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THE ALLOCATION OF A NATURAL RESOURCE WHEN THE
COST OF A SUBSTITUTE I8 UNCERTAIN*

By DoNALD A. Hanson

The mix of capital and resource assets which should be saved Jor the future depends on whether
there is uncertainty in the cost of a substitute Jor the resource. For linear homageneoues pro-
duction functions and classes of strictly concave production funcrions and with risk neutrality.
Juture welfare is improved with more capital and less resource when the cost is uncertain.
That is. more resource should be used initially. It is also shown that the eflect of risk aversion
is in the opposite direction. For sufficiently strong risk aversion. the direction of shift in de-
sired future assets can be reversed.

I. INTRODUCTION

Suppose there is a homogeneous stock of an exhaustible natural resource
which is a primary factor of production. Further, suppose that a substi-
tute for the resource can be produced, but the cost is initially not known
with certainty. Consider the problem of how much resource to use ini-
tially. In this paper the problem will be viewed as one of efficiency: Once
initial consumption is determined, what mix of reproductble capital and
remaiiling resource stock will in some sense maximize future welfare?

The paper begins by postulating a production possibility frontier
(p-p.I) between capital and resources available for the future. The idea is
that more (less) capital will be accumulated for the future if more (less)
resource is used initially in production (with initial consumption fixed). In
a world of certainty, the eflicient mix of assets is determined by the Hotel-
ling condition; that is, the ratio of the net marginal product of the re-
source between any two periods must equal the marginal rate of transfor-
mation of capital between those periods.! If the cost of the substitute is
uncertain, should the mix of future assets contain more or less resource?
[tis shown that with risk neutrality and a modified class of CES produc-
tion functions, future welfare is improved if more capital and iess resource
is saved under uncertainty. The affect of risk aversion is a force in the
opposite direction.

*I'would like to thank Richard Gilbert, Michael Hoel. Danicl Newion. Rohert Solow
and an anonymous referee for useful suggestions. Support by National Science Foundation
grant GK-42098 is gratefully acknowledged.

'In the conventional theory net marginal product is the scarcity rent of the resource,
ie.. its market price less extraction cost. The Hotelling result is usually stated in terms of
growth rates: The growth rate of the scarcity rent must equal the rate of return on invest-
ment (see [1-3)).
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2. Tt MODEL

-

Let output in period i be given by F(K,, Z,) where K is reproductible
capital and Z, is total resource flow consisting of the natural resource a nd
a perfect substitute. it 1s assumed that F(K,, Z,) is sufticiently smooth,
increasing in its arguments, and strictly concave. Strict concavity unplies
(h Fun(YE (1) = Fi () >0

(Here, subscripts denote partial derivatives and i denotes the period.)
IfF,, > 0, it wiil be said that K and Z are technical complements. That is,
the return on investment Fy increases if more resource is utilized. It will
be assumed that Fy, > 0.

Consider a iwo period model. The p.p.f. between capital K, and re-
sources R, availuble for period 2 is described by
(2) K, = F(K,,R - R) - C,
where initial consumption €. initial capital A,. and total resources R are
fixed. The p.p.f. is a decreasing, concave function with dK,/dR, =
—F,(1yand d*K,/dR3 = F,,(1)(see Figure 1).

Suppose that a perfect substitute S for the natural resource is devel-
oped in time for the second period production. Let the cost per unit be
“p." Then

) C, = F(K, R, + §) — bS

S must be chosen efficiently to maximize C, given K,. R, and . Specifi-
cally,

R,

igure |
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4) S = {0 iTF, (K, R) < b

solutionto Fo(Ky, Ry + ) = b il F,(K,.R) > b

3. SuBsutture Cosr h7 KNOWN

Suppose for the moment that 4 is known with certainty in period 1.
It is easily shown that isoquants (with C, fixed) are decreasing, convex
functions with slope (Ifl/ii& = ~F,(2)/Fx(2) (see Figure 1). Then there
exists a unique peint (K, K,) on the p.p.f. which maximizes C,. This point
must satisfy the tangency condition
[‘;(2)

F A1) =
§)) A1 F.0)

which is the Hotelling result. Proposition ! foliows.

PROPOSITION 1. For any fixed initial consumption C,, initial
capital K,, resource stock R and substitute cost b, there exists a unique
solution for the efficient mix of future assets (K,. R,) and substitute pro-
duction § given by the solution to (2). (4) and (5).

Note that if § = 0.dR,/db = 0.1fS > 0
. dR . . ) .
Sign Ef = sign [F(DF(2) ~ F(2)

which is obtained by differentiating (S) subject to (2) and (4). Hence
Fyz(2) > 0implics dR,/db > 0 and Proposition 2 follows.

