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Annals of Economic and Social Measurement. 6/2. 1977

IMPULSE RESPONSE IDENTIFICATION AND CAUSALITY
DETECTION FOR THE LYDIA-PINKHAM DATA*

By P. E. Caines, S. P. Semin AND T. W. BROTHERTON**

The Lydia-Pinkham data is analysed using a recently developed systent identification algorithm.
For an observed time series this yields an estimate of the process impulse respense which we
argue is a more robust modeling device than the traditional autoregressive moving avercge
model for econometric time series. Our results are compared with some earlier results for the
Lydia-Pinkham time series. Furtker. a new multivar ate causality test on the data dramaiicaily
reveals a uni-direciional causal relationship from log-advertising expenditure to sales.

I. INTRODUCTION

One of the most important marketing problems concerns the determina-
tion of the best advertising policy. A crucial element in this problem is
the relationship between advertising and sales. To quote Bass {4]:

“There is no more difficult, complex, or controversial probiem in
marketing than measuring the influence of advertising on sales. There
is also probably no more interesting or potentially profitable mea-
surement problem than this one.”

The purpose of this paper is to identify and estimate the dynamic
sales-advertising relationships from the Lydia-Pinkham time-series data
and draw conclusions about the lag structure and the direction of causal-
ity in these relationships.

The Lydia-Pinkham data was first analysed systematically by Palda
(23} and subsequently a number of times by other workers. For these and
other related studies, the reader is referred to a survey by Clarke [14].
In this paper we use a new statisticai system identification technique that
is especially suited to identifying systems driven by correlated noise. The
correlation between residuals was, of course, a problem confronting pre-
vious analyses of the Lydia-Pinkham data. Further. we believe that a large
class of estimation techniques actually identify the so-called impuise re-
sponse of the systems generating the observations [7}. As a result we com-
pare our estimates of the impulse response between advertising expendi-

*Various parts of this research were supported by Grant §76-0342 from the Canada
Council, Grant A-9328 from the National Research Council of Carada and Grant N00014-
75-C-0648 from the Ofiice of Naval Research under the Joint Services Electronics Program.

**The authors are at the Division of Engineering and Applied Physics, Harvard Uni-
versity {formerly with the University of Toronto), Faculty of Management Studies. Univer-
sity of Toronto. and Department of Electrical Engineering, University of Hawaii (formerly
with the University of Toronto). respectively.
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ture and salces for the Lydia-Pinkham data with those implicitly estimated
by Palda. This comparison results in the general agreement that was ex-
pected. Finally, we employ a multivariable identification .lc.chniquc to
analyze the causality relationship beiween sikes and advertising for the
Lydia-Pinkham time series using a recently completed lhcory Qf cu.usul-
ity (8,9.10,17.30). This analysis dramatically reveals @ uni-dircctional
causality from the logarithm of advertising expenditures in d()ll_urs (pos-
stbly a surrogate of cffective advertising) and sales micasured direetly in
dellars.

2. PREVIOUS ANALYSES OF THE: Lypia-PinkHAM DATA

Palda’s work (23] was the first important empirical research which
found support for the existence of carry-over cffects of advertising. For
his analysis Palda chose the Lydia-Pinkham data and Koyck's distributed
lag scheme [20].' This scheme simplified the linear distributed lag model
considerably by converting a large number of (lagged) exogenous vari-
ables into a model with only one lagged and one non-lagged cxogenons
variable. While the scheme oversimplifies the dynamics of the sales
advertising relationship, it may have been necessary to employ such a
scheme given the state-of-the-art in statistical estimation at the time of
Palda’s study. The use of a greatly simplified model avoids the issue of the
proper number of lagged terms to include in the regressions.

