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Annals of Economic and Social Measurement, 5/4, 1976 

A COMMENT ON DISCRIMINANT ANALYSIS “VERSUS” 

LOGIT ANALYSIS’ 

BY DANIEL McCFADDEN 

This note contrasts discriminant analysis with logit analysis. In causal models, it is seen that forecasting 
leads to classification problems +ased on selection probabilities. The posterior distributions implied by the 
selection probabilities and prior distribution may provide a useful starting point for estimation of the 
selection probability parameters in a discriminant-type analysis, but this procedure does not tend to be 
robust with respect to misspecification of the prior. In conjoint models, on the other hand, the posterior 
distributions and selection probabilities are alternative conditional distributions characterizing the joint 
distribution. In these models, it is generally not meaningful to examine the effects of shifts in explanatory 
variables. 

I. INTRODUCTION 

Consider an experiment in which individual characteristics, attributes of possible 

responses, and actual responses are observed for 2 sample of subjects. Suppose 

the sets of possible responses are finite, so the problem is one of quantal response. 

One approach to the analysis of such data is the logit model, which postulates 

that the actual responses are drawings from multinomial distributions with 

selection probabilities conditioned on the observed values of individual charac- 

teristics and attributes of alternatives, with the logistic functional form. A second 

approach is discriminant analysis, which postulates that the observed values of 

individual characteristics and attributes of alternatives are drawings from post- 

erior distributions conditioned on actual responses. 

When the posterior distributions in discriminant analysis are taken to be 

multivariate normal with a common covariance matrix, one obtains the implica- 

tion that the relative odds that a given vector of observations is drawn from one 

posterior distribution or the other are given by a logistic formula.” This seems to 

have led to some confusion as to whether these two approaches provide equally 

satisfactory interpretations of the logit model, and whether the statistical 

estimators and applications which seem natural for one of the models have some 

reasonable interpretation in the other model. In this comment, I will write down a 

common probability model for the two approaches, and use it to clarify these 

issues. 

II. OBSERVED VARIABLES 

Consider a typical quantal response experiment, for example a study of travel 

mode choice. The possible responses of a subject in a particular experimental 

setting are indexed by a finite set B={1,...,J}. With each response j¢€B is 

associated a vector z; of observed variables and vector é of unobserved 

variables. We define z = (z,,..., zy) and €=(€,,..., &;). 

This research is supported by NSF Grant No, GS-35890X. The question addressed in this 
comment was raised during the NSF-NBER Conference on Individual Decision Rules, University of 
California, Berkeley, March 22-23, 1974. I benefited from discussions at that time with R. Hall, J. 
Heckman, J. Houseman, J. Press, and R. Westin. I retain sole responsibility for errors. 

? A discussion of the discriminant model and of this and related properties has been given by Ladd 
(1966). 
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Some discussion is required on the interpretation of the response index j and 

the data vector z;. In applications such as mode choice, it is usually natural to 

associate a particular index with a particular response; e.g., j = 1 may be the 

“‘walk” mode. In other applications such as destination choice, there will be no 

natural. indexing, so that the index j associated with a particular response is 

arbitrary. The data vector z; can be interpreted as a transformation of 

observations x? on the attributes of each alternative i and s° on the characteristics 

of the subject; i.e., 

0 0 0 0 0 0 
(1) 2j = Z(Xj5X1,---,Xj-1 Xjsis--- XS), 

where Z is a vector of known functions. Note that the components of z; may be 

components of observed attributes of alternatives or characteristics of individuals, 

or may be interaction terms involving pro-iucts or more complex functions of 

these variables. In the case that there is a natural indexing of responses, we can 

include the index j as a component of the vector x}; this allows the inclusion of 

components of z; which are interactions between components of the x) or of s° 

and a dummy variable for a particular index /; i.e., 

(2) 
Z; 

{=  — {jt Uji 

7 lo if j#i A ee 

On the other hand, when there is no natural indexing, variables such as those in 

Equation (2) are not meaningful. It is for this reason that the function Z in 

Equation (1) is assumed to depend on the response index j only via its effect on x}. 

We note further in this equation that in most applications, z; will depend solely on 

x; and s°. More generally, dependence across alternatives is possible. However, in 

keeping with the stipulation above that z; depends on the index j only if the index 

itself is an attribute of the alternative, we require that Z be invariant with respect 

to the order of the sub-vectors x},...,xj_1,xjs1,...,xy. Amalogously to the 

interpretation of the observed variables z, we can interpret the unobserved 

variables € as coming from unobserved attributes of alternatives x; and uncb 

served individual characteristics s“. 

III. SELECTION PROBABILITIES 

Provided we take a sufficiently general definition of the unobserved variables 

&, the subject’s actual response is completely determined by the alternative set B 

and the observed and unobserved variables (z, €); let 

(3) j = D(B, z, ) 

denote this relationship, and define 

(4) Ej(B, z)={é|D(B, z, €)=j} 

to be the set of unobserved: vectors giving response j. 