PROPOSITION 2. Suppose the cost is known to be greater than b
and S(b) > 0. Then it is efficient to save more resource than R, and less
capital than K,. Hence less resource is used initially.

4. SusTITUTE COST “*H” RANDOM

Now suppose that b is a random variable with mean b. Note that b is
random only in the first period. In the second period the outcome is re-
vealed and then § is chosen optimally according to {4)

For any fixed point (K,. R,) on the p.p.f. consider how the outcome
of €, in (3) depends on the outcome of b with S given by (4). Note that

IC

6) 22 5 <0

(6) b <

™ T L
b ab Fyr(2)
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Thercefore C, is a decreasing, convex function of b. The determination of
C, as a function of b is shown in Figure 2. The linear rays are total cost
functions for producing the substitute. The optimal S is the peint where
gross output F(K,, R, + S)is parallel to the total cost function. Suppose
that the high cost outcome b + 8 is realized. Gross output drops fast as §
is reduced to S(b + 8) but substitute production cost drops even faster.
Convexity with respect to b implies

|y~ 8) — Cib) | > | Cob + 8) — Co(B)|

That is, the gain associated with a low cost substitute exceeds the loss
associated with a high cost substitute. Hence E{C,} > C,(b) where E}-}
denotes expected value.

Now consider C, as a function not only of b but also the point on the
p.p.f. The notation will be C,(K,, b) where K, denotes the point on the
p.p.f. with R, and S calculated from (2) and (4) respectively. In Figure 3,
C,(K,, b) is shown. If b = b with certainty in period !, then C,(K;.b)
is the maximum of C,(X,,b) over all points on the p.p.f. Mow suppose
that the random variable b takes on values only in a small range about b,
Further, suppose that S > 0 for these values of b. How should the point
on the p.p.f. be shifted from the point (K, R,)?

Note that from (6) and (7)
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- C(X,.b) =
0 a(‘(R.Z,Z;) 05‘(’—(2,5)
9) v ; = - .
K, ab aK,
(10) L3 PCKL D) aF(K,Z)
K, ap? | Fi(2) 0K, R E.D
Hence the following are needed:
(Il) ?_ZA - EK_Z@ >0
(TK, Fzz(z)
(|2) _ai = E% - dﬁ >0

where (11) foliows from (4). The critical term will turn out to be dF,,/dK,
holding b fixed.
0F;,(2)

0z
(13) K, Frz2(2) + Fz22(2) ﬁf

Fir(2) .

= Fu,,(2) - X222 F
XZ7 F77(2) V4
Suppose that dF,,(2)/3K, is positive, which will be discussed in a
moment. Consider the effect of using slightly more resource initially and
hence increasing K,. Since (10) is positive C,(K, + A,b) will be more con-

22(2)

CyfX . by

Co(K,4+Ab)

Figure 3
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vex in & than C,(K,, b). Hence
(14) EIC(R, + 8,00 > EIC(Ko bl

Therefore, if socicty is risk neutral and welfare is measured by E{Cf,
welfare is improved by using more resource initially, accumulating more
capital than K, but saving less resource than R, when b is uncertain,

Now suppose instead that society is extremely risk averse and associ-
ates welfare with the value of C, resulting from the worst outcome for b.
Egs. (9) and (12) imply that the slope of (K, + A, b) with respect 1o b
is less (greater in magnitude) than the slope of C,(K,, b) (see Figure 3).
Therefore with respect to this extremely risk averse welfare eriterion. wel-
fare is improved by using less resource initially, accumulating less capital
than K, but saving more resource than K, when b is uncertain.

in general, the direction of shift along the p.p.f. from (K, R;) when b
is uncertain depends on the relative magnitudes of the consumption con-
vexity effect and the risk aversion effect.

Now consider the meaning of the term dF,,(2)/9K, holding b fixed.
For any given capital K,, the resource demand function relates the re-
source’s marginal prod-ct F,(2) to the total flow Z,. In a competitive
market F,(2) is the price which clears the market. Note that the slope of
the demand function is F,(2) which is negative. Provided K and Z arc
technical complenients (F,; > 0), increasing K, shifts the demand func-
tion to the right. 9 F,,(2)/3K, is positive i the slope of the demand curve
increases (decreases in magnitude) as the demand curve is shified to the
right (i.e. as K, increases). The change in slope is evaluated along a hori-
zontal constant price line. since b is held fixed and F,(2) = b (sce Fig-
ure 4).

tigurc 4
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Society can choose among a set of demand functions which it will
face in the second period by choosing a point (K, R,) on the pp.f. How-
ever, where society will be on the demand function is random. That is, the
costh = F, iS_'_d_ random variable. Let D be the demand functiocr associ-
ated with (K, Ry). If society is risk neutral, uncertainty in b implies that
the demand function should be shifted in the direction in which- its slope
is increasing. (l.e. the demand curve becomes flatter.) Therefore, for a
fixed variance of b, the demand curve is shifted from D in a direction to
increase the variance of Z. Society puts itsclf into a position to be more
responsive (in the level of substitute production) to the outcome of b.