Of the large number of regressions which he ran, Palda selected those
having the best fitting estimates, i.e., with the largest coeflicients of deter-
mination R2 These were referred to as KOYK. KOYLI, KOYL2, and
KOYLDIF and are described in Section 5 below. For the final compari-
son, he also included KOYL2 Yless for its supcrior forecasting perfor-
mance. The criterion for this was the Measure of Percentage Error (MPE).
Since this was computed on the basis of one observation only it is judged,
however, to be lacking any statistical meaning.

Clarke and McCann introduced a “current-effect’ model [15, p. 136)
to challenge Palda’s results. Given the negative signs of regression coefhi-
cient when lagged advertising variables are included (23, p. 90 5. p. 135].
Clarkc and Mc¢Cann suspected the validity of the Koyck scheme for the
effect of advertising on sales. In their current effect model. Clarke and
McCann assumed a serially correlated noise Structure to account for
carryover effects. Using the method of frequency domain regression
(FDR), they concluded that Palda’s coeflicient (.537) of current advertis-
ing in his KOYK model was 17% lower than thetrs (.642) and that Palda's

1 . . . . .
The Koyck scheme assumes geometrically declining futyre effects: i.e.. it assunies
x

Y =Aa 0 <A< in S,:k.;Z‘:Oﬂ,i U,

148




S NEDON >

coeflicient of lagged sales (.628) indicated a longer carrvover than one
ycar obtained with FDR.

In an answer to Clarke and McCann, Houston and Weiss [19] de-
veloped a model based on the theoretical rationale provided by Kuchn,
McGuire and Weiss [21]. According io them, the coeflicient of lagged
sales is interpreted as the proportion of consumers who are habitually
repeating a purchase. Thus, the carry-over effect is modelled directly
rather than through a geometric decay of advertising cffectivencss as in
Palda. Houston and Weiss use a nonlinear least squares method to obtain
the maximum likelihood estimates of paramecters. They claim to find
(i) the presence of serially correlated error terms and (ii) important carry-
over effects associated with advertising expenditures, although not neces-
sarily of Koyck type.

The dynamics of the sales-advertising relationship is stil! not fully
understood. This is possibly because (i) the estimation techniques used
to date have not dealt adequatcly with correlated errors (ii) autoregres-
sive moving-average (ARMA) models rather than impulse responses have
been the object of the estimation exercises and (iii) the data blocks are
very short considering the number of parameters that may be necessary to
represent the dynamical relationships involved. A new technique which is
now being made available is the Cholesky Least Squares (CLS) method
(7). This algorithm is described in the next section and is applied to the
Lydia-Pinkham data in Section 4.

3. MoDELLING METHODOLOGY
3.1 Impulse Responses and Rational Transfer Functions

We take as our basic system model a linear system with the input-
output relationship

3.1.n Y, = U, + U, ., + U, , + ..., forally,

where Y is the output process and U the input process. Clearly a unit im-
pulse input sequence / = {1,0,0,...} commencing at the instant ¢ yields
the impulse response S = {ag. a,. a,... .} at the system output commenc-
ing at the instant «. This, incidentaily, is also the starting point for
Palda’s discussion of distributed lag systems.

We can compactly represent the entire history of the output sequence
in response to the entire history of the input sequences using z-transforms.
Let

a(z) A i: a2, Y(2) A i Y,

i=0
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U(ya ), Uz,

then it is easy to see that by cquating powers of 2/ we obtain
(3.1.2) Y(z) = a(z}U(z2).

Notice that the system (3.1.2) must be non-anticipative because a(z) con-
tains no negative powers of z (see e.g. [13, 11]).

The obvious probiem with (3.1.1) and (3.1.2) from a conceptual and
computational viewpoint is that the sequence a = {ay, «,.. ., equiva-
lently the power series a(z), requires an infinite sequence of real numbers
for its description. There are two useful solutions to this problem: (i) As-
sume that the magnitude of the «; terms decay and hence truncate a(z) to
ay(z) = X Moz, where |e;| < ¢ fori > M for some small ¢ > 0, (ii)
Assume that the function «(z) is a rational function of z and hence that
there exists a numerator polynomial 8(z) = f.oB8,2 and denominator
polynomial ¥(z) = Y7, v,z (where n denotes the maximum degree of the
two polynomials) such that a(z) = B(z)/v(z). Notice that alternative (1)
may be viewed as a special case of (i) by setting B(z) = a,{z) and
Y(z) = 1.

