of the problem comies into play. A relatively large
amount of exeess capacity is run simply because demands are rounded up
to the next integer. and henee the actual curve for cars or car-miles runs
somewhat above the line of proportionality  sce small graph in Figure 6.)

Many more sophisticated sensitivity analyses are conceivable if one
allows patronage between different station-pairs to vary at different rates.
For cxample. one might use annual patronages computed under different
assumptions: or one mighi apply diftferent cumulative probability distribu-
tions to one sct of annual patronages.

§4.7. Locomotive Requirements

The upper-limits rules for the base run (§3.7) insure that the number
of 14-car scctions that must be run to mect cach train’s demand is fixed: if
demand is 14 cars or fess, onc section is run: if demand is greater than 14
but not more than 28. two scctions are run: and so forth. Hence, assuming
one locomotive per section. one can tell exactly how many locomotives
will be required for cach train in the schedule, inany feasible solution. The
analysis of §1.7 is thus applicable: locomotive demands can be substituted
for car demands to determine the number of locomotives required and
how far they must travel.

Only 3 trains in the base run required two seetions (and henee two
locomotivesy; the remainder all required one. One-scction trains werce
given an upper limit of two locomotives, and two-seetion trains an upper
limit of three (for up to 21 cars) or four (for 22 28 cars). Scts of limits
were computed and filed by the same demand program used for modeling
cars (§4.1).

Solving the model with the techniques applicd previonsly to car de-
mands. it was determined that a single solution minimized both the num-
ber of locomotives required (31) and the number of locomotve-miles run
(34074). Only 4 scetions, all southbound, had to be run with an extra loco-
motive,

Sensitivity analyses analogous to those run for car demands (§4.6)
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were also applicd o focomotives. The case at 70", of basc demang r
quires oniy one locomotive for every scheduled train: herice 29 locom,
tives is an absolute minimoam for the base schedule.
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