The demand curves in Figure 4 are drawn so that they become flatter
for shifts to the right_ It will be shown in the next section that large classes
of production functions have this property. In this casc the E{Cy} is in-
creased when capital is increased above K, even though resources drop
below R,. It is interesting to note that although R, decreases. for any
given b Z, increases (see {(11)). The difference Z, — R, is made up with
substitute production S.

S. THE RiSK NEUTRAL CASE

Let the random variable 5 have a discrete probability distribution
I(b).j = 1. J, with mean b, minimum &, and maximum b,. In this section
it is no longer necessary to assume that the variance of o is small. It will
be assumed that not ali outcomes of 4 lie in the range where S = 0. That
is, Prob {S > 0} > 0.

Let (K%, R¥) be the solution to the problem

(15) Max E{C,}

where (K}, R¥) lies on the p.p.[. and S satisties (4). In this section suffi-
cient conditions and classes of production functions are given which imply

(16) Kt >k
R} < R,

o

LEMMA. For any fixed K,, R,, let the return on investment
Fy(K, R, + S) be a strictly convex function of b for S > 0 where S given
by (4) is viewed as a function of . That is, let

. Fr(2
(I7) FK'ZZ(z) - F:—:“((-z'% Fzzz(z) > O

for allb on [b,, b,]. Then (16) holds.

The proof is given in an appendix. Note that condition (17) is equiva-
lent to 8F,,(2)/0K, > 0 (see (13)). It can be shown that if Fy is inde-
pendent of Z, which implics that Fy, is zero, and if $ > 0 for all  on
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| 1b,.b,). then K¥ = K, and ¥ = R, (In the proof of the lemma y(R.b)

is a linear function of .)

PROPOSITION 3. (a) Let F(K,Z) be linear homogeneous. Then
(16) holds. (b) Let F(K, Z) be homogeneous of degrec 0 < n < 1. Then
{16) holds whenever

F32(2) —h
Proof: The following property holds
(n = DFZ2) = (n — Db = F(DK, + F22(2Z,
(n = DF2(2) = Faz(DK; + Frz2(DZ,

Therefore, (17) becomes

(n ~ 2)Fz2(2) B [sz(z) + gz_] F,.(2) > 0

K, F;2(2) Ky
or
(n = DF,2) (n-1)b
- - F,,,(2) >0
K, F,(K, ***
This inequality must hold for n = 1. For n < |, Fy strictly convex in &

for § > 01is equivalent to the condition (18).
A special class of production functions homogencous of degree n is
the CES class

(19a) AK-aZne p=0
(19bj Al = O)K* + aZ?]™ p>0

PROPOSITION 4. Let (K, Z) be in the class of CES production
functions (19). Then (16) holds.
Proof. Suppose

bF,,,(2) ,2-n
Fi,2) "1 -n

(20) >1 for O<n<l|

Then F(K,, R, + S) is a convex function of b with K;, R, fixed and §
viewed as a function of b. This is seen by computing the following

QZ_E _ | [I B bFz4,(2) -0

ab? F72(2) F3,(2)

Now note that F,.(K,, R, + S)is given by
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_[n(l — a)d-ein] vo/n
H(F) = [~7§? ]p o/
4

for K,. R, fixed. Fand Fy are viewed as functions of b only. Note that H is
an increasing, convex function. Then F (K, R, + S) must be convex in b,

since

92 F, ; (M)z 9F

— = H'"(F){—] + H'(F)-—

ab? Nan om0
This leads to a contradiction, for Fy(K,, R, + §) convex in b implies (17)
holds which in turn implies that (18) holds (sec the proof of Proposi-
tion 3). Thercfore (20) is false, (18) must be true and the result (16)

follows.
Suppose F(K, Z) is given by (19a). By direct computation

bFy2s(D) _ | l

F1,(2) na — |

(21) > |
To see that the upper bound (18) is satisfied, note that (21) is an increasing
function of « and for a = 1, (21) becomes (2 — n)/{(1 — n).

6. THE RiSKk AVERSE CASE

The following proposition assumes an extreme risk averse position.

PROPOSITION 5. Let b, be the highest cost outcome. Suppose so-
ciety chooses to maximize the worst consumption outcome C,(K,, b,). The
solution (K$*, R¥*) lies on the p.p.f. Then

(22) Ki* < K,
R¥* > R,
This proposition foliows directly from Propositicn 2.
The general problem with risk aversion is
(23) Max E{G(C)]

where G is an increasing, concave function, the solution (K¥*, R¥*) lies on
the p.p.f., and S is given by (4). It is difficult to relate the solution to the
certainty solution (K,, R,). However, one can say that the direction of the
effect of risk aversion is to accumulate less capital but save more resource
reiative to the risk neutral case.