If we assume that the system output (in our case sales) is disturbed
by a noise process which has a rational spectrum, we obtain [11) the basic
rational transfer function representation

. _B@ L @)
{3.1.3) Y(z) = m Uz) + ) €(2)

for the output process ¥ in terms of the observed input process U and the
unobserved input noise process ¢, where Eee = 6, where 8, = | if
r = sand 0 otherwise,

When (3.1.3) is written in the form

(3.1.4) YD Y (@) = BEW()U(2) + p(2)y(2)e(z)

we see that (3.1.4) is just the familiar auto-regressive moving average
(ARMA) system model [6).

Most parameter estimation techniques for stochastic processes pos-
scssing ARMA representations also yield estimates of the systems impulse
response. It is argued in (7] that estimates of a sysiem impulse response
are “robust™ with respect to large alterations in the ARMA mode! orders;
see also {24]. In complete contrast to this, estimates of ARMA model
parameters vary greatly with respect to order specifications. The object, of
course, in altering the orders of the polynomials in an ARMA model is
to achieve the important modeling goal of better prediction performance
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and ‘whiter’ residuals. But we wish to emphasize that the result of this
process is in fact better estimates of the underlying system impulse re-
sponse and not closer estimates of the truc ARMA model which may pos-
sess & totally different structure. This observation would appear to have
consequences concerning the behavioural interpretation of ARMA mod-
els in several areas of econometrics in addition to our immediate concern
of advertising models. This is discussed further in Section 5.3.

3.2 The Cholesky Least Squares Algorithm

The identification experiments on the Lydia-Pinkham data described
in this paper use a recently developed parameter estimation algorithm. It
is called the Cholesky Least Squares (CLS) algorithm and is described in
greater detail in [7]. in this paper, we merely give a very brief descrip-
tion of its operation.

Following the notation in the previous subscction, assume that we
have a singie input single output system defined as follows:

3.2.1 a(2)Y(2) = B(2)U(2) + c(z)e(2)

where {Y(2)} and {U(z)] are the output and input sequences respectively,
fe(2)} is a white noise sequence, and, as before, a(z), b(z), ¢(z) are the
polynomiais that describe the AR. MA, and noise MA coefficients of the
system, respectively. Suppose ¢(z) # I; if we try to make estimate of the
a(z) and b(z) polynomials using the original data and some standard
least squares technique we will introduce bias into the estimates and the
estimates are not consistent. A way to overcome this problem is to trans-
form the data by operating witl a filter ¢-'(z), where &(z) is an estimate of
c(z). Let YH(z) A é-'(2) Y(2) and UHz) = ¢-(2) U(z), then d(z) and b(z)
are estimated by least squares on the filtered data Y#(z), Uf(2); this results
in

(3.2.2) a(2)YH(2) = Bz2)UF(2) + &z2)

where €(z) is the z-transform of the resulting residual sequence. If z) =
c(z) and the orders of d(z) and [3(2) equal the true orders of a(z) and
b(z), respectively, then standard least squares theory shows that the result-
ing estimates of a(z) and &(z) are consistent.

In the CLS method a sequence of estimates é(z) of ¢(z) is obtained
by directly computing the Cholesky factors? of the autocovariance matrix
of the residuals w(z) 26, 22, 7], where w(z) is defined by

(3.23) w(z) = a2) Y(2) - b(2)U(2),
’A Cholesky factor of a symmetric positive definite matrix R is that_unique upper
triangular matrix L with positive elements cn the main diagonai such that LL.7 = R,
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./ and the autocovariance matrix R, is such that the ™ diagonal is given

by an estimate of E(w(/)w(j + i)). At each iteration of the algorithm
the filter &(z) generated at its previous iteration is used to gencrate YH(z)
and U*z). d(z) and b(z) are then estimated from (3.2.2) nsing a least
squares algorithm. w(z) and é(z) are then generated from (3.2.3) and the
entire process repeated until a convergence criterion is satisfied. We set
é(2) = I initially.

