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AnnaLc of Economic and Social Measurement /2. /977

FUZZINESS IN ECONOMIC SYSTEMS,
ITS MODELING AND CONTROL

B S. S. L. CHANC AND H. 0. SIFKI.FR

Control engineers have Just begun to investigate the properties of j:zv systems. These
systems contain stochastic variah!ec whose distributions are no: known cmnpleu'ly. On/v some
of the properties of these variables ?nay be known, the hounds for instance. In thu cave, the
theory of fuzzy dynamic programming has shown that there is no unique control solution.
Rather there is a set of optimal policies depending on the risk one is willing to take, The
least risky policy minimizes the 'naximmu loss,

This paper introduces the concept of fuzzy systems and fuzzy dynamic programming to
economic systems. There are a tiumber of possibilities for Jizzines.s in economic cisterns. We
present a general concept and illustrate it with one case,' stochastic coefficients which are
bounded but where the entire distribution iv not known, .45 an example, the control laity for a
'fuzzv'firsz.order 'nult:plier.accelerator system are developed, and the solutions are anali':ed.

I. INTROI)UCTION

In recent years, both economists and control theorists have been working
with systems which contain a variety of uncertainties. The simplest ap-
proach for introducing uncertainty was to add random variables to the
linear equations of the model. The solution to this problem is well known
and in economics involved the introduction of the certainty equivalence
Concept.

The next step was to assume that the coefficients of the model were
stochastic. Chow [I] developed the macroeconomic stabilization policy for
the case of stochastic coefficients. He showed that the policy involved a
linear feedback rule which was dependent upon the joint density of the
coefficients in the initial period. Chow presented two methods for comput-
ing the means and covariances. The first was Bayesian; the second was an
approximation utilizing the asymptotic distribution of the structural pa-
rameters from which the reduced form parameters are then derived.

However, Chow noted that in making the control laws dependent
upon the joint density of the coefficients in the ipiftial period, information
about the coefficients obtained during the control period was not being
utilized. Methods of efficiently obtaining this information and then using
the new information optimally for control come under the heading of
adaptive control problems.

However, these techniques do not take into account some of the un-
certainties that decision makers face in actuality. First, it is known that
there are alternative specifications of economic systems which yield widely
different results about policy multipliers. Second, it is a fact that economic
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data arc revised so frequently that the state of the system (even if that

could be precisely specified) last period is not known with certainty.

Third, when data revisions do occur, they may be substantial. 1 hen the

original coefficients of a regression and the regression referring to the

same period hut using the revised data may differ substantially.

Given the vast uncertainties, it is unlikely that the error should he

represented by a probability distribution where the mean and covariances

can be computed at a given instant. However, if the probability (liStri-

bution is now known or cannot be used, none of the aforementioned

techniques are applicable.
A new set of techniques have recently been developed to handle

stochastic control problenis where the probability distribution of the co-

efficients or errors need not he specified. All that is required is that the

error or parameter be bounded. This new technique is known as fuzzy
dynamic programming, and the analysis show: that there is not a unique

optimal policy, but a set of policies depending on the risk that is accept-

able. The most risky policy gives the least cost under favorable condi-

tions, but the largest loss when the uncertain parameters display the worst

possible outcome. The least risky policy minimizes the maximum loss
(mini-max). However, this policy frequently yields a non-linear compli-
cated control law, but there is an approximate hut simple solution to this
least risky policy which is called guaranteed cost control. It is also possible

to obtain the entire set of optimal controls, with each depending on the
risk preference of the decision maker.

In this paper, we shall first develop and explain sonic of the tech-
niques of fuzzy dynamic programming. We shall then apply this technique
to controlling a stochastic multiplier-accelerator system where it is as-

sumed that the distribution of the coetlIcients is unknown but bounded.
Since we arc analyzing a simple first-order system, it is feasible to derive
the exact minimax solution, and we need not examine the guaranteed cost
approximation.

II. Fuzzy DYNAMIC PROGRAMMING

A. An Economic Mode!

Assume that our economic system can be represented by the first
order system:

(1) Yr + i = A V, 4 B G

where both A and B are stochastic coefficients. There are alternative as-

For an example, see the inventory equations iii H. 0. Sick !ers. Icononiic Forecasiing
(Praeger, 1970) Appendix A.
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sumptions which might he made about these coefficients. First, we could
estimate A and B from past data using appropriate statistical techniques.
However, this would not he an appropriate approach for controlling the
economy if the structure of the economy were changing and if the coeffi-
cients varied with time. An alternative assumption that has been made is
that the coefficients A and B are composed of a known value plus a
random disturbance, i.e.