PROPOSITION 6. The solution to the problem with risk aversion
relative to the solution to the problem with risk neutrality satisfies
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(24) K3}t < K¥
R¥* > R¥,

The proofis in the appendix.

7. SUMMARY AND CONCLUSIONS

The analysis of the two period model with consumption fixed in
period 1 and maximized in period 2 can be summarized as follows: Sup-
pose the cost of the substitute b is known initially. Then the value of the
resource p, in period 2 is b. By Hotelling's efliciency result p; = b/F(2)
where F(2) is the discount factor. Then the resource is used initially up
to the point where its marginal product equals p, and the reniaining re-
source is used in period 2. Assets available for period 2 are (K. R,).

Now suppose at period 1 b is a random variable with mean b. The
outcome for C, is a decreasing, convex function of b. That is. the increase in
G, for b less than b is greater than the decrease in ¢, for b greater than b.
One would like to shift the asset mix (K, R,) along the production possi-
bility frontier to achieve two objectives: (1) increase £{C,}: (2) reduce the
variance of C,. One can show that a welfare improving shift with respect
to (2) is to use less resource initially. produce less capital, but save more
resource. This strategy can be justified on the basis of ufficiently strong
risk aversion.

Objective (1) is equivalent to increasing the convexity of C, with re-
spect to b. It is shown that it is also equivalent to shifting to a period 2 re-
source demand function which, for a fixed price b, is more flat. In turn the
responsiveness (variance) of substitute production te the outcome of b is
increased. It seems intuitive that thc appropriate shift is to give more
capital but less natural resonrce to period 2 (a shift in the demand func-
tion to the right). With more capital K,, C, will increase faster than before
as b decreases below b: and as b increases. at least the capital is there to
help offset the increased cost. That is. one expects C, to be more convex
in . It was provesd that this intuition is right for a class of CES produc-
tion functions. That is, in order to increase £{C,{, the initial price of the
resource should be less and more resource should be used initially to pro-
duce capital. The assets saved for the future should contain more capital
and less natural resource.

In general the two objectives are in conflict and the direction of the
shift in natural resource usage and capital accumulation depends on the
relative magnitudes of the consumption convexity effect and the risk
aversion effect.
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Figure §

APPENDIX

Proof of Lemma. Reversing the role of R, to now become the inde-
pendent variable, define

(25) p(Ryb) = Fo(Ky Ry + ) — F(K\.R — R) F(Ky R, + S)

where K, is given by (2) and S is given by (4). First it is argued that
Fx{2) convex with respect to b implies ¥ concave with respect to b. F,(1) is
independent of b and if § > 0, then F,(2) = b. Therefore any nonlincarity
in y arises fron F(2). Hence the result follows if § > 0. For § = 0 both
yand F(2) are horizontal lines as a function of b and the result still holds
(see Figure 5).

Note that R} must satisfy

i)

= Fiv(R¥ =
dR,| ~ Elp(RE, b)) =0

(26) E{

and from (5) R, must satisfy y(R,,B) = 0.
Then concavity of y with respect to b implies
E{y(R,.b)} <0

with strict inequality holding since y is strictly concave when S > 0.
Suppose that y is a decreasing function of R,. Then in order to restore
equality in (26) it is necessary that R¥ < R, which yields the result (16).
Now note that
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Foz(2) = 2F,(DFap(2) + FL()Feg(d) + Fee(l)  ifS = 0,
9 .
R, |F@F,0) + 22D (B OF,L0) - FL@] S - 0,
F,2(2)

In both cases (1) implies that y is a strictly decreasing function of R, which
was needed for the argument above.

Procf of Proposition 62  Define
(27) W(Ryb) = G'(Cy(R,, b)) y(R,, b)
where C, and y are given by (3) and (25) respectively. Implicitly X, and §
are given by (2) and (4) respectively. Then it is necessary that R¥* satisfy
E{w(R,,b) = 0
Define 6° so thai
Y(RED) = 0

The solution R** must be independent of scaling G by a constant. There-
fore, let G'(C,(R*,5%) = 1. Then

w(REH) = 0

and for h = b° w(R¥, b) > Y(RE, b)since G'(C(RE, b)) is an increasing
function of &. (See Figure 6). Hence,

(28) Etw(RY.b)] > E{p(R$.b)) - 0

2This proof was suggested by Michael Hoel.
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Note that

IR, JR,

Hence 3y/é R, < 0 impiies dw/dR, < 0. Hence E{w(R,, b)] is a decreasing
function of R;. Therefore, to restore equality in (28) it is necessary that
R#* > R¥ and the proposition follows,

The Ohio Stare Universigy
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