Clearly when the orders of a(z) and b(z) are set to incorrect values
this method, like all others, cannot be consistent. A theoretical analysis of
the consistency of the technique and the behavior of the resulting esti-
mates of the impulse response is presently being carried out. Highly satis-
factory simulation results are presented in [7).

Model Order Determination

Several techniques have recently been devised to determine the ap-
propriaie model orders. These techniques are based essentially on some
scheme that weighs the variance of the residuals of the fitted model against
the total number of parameters fitted [1,24,12]. We have adapted
Akaike's Final Prediction Error technique (FPE) [1] to fit into our CLS
algorithm. The estimated FPE measure is computed as

N+p+gdg+r+1,,

24 FPE,,; - d 2,
(324 N p-g-r-1°

where N is the number of data points: j is the estimate of p, the true
order of the AR part of the model; § is the estimate of g, the true order
of the MA part of the model: 7 is the estimate of r, the true order of the
noise regression, and 42 is the sampled variance of the filtered data re-
siduals, i.e.,

N

N oFar -
RS OIEEDY 8@ .y _ b

t=1 t=1 L(‘:(Z) 6(2)

In the complete CLS algorithm p and g are alternately increased up to a
value of 5 and for each pair of (p, q) the FPE is computed for vilues of »
up to 4. (The values 5 and 4 are, of course, arbitrary.) The set of values
yiclding the lowest valued FPE are taken as the estimates of p,g andr.

Multi-Output Systems

A multivariable version of the CLS algorithm is used in the causality
test in Section 4. It estimates the polynomials q,(z) a, () and the

ey 0

matrix of polynomials B(z) by identifying row by row the model

A(z) Y(z) = diag(afz)) ¥(z) = B(2)U(z) + C(2)e(z)
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using the single output program repeatedly, where #y is the dimension of
the output process Y. The matrix C'(z) is then estimated by taking a
Cholesky factor of the covariunce of the vector residual sequence H(z) A
A(2) Y (z) - B(z)U(z) with a suitablec number of diagonals.

4. COMPUTATIONAL RESULTS

In this section, we present the results of the application eof the
Cholesky Least Squares algorithm to the Lydia-Pinkham data 23, p. 23).
This data set consists of annual end of year sales and advertising for the
years 1907 to 1960 inclusive. This provides a set of 54 data points. In
terms of thousands of dollars the sales have a maximum value of 3438, a
minimum value of 921 and a mean value of 1840. For the advertising ex-
penditures these figures are 1941, 339 and 941, respectively.

In addition to advertising expenditure. we followed Palda in taking
three dummy, or *“off™ -“on”, variables as causal factors. These cor-
responded to three successive periods in which the quality of the advertis-
ing copy for the vegetable compound was signilicantly different. In turn
these periods correspond to times at which the company made different
claims in its advertising copy in response to varying policies of the FDA
and later the FTC. Palda’s three dummy variables were labeled D] -D3
and were prescribed as follows: D1 has the value | from 1908 to 1914 and
was zero otherwise, D2 has the value | from 1915 to 1925 and was zero
otherwise and D3 has the value | from 1926 to 1940 and was zero other-
wise.

We did not follow Palda in taking either disposable income or a time
trend variable as causative or explanatory variables. This was due to the
fact that out of Palda’s five best models with which we were concerned,
only two contained time trend, and of these only one contained dis-
posable income.

All the time scries which we used were centered by subtracting off
their mean values before any regressions were computed. This merely has
the effect of removing the constant term which appears on the right hand
side of Palda’s equations.