We now assume the variables z, é are jointly distributed with a frequency 

function f(z, é). In general, we can allow some components of (z, €) to be 

centinuous and others to be discrete, taking the corresponding components 

of the product measure (v, 7) on (z, €) to be Lebesgue or counting measure, 
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respectively. We can also allow f to be degenerate, and restrict our attention ‘to a 

suitable manifold. For example, the case where some components of z involve 

interactions of variables with alternative dummies will correspond to a degenerate 

f distribution. 

We first define the selection probability that response j occurs, conditioned 

on the response set B and observed data z. Let 

(5) e(z)=e(2;B)=| fe, £)n(dé) 

be the marginal frequency for z. Then the selection probability is given by the 

conditional probability formula 

(6) »(B, z)= | p f (z, €)n(d€)/g(z). 
4 (B, 

We note that the expression 

h(i, 2; B)= p(B, z)g(2)= | f(z, €)n(dé) 
&;(B,z) 

is the joint distribution of (j, z) conditioned on B. Equation (6) is meaningful 

whether or not there is a natural indexing of alternatives. This implies in particular 

that models formulated and analyzed solely in terms of the selection probabilities 

do not require natural indexing. However, the concepts to be introduced next 

require natural indexing in order to be meaningful. 

IV. CLASSIFICATION MODELS 

Assume hereafter that there is a natural indexing j of alternatives. Define 

mean selection probabilities ' 

(7) P;=P,(B)= | p(B, z)g(z)v(dz) 

J Le ft, é)n(de)|»
(dz). 

Next, define the posterior distribution of the observed variables given the 

actual response j. This frequency is clearly proportional to the probability of 

actual response j conditioned on the observed data, multiplied by the marginal 

frequency function for the observed data, or 

(8) qj(B, z) = p,(B, z)g(z)/P; = h(j, z, B)/P; 

with the normalizing constant obtained from Equation (7). An obvious implica- 

tion of this equation is that any specification of the selection probabilities p, and 

frequency function g of the observations determines specific posterior distribu- 

tions q;. In this sense, every model for the selection probabilities combined with a 

“prior” distribution g on the explanatory variables yields a classification model to 

which some sort of discrimination analysis could be applied. However, the case of 
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multinomial logit selection probabilities and a multivariate normal prior will not 

yield multivariate normal posterior distributions. (In the binary response case, the 

posterior distributions are transformations of the sg, distribution; see Johnson 

(1949) and Westin (1974).) 

V. CONSISTENCY OF SELECTION PROBABILITIES AND POSTERIOR 

DISTRIBUTIONS 

We next consider the question of whether particular parametric specifica- 

tions for the selection probabilities and posterior distributions are consistent, or 

equivalently whether there exists a prior distribution g satisfying 

(9) g(z)=4q,(B, z)P;/p;(B, z) 

for all j. (In this construction, the P; can be treated as constants to be determined.) 

It is obvious that (9) need not have a solution; clearly, q;(B, z)/p,(B, z) must be 

integrable, and q; must equal p; except for a multiplicative constant depending on j 

and a multiplicative function independent of /.° 

Suppose the selection probabilities are specified to be multinomial logit, 

evith 2; 
(10) PAB, 2) =< Pa 

i€ 

where B, y;,..., yy; are parameters and we impose the normalization y,+ ... + 

y, = 0. Note that when the z; variables are of the form in Equation (2), Equation 

(10) specializes to 

¥j+BG) 2a) e 
(11) p(B, ak 

where the 6,;, and z,;, are subvectors of 6 and z. An important special case of 

Equation (11) occurs when the variables z,;) are the same for each alternative, 

e Fw 

Vicpe ro 

and the normalization )’;. »8(;) = 0 is imposed. This formulation is common when 

attributes of alternatives are absent and only characteristics of subjects are 

observed. However, note that z,,, may contain attributes of all alternatives, 

making Equation (12) as general as Equation (10). 

Next suppose the posterior distributions q; to be multivariate normal with a 

common covariance matrix. In order to include the possibility that g is degener- 

ate, we assume (by a translation of the origin if necessary) that z varies in a 

subspace L. Then, q; has a mean pw’ € L and a covariance matrix 2 that is positive 

(12) p;(B, z)= 

> A question with a trivial affirmative answer is whether, given posterior distributions q; and meai 
selection probabilities P;, one can find a prior distribution g and selection probabilities p; such that 
Equation (9) holds. From Equation (9) define p; = P,qi/ g. Then Ld; pj=1,g= yj P,q;. Then, a prior g 
which is a P; probability mixture of the posterior distributions is necessary and sufficient to give a 
solution. Compare this result with the analysis following where p; is restricted. 
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semi-definite and definite with respect to the subspace L.* The frequency func- 

tions can then be written (suppressing B) 

(13) q(B, z)=q)(z) = K exp [—3(z —w’)'A(z —p’)], (z €L) 

where K is a constant independent of j and A is the generalized inverse of 0.° 

Define a vector B’ =(0,...,8,...,0) commensurate with z =(z,,..., z;) and 

with the j-th subvector equal to B. 

Theorem 1. Suppose the selection probabilities satisfy Equation (10) and the 

posterior distributions satisfy Equation (13). Then the conditions for consistency 

are that the prior distribution be a probability mixture of the posterior distribu- 

tions. 