(2) A=A+ea and B=+e3
where e0 and e8 are assumed to be distributed as normal and independent

e or white. However, given the gross uncertainties inherent in the world we
can not realistically assume that we know A, and the distributions of

e e0, e precisely.
We, therefore., propose another approach, which we feel more realis-

c tically reflects the real world in which economic decisions are made. Ve
shall assume that the decision maker must control an economy about

1- which there is some-but imprecise information. For instance, while there
St may be a consensus about the possible range of the A and B coefficients.
ss we explicitly assume that there is no knowledge about the exact disiribu-

110,1 of the random variables.
is Suppose equation (I) had been derived from the multiplier-accelera-

,lc tor model:
he (3) Vt + i + G1

= '(.' i - .v,)
ue Then the A and B coefficients of(l) would then he

ed. (4) A=C', and B I

lye
ost Some information about c is obviously available. We know that c cannot

be greater than I, nor is it likely to be as low as .7. However, we are not
sure which of the values c is likely to take in the interval 0.7 < e < 1.0.
Similar information would be available about v, but our discussion will
concentrate on c.

hrst B. The Theory of Fuzzy Sets [21 and Programming [3]:

This state of incomplete knowledge can be represented by describing
c as a fuzzy set: a membership function on the real line as shown in
Figure 1. For any given x, mn(x) represents the likelihood of c = x given

as- our imperfect knowledge. This membership function may be considered

a sting
akin to a subjective probability distribution, where these prior probabili-
ties are based on the decision maker's own experience, knowledge and
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hgure I The parameter c as a fuizy set.

perceptions. If a value between 0.8 and 0.9 is highly likely, then p is close
to 1 for 0.8 x 0.9. Outside this range p falls gradually to zero. The
fuzzy set can also be described by its level set S = k:p(x) The
level set becomes smaller and smaller as v is increased, It is possible to pro-
vide an interpretation of a. This parameter determines the cut off between
those values of the coefficients which the decision maker would consider
and those which are considered irrelevant or extremely unlikely to occur.
For each value of a there is a set of optimal policies, and, in practice, it
would he necessary to undertake computer simulations to determine the
sensitivity of the sets of policies to the value of this parameter! In general.
the state equation can be written as

where q1 is a r-dimensional vector consisting of r uncertain parameters
(corresponding to the numhei of uncertain coefficients in our model) and
is represented as a fuzzy set in E' space.

While (5) is representative of our imprecise knowledge of the system,
we must now explain how a decision maker would proceed. We assume
that he selects the values of the coefficients which after careful considera-
tion of all the factors, seem subjectively most appropriate to him. Inter-
preted in the fuzzy set model, it means the selection of a ttireshold mem-
bership a, and only the possible values of q with a membership a or
higher will be considered from this point on:

qES,,
Equations (5), (6) and the usual cost function equation, which may or may
not include the parameter q explicitly, now represents the control problem

21n Seciwn Ill below, we show how the policies for our simple model would vary with
changes in uncertainty. However, as a caveat, it should be noted that when there are many
coefficients in the system, it may be difficult to characteri,e the boundary of the fuziy set.
As yet, no generally valid solution to this problem has been developed.

I 00
Zs
11.7)1 11.85

= f(.v1, u, q,)
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to be solved. It is intuitively clear that any control law would give a range
of values for the cost, corresponding to the various values of q in S. If a
control law is such that no other control law can do better for both themaximum and minimum costs (q Sj, it is said to be one of the set of
optimum control laws. The one which minimizes the maximum cost is
said to be least risky, and its risk parameter p = 0.

C. Soluiiop to the Economic Model
a. Problem restatement

Equation (1) can be written in the form:

(7) x,1 = (A0 + a,)x,- + (B + b,)u,
where (A0, B0) is the midpoint of Sa and dependent on a, and aand b, j specify the range of Sa. The variables a, and b, arc not
known at the time of choosing U,. The cost function is of the form

(8) J,= (x + Qu) + Px

The problem is to select u, t = 0, I, 2 . . . N - 1 to give the lowest J0. The
control law has the form

u, =

with (9), J can be expressed as

J, = C,x
where C, satisfies the recurrent equation

C, = I + Qk + C,,(A, -
C=P

b. Risk factors and minmim and Minmax solutions

In the above we have not yet specified the exact values of A, and B,. If
A, and B, are chosen to minimize (maximize) the RHS (right hand side)
of(l I), the resulting C, gives the lowest (highest) value off, or Jmfl, (",na,)-
Given any sequence k,, t = 0, 1,2 . . . N - 1, there is a corresponding

mjnand fl,a,. There is no unique optimum solution as it depends on how much
relative weight we place on the J, and 'ma Let J be defined as

'p (I - P)ma + pJ,,,,,,
and p is called the risk parameter. For any given p. 0 < p < I, there is an
optimum sequence k,, a' = 0, 1 . . . iV - 1, which minimizes J.
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We note that if k, > AO/BO, then a = ?flah = 1b would result in a higher
cost. Therefore the mininiax k21 is 40/B0. This is the policy which would
be used in a deterministic case if the cost of using policy is ignored.