4.1 Log-advertising Related 1o Sales

In this section U denotes the centered log-advertising variable and S
the centered sales variable. The D' variables are also centered. Note that in
the present version of the CLS algorithm, standard errors of the parani-
eter estimates are not available. These will be generated by a forthcoming
modified version of the algorithm.




Order and Parameter Estimation Using the Cholesky Least Squares
Technique

(i)  Fortheinitial values p = |, ¢ = 0 we obtained r = 4 and the model:
4.1.1) S, — 06158, | = 822.175U, — 179.859D} + 146.461D?

— 65.683D) + 145.355¢, -+ 40.408¢,_, + 7.857¢, ,

+ 0.561¢,_3 + 5.799,_,

(i) The next model was obtained when the Akaike FPE attained a local
minimum {7] and the residual error sequence was found to be uncor-
related at the 5% level {2, 6]. The values of p, g, r were 3, 1. 4 and the
resulting model was

(4.12) S, — 1.054S,, + 0.149S,_, + 0.173S, , = 1434.1330,
~1108.522U, _, ~ 331.682D! + 169.021D!_,

— 34202707 + 438.634D2., - 65.544D) + 63.876D)
+ 159.934¢, — 56.259¢_, — 36.503¢, , — 6.77d¢, ,

- 0941c,_,

(iii) The final model was obtained when both the Akaike FPE and the
prediction error variance attained global minima [7). However, this
mode! did not pass the whiteness test in contrast to model (i1) above.
The values of p, ¢, r were 5, 3, 4.

(4.13) S, - 0.770S,_, + 0.010S,_, + 0.210S, , - 0.1675, _,
+0.1735,_ = +1375.339U, - 623.683U,
+64.019U,_, — 1509580, , — 190.836D)
+45885D! | — 278.126D_, + 222.961D!
~201.367D2 — 135.333D2, + 508.116D2
—45.705D7 , + 4.104D} — 176.684D? , + 277.849D
~ 92.182D) , + 122.630¢, + 13.065¢ , — 9.353,_,
~ 36.522¢,_, - 9.947,

4.2 Causality Experiments

There has been some discussion in the literature on the topic of the
direction of causality between sales and advertising expenditures [4].

Over the last few years a rigorous theory of causality between station-
ary vector time series has been produced. We shall not go into that in de-
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tail here but shall refer the reader to the papers by Granger [17], Sims [30],
Pierce and Hough [25], Caines [8], Caines and Chan (9, 10}, and Wali [31].

Granger’s [21] original definition of causality between two stationary
stochastic processes is as follows: the process U drives, or is causal to, the
process S if and only if

U, 14U, s = 0, 11U, forallk > 1,

where /\A’H,‘ [{Z"} denotes the lincar least squares estimate of the process
X at the instant ¢ + & given the observations {Z'} A (Z,272,_,, Z,_,, ...).
This condition has the interpretation that U is causal to S if and only if es-
timates of future behavior of U given the past history of U and S are equal
to the estimates given only to past history of U. Sims (30}, Caines 8], and
Caines and Chan {9,10] produced a set of cquivalent formulations of this
notion. One of these (see {9, 10]) states that U is causal to S if and only if
the non-anticipative linear least squares (Wiener) filter estimating S, from
the observations { U'} is identical to the anticipative filter which uses the
observations {U =} i.e.

S,1tut = §1tu-y.

In {9, 10] an important equivalent operational definition is given in

) . . LS .
terms of the innovations representation of the joint [L’] process. Consider
the innovations [32] or Wold [33) representation of the bivariate process

[‘ZJ with respect to the bivariate orthogonal process e:

S

4.2.0 [UJ =6+ Ple | + Ple, + ...,
t

with E¢¢] = 25, where £ is a 2 x 2 matrix, and where the superscript T

denotes transpose. Then the process U drives, or is causal to. the process

S if the representation (4.2.1) has an upper triangular structure, i.e.

S I 0 ¢|l| 4’}2 d’fl ‘f’fz
= (,+ f,_|+ . (,_2+....
Ul o 1 0 0 ¢35

We remark that in {8,9, 10] this relationship is called the “feedback-
free” relation for reasons which are explained in those papers.

The bivariate version of the CLS algorithm [7] identifies uniquely de-
fined models of the form

a2y 0 |[S] [e.2) ¢u][
(4.2.2) = ,
] a)(2)| (U _¢2|(Z) d(2) ¢
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¢
k- .
.

jl

where all the displayed functions of z in (4.2.2) are polyromials. Now, as
obscrved also by Wall {31}, it is clear that U drives Sif and only if ¢,,(2) is

zero in this model.

We wish to emphasize that in both the thecory and application of this
causality critericn the universe of obscrved stochastic processes is just the
set {5, U/}. The questions whether (i) driving occurs via an intermediate
process, or (if) both § and U are in some sense driven by a third process,

I
‘l [(l (Z]' = Ean\

are not answercd within this framework. Such questions may be the
most important concerns for an experimenter [16}). The fact that the

: : S
unique (cannonical) inriovations representation of the process [U is used

in the definition above means that the theoretical question of the direction
of causality between S and U may be answered unambiguously. In par-
ticular, the “observational equivalence™ ambiguities in the causality tests
cited by Basmann [3] do not occur with our formulation. Finally, we wish
to point out that the identification of a model of the form (4.2.2) does not
in any way prejudice the conclusion concerning the direction of causality.
In fact both hypotheses “S causes U™ and “U causes S™ are nested within
the hypothesis S and U are in general relation™ (i.c., all hy(z) in (4.22)
are non-zero). We refer the reader to Haavelomo [ 18] for an earlier discus-

sion ol the value of nested hypotheses in model estimation when the direc-
tion of causality is an issue.

In our experiment the CLS algorithm was used to estimate a modecl of
the form (4.2.2) for the centered bivariate sales and log-advertising scries.
This resulted in the following model of the form (4.2.2)

1 — 0.830z2)

(4.2.3) (
0

10.289
0.000

[0.252
0.000

with

0

1309.17

-390.78

I

!

Il

(1 - 0.7842)J

0][¢"

0.022 52_
€

~0.153]] €3, _

- ¢ 1,2 2
E (2 ’[‘ € ]I =

Despite the small variance shown by the ¥

813

56

]
5129 6.266
6.266 0.007

[0.156
+
. 10.000

L

0.214  608.297][¢
+
.~ |0.000 —0.187 Ll
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—113.2
0.1
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very important result, It dramatically reveals a causal effect between the
centered log-advertising and centered sales time series,

In the causality detection experiments on Gross Domestic Product
and Unemploymeni described in [8.9. 10]. various statistical tests were
employed. Analogous tests cannot be carried out here because of the luck
of estimates of standard errors of parameter estimates in (4.2.3). The de-
sired statistical tests will be performed later using a modified version of
the CLS algorithm. This should also reveal whether the causal relatien-
ship detected above is strong or weak (see [8] where strong causality is de-
fined as a causal relationship without instantancous feedback.) We would
like to remark. however, that the causality effect in (4.2.3) appeurs to be
more powerful than the corresponding relationship from GDP to Unem-
ployment obtained in [9, 0],

An identical experiment using the centered advertising and centered
sales series does not reveal a significant causal or driving effect. This
should not cause too much surprise since the causal relationship we are in-
vestigating is defined in terms of linear process representations, We re-
mark that a nonlinear generalization of this theory has recently been pro-
duced [34]. The fact that the logarithmic transformation of advertising
expenditures yields such a strong causai relationship shows that it yields a
suitable variable for a linear causal relationship. This suggesic the hypo-
theses that (i) sales are related in a direct lincar fashion to a measure of
effective advertising and not dollar advertising: (ii) a measure of this effec-
tive advertising is a diminishing returns to scale function such as log-
rithm. (The diminishing returns to scale effect is. of course, generally ac-
cepted as being reasonable.)