The coefficients C', are calculated from (11) and (12) using A, B,
and k for the minimum solution and using A4, 8, and k2 for the
minimax solution.

c. Steady-state solution

If N approaches infinity

C, = c,4, =

We note (8) and (10) are of the same form

(16) k ABC
- Q + CB2

Substituting (16) into (1 l)gives

C = I ± 42C -- A282C2(Q + CB2Y'
Equation (16) can be solved for C

C= Qk
B(A - Bk)

Eliminating C between (17) and (18) gives an equation for k:
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We now present the minirnin and minimax solutions:

(1) p = I (minirnin solution)

A, = - = A

B, = B0 -i- h

A

= B,

=
Q + C,IB

(2) p = 0 (minimax solution)

A, = A0 + tn = A4

B, = B0 - nib =

(14) L(2) = mm
"S

where



k2 + (I - A2
+ -k -

\ AR QAJ

where

l('l - 42 B
2\AB QA

Equation(18) can be used only jfk satisfies (19). For other values of k, C
is obtained directly from (ii)

= i+Qk2
1 (A - Bk)2

The minimum and maximum valacs of C correspond to the minimum and
maximum values of A - BK I in the allowed ranges of A and B, if
A - BK < I. Otherwise the maximum cost is for A - BK = I

andC=

Ill. Cor'ci.usio AND INTERPRETATIONS:her
tild In the previous sections we developed the rationale and some of the

methodology of fuzzy dynamic programming and illustrated it with a sim-
B, pie first-order example. Starting with a membership function, it was pos-
the sible to define the range of the stochastic coefficients. After a particular

value of that function is selected, a set of possible policies can he deter-
mined, with each policy dependent upon the risk the decision maker is
willing to assume. The procedure was illustrated for the riskiest (minirnin)
and the least risky policies (minimax).

It should be noted that fuzzy dynamic solutions are unlike the con-
ventional stochastic control problems. In the latter case, with an exact
known distribution of the random variable, there is only one solution
which minimizes the expected vtlue of the loss functions. With fuzzy dy-
narnic programming when the range of the coefficients is known, there is
a set of solutions.

Given the set of solutions, it is desirable to focus on the properties of
the extreme cases. We therefore assume reasonable values for A and B,
and calculated how the vigor of policy (the gain) was related to the cost
associated with changing policy, Q. It can be seen from Figure 2, that
policy was used more vigorously in the minimax solution than in the
niinimin case.

Equation (19) shows that the minimax policy may he even more vig-
orous than the solution obtained from a deterministic model in which the
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Figure 3 Minimum and maximum cost versus Q.
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Figure 2 Minimin (p = 1) and minimax (p = 0) gain versus policy cost Q.
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Figure4 Minimum and maximum cost vcrsus gain.

cost of using policy, Q, was considered. However, the policy never exceeds
the full "gap", which would be the deterministic solution when the cost of
using policy was ignored.

Figure 3 demonstrates that a minimin policy yields the lowest costs
when the most favorable events occur, but an extremely high cost under
the most unfavorable circumstances. The two outcomes for the minimax
policies lie within these bounds.

In Figure 4, we consider the cost and gain for the entire set of solu-
tions. In our example, the optimum range of the gain5 lies between .328
and .667. If the gain were larger than .667 BOTH the minimum and the

3The result presented here holds only for the first order case. In general there is a set of
optimal solutions which have the characteristic that any other solution which gives a lower
minimum cost would also give a higher maximum cost, and vise versa. Moreover, in gerl-
oral the derivations of solutions for higher order systems are more complicated than are
presented here and the optimum set cannot be represented by thc gain.
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miximum cost are larger than the corresponding value at .667. Similar re-
sults hold br gain tess than .327. If we choose a gain within this range, an
of/Icr .vo!utwn it/lid! gites a lower mInI,nim? (I tsiiithl (lu'fl glee (1 Jliç'/ls'r
inoxiniu?fl eosi, and vice' versa.

Since all these results have been determined lr a given value of s, it
would be appropriate to determine how the policies would vary if the un-
certainty increased. If ec were decreased, the range of possible ValUes OF the
coefficients would be increased, i.e. the uncertainty is increased. Using
Equation (19), it can be shown that regardless of which coellicient displays
an increase in uncertainty the vigor of the minimin policy is reduced.4

For the minimax policy, equation ( 19) shows that an increase in un-
certainty in the A coefilcient. would increase the vigor of policy. An in-
crease in the uncertainty about the policy multipter. the B coellicient, may
either increase or decrease the vigor of policy. H owever with (2 I. (i.e
the costs of using policy are no greater than those associated with system
deviations), an increase in uncertainty would increase the gain, provided
that it was not previously at the maximum, A0/B0. i\gain, the result differs
from that of stochastic programming. for then art increase in policy sin-
certainty in the first-order model reduces the vigor of policy.

These results even for a system as simple as a multiplier accelerator
model should serve to illustrate both the richness of fuziy programming
and its dilferences with the conventional stochastic programming solution.

SUN V. St ant' Brook
Revised December /976

4This leads to the result that with o = 0, no policy at all would he undertaken.
5This is the deterministic solution when the costs of using pol;cv are ignored.
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