We remark that other empirical studies. including Benjamin and
Maitland [5], have used the logarithmic transformation of advertising ex-
penditures as a resonable measure of effective advertising. Futher, Sethi
[28] has obtained optimal advertising policies for this type of model.

5. INTERPRETATION OF RESULTS AND CONCLUSION

5.1 Log-Advertising related to Sales

We next compare our log-advertising to sales models with the
KOYL! and KOYLDIF models of Palda. With U denoting the log-
advertising variable, the KOYL1 Model is as follows:

5.1y 8, - 06338, , = —2924 + 1226 U, - 20D} + 215D - 164D}
(0.150) (564) (186) (130) (126)

Comparing our CLS model (4.1.1) with (5.1.1) we sec that they all
possess an a, coefficient in the neighborhood of —0.6. In fact the estimates
of a, differ only by 3% in the models (4.1.iyand (5.1.1).
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TABLE 1
COMPARISON OF LOG-ADVERTISING TO SALES TRUNCATED IMPULSE RESFONSES

Impulse Resporse Cocilicients*

ARMA S, =

M odel

Order = (p,q.r) U TU U Uy | U, & |t “:2, f',"‘ -4

KOYLI(5.1.1) 1226 | 776 491 311 197
(1.0.0)

KOYLDIF (5.1.2) 1326 | 697 366 193 102

Model 4.1.1) 822 | 507 311 191 HIZ (145 | 130 88 54 39
(1.04) )

Model (4.1.2)) 1434 | 403 211 -86 | —191 [ 160 | 112 | 58 10+ —27
3.1.4)

Model (4.1.3) 1375 | 435 385 | -147 21 123 | 107 72 -8 -19
¢34 1 L]

*In this table U denoter the log-advertising variable. lere we ignore the D' terms for
each of the models.

The KOYLDIF model is:

(512) 8, - 03708, = —1903 + 0.527(S,_, - 0.3708,_,)
(0.170)

+ 1326 (U, = 0370 U,_,) - 41D + 165D + 108D

(552) (168)  (120)  (114)

In order to compare the respective truncated impulse responses of all the
log-advertising models we present them in Table |

The reader should notice that the operation in the KOY LDIF mode}
ofdiﬁcre;xcing both the S and U serics by (I — 0.370z) leaves the U to .S
impulse response unchanged. The purpose of this differencing in Palda’s
model is to obtain a suitably white residual sequence for the data on
which to apply the least squares technique. However. as explained in
Section 3.2, such operations are carried out in a more flexible and auto-
mati¢c manner by the CL.S method.

From Table I we sce that the impulse response of (4.1.1) differs sig-
nificantly from those of (5.1.1) and (5.1.2). whilst the impulse responses
of these latter two models are seen to resemble one another,

A compirison of the impulse response of the CLS model (4.1.2)
with those of the modcis (5.1.1) and (5.1.2) shows a difference of 15°, and
18%, respectively between the leading terms, as a fraction of this term in
{4.1.2). These terms are, of course. identical to the by, or the ‘feedthrough
terms, in the respective models.

The final model (4.1.3) chosen by Akaike's FPE criterion would ap-
pear to be over paramcterized. However, it is significant that the impulsc
responses of (4.1.2) and (4.1.3) agree to within 4° on the first term and 7,
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on the second term. Furihermore, the leading terms of (4.1.3) and (5.1.1)
and (5.1.2) differ by 11, and 4", respectively. and the third teems, ic.,
the coeflicient of U, , differ by 8°, and 2%, respectively, where all per-
centages arce taken with respect to the leading term of (4.1.3).

The conclusion we draw from the results above is that there is rough
agreement between the models described by Palda and the models (4.1.2),
(4.1.3) presented above, given the limited amount of data available. Note
that the Akaike criterion, which is known to work excellently for large
samples, chose high order models for the CLS algorithm. On the face of
it the high order a(z) polynomials which were chosen deny the Koyek
hypothesis of a first order geometric decay of the impulse response.

We have said that we view all of the estimation methods in this paper
as being basically impulse response identification methods. Therefore we
regard it as an important fact that the decay of the impulse response for
the models (4.1.2) and (4.1.3) chosen by the CLS algorithm was approxi-
mately 30%, after one year and 15 30%, in the second year as a fraction of
the leading terms. Furthermore, the succeeding term is negative in both
models, but is an order of magnitude smaller than the leading term. We
could therefore say that these two models indicate a positive carryover
effect of two years beyond the current year. (It is an important fact that
this observation is corroborated by the bivariate model (4.2.3)). The esti-
mated impulse responses for models (4.1.2) and (4.1.3) imply that adver-
tising cflectiveness decays in a different fashion than the constant 60°,
rate of decay obtained by Palda.

Itis interesting to note that the immediate gain factor of the impulse
responses of (4.1.2) and (4.1.3) is approximately 1350. This means, for
exampic, that an increment from the mean in advertising expenditure of
$10,000 results in, approximately, an immediate increase in sales, from its
mean, of $50,000. The respective figure for an advertising expenditure
increment of $160.,000 is $103.000. This has implications for optimal
advertising policies. The reader is referred to Sethi [29]) for a comprehen-
stve survey of dynamic optimal control models in advertising.

5.2 Advertising Related to Sales

An identical experiment was performed with respect to advertising
expenditure in thousands of dollars. We shali not describe this experi-
ment in detail but merely give the results in Table 2. This is for two
reasons: (i} space limitations and (i) the fact that significant causality
results were not obtained for this cuse.

5.3 Predictive versus Explanatory Models

In this conclusion a remark is in order concerning “‘explanatory™
versus “predietive’™ models. I it is taken as a basic assumption that the
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advertising to sales impulse response cannot have negative terms, i.c., if it
is assumed that those terms of behavioral significance in the explanatory
models cannot be negative, then techniques such as least squares or
Cholesky 1.cast Squares estimation cannot in general be uscd. This is be-
cause, in general, rational transfer functions will yield impulse responses
unrestricted in sign. The notable exception is that in which the a(z) poly-
nomial is of order one, with a, negative, and in which b{z) huas positive
cocflicients. Notice that all of Palda’s models fall in this special class. In
general, one must either abandon the attachment to “explanatory” mod-
els in the search for models which constitute the best predictors, or carry
out a constrained parameter search when finding the best predictive model
which (i) lies in a certain model class (i.e. for given orders of the terms
in the ARMA representation) and (ii) has an impulse responsc which is
positive for a prescribed number of terms. In principle this task can be
accomplished by using constrained optimization routines in the identifica-
tion algorithms. Of the two alternative courses of action described above
we have obviously chosen the former. However, as this point is not ap-
parently discussed in the literature, itis perhaps worth reiterating that the
choice of ARMA models with the degree of a(z) greater than or equal to
2 will in general yield models that are open to the objection that they do
not satisfy the required positivity assumption of the “explanatory”
models.

5.4 Causality

Finally we come to the impressive results of the causality analysis.
As we said in Section 4.2, we regard the numerical results for the causality
detection experiment between log-advertising and sales as being quite re-
markable. They show an extremely strong linear driving relationship be-
tween log advertising and sales. The behavioural interpretation is that,
measured in terms of the logarithmic transformation, advertising expendi-
tures in thousands of dollars drive sales measured directly in thousands
of dollars. This would indicate that advertising expenditure decisions by
the Lydia-Pinkham management caused variations in their sales perfor-
mance while the converse did not occur. This is in contrast to the practice
of basing advertising expenditures on a fixed percentage of sales, as has
been shown [27] to occur in the automobile industry.
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