(14) g(z)= ) Paz), 
ieB 

with the means yw’ in Equation (13) satisfying 

(15) yu’ = Xp’ +8), 

6 an arbitrary vector, and with 

(16) P,=exply +4! Aw')/ 5 exp [y, +3‘ Ap‘) 
ieB 

= exp [y; +4(p! +65)'Q(p' +5)1/ 2 exp (7; +3(B' +5)'X(B' +5)). 

Corollary 1.1. Suppose the selection probabilities satisfy Equation (10) with 

given B, y;,..., y;. Suppose the posterior distributions are multivariate normal 

with a common positive semidefinite covariance matrix 2. Then there exist 

posterior means satisfying Equation (15), mean selection probabilities satisfying 

Equation (16), and a prior distribution which is a mean selection probability 

mixture of the posterior distributions, such that 

p(B, z)=4(2)/ ¥ al). 
ieB 

*Let K denote the dimension of z;. Then z is of dimension JK, where J is the number of 
alternatives. The subspace L is given by L= ={Qz|ze R?*}, and its orthogonal complement L“ is the 
null-space of 0, i.e., L‘ ={z€R"™|Qz =0}. Then zeL and z #0 implies z'Qz >0. Every vector 
yé€R°™ has a unique representation y=v+w with veL*. Since 2 is symmetric and positive 
semidefinite, there exists an orthonormal matrix A such that AA’ =I and 

w;0 
A'NA =F -7-4, 

0,0 

where W is a diagonal matrix with positive diagonal elements and rank equal to the dimension of L. 

* The generalized inverse of 2 is defined to be the matrix 

in the notation of footnote 4. It is simple to verify using this formula that the system of equations y = 0.z 
has a solution if and only if y¢ L, and that y € L implies z = Ay € L is a solution, as is z + w for any 
vector w in the orthogonal complement of L. 
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Corollary 1.2. Suppose the selection probabilities satisfy Equation (10) with 

given B. Suppose the posterior distributions are multivariate normal with a 

common positive semidefinite covariance matrix 0. Suppose the mean selection 

probabilities P,,...,P,; are given. Then there exists posterior means satisfying 

Equation (15), selection probability parameters y,, .. . , y, satisfying 

gee A wae 
(17) y= In PS" Ap! —= (in P,-S yn" Aw’), 

2 J ieB 2 

and a prior distribution which is a mean selection probcbility mixture of the 

posterior distributions, such that p;(B, z) = q;(z)/Lics qi(z). 

Proof: Substituting Equations (10) and (13) into formula (9) for g yields 

(18) g(z)= & expl(q— 2B + x — y JFK exp [-2(z — HAZ —w')] 

- x exp[ziB + y, t+log K—3z'Az —z)B +z'Ap’ — y; + log P; 

—3p!'Ap’). 

Since the right-hand-side of this equation cannot depend on j, consistency 

requires 

(19) —y; tog P;—2u"’Ap’ =A, 

where A is a constant, and 

(20) —zjp + z'Ap! =2'6, 

where 6 is a vector of constants. 

Equation (20) can be written 

(21) z'Ap! =z'(B’ +8) -(z EL) 

Taking z = Qw for any real vector w, this implies w’u = w’'A(6’ +8), or 

(22) p’ =0(6' +4). 

Substituting these expressions in Equation (18) yields 

(23) g(z)= ¥ exp[log K —3z'Az+z'(B'+5)+y,+A] 
ieB 

= Y exp[log K—3z'Az+z’Ap'+y,+A] 
ieB 

= Y exp(—3z’Az+z’Ap'—3y"Ap'+y,+3y'Ap' +a] 
ieB 

= ¥ PK exp[-3(z-p')'A(z -w')]. Q.E.D 
ieB 
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VI. THE CONSISTENCY OF GIVEN PosTERIOR DISTRIBUTIONS 

Suppose one is given multivariate normal posterior distributions with a 

common positive semidefinite covariance matrix. We seek conditions for the 

existence of multinomial logit seiection probabilities of the form given in Equa- 

tion (11). It will be convenient for this analysis to change notation slightly, defining 

z'=(Z(,--- Zip) and B’= (Bi), ..., Bin). In general, z% and By) vary with j. 

However, we consider also the cases where z,;) or B,;) are uniform across j. In the 

last of these cases, the multinomial logit equation (11) reduces to equation (10). 

Theorem 2. Suppose the posterior distributions satisfy Equation (13) with 

given means yw’ = (phn aoinig file in) and a common positive semidefinite covariance 

matrix 1. Suppose the mean selection probabilities P; are given. Suppose the 

selection probabilities are required to have the form specified in Equation (11). 

Then the following conditions are necessary for consistency: 

(1) The prior distribution is a probability mixture of the posterior distribu- 

tions satisfying Equation (14). 

(2) The parameter vector B’ = (B(,), . . . , Bi) satisfies 

(24) Bw =-JAie'-f)+q), (i #i) 

where 

A, | 

A=| - 

Ay 

is a partition of A left-commensurate with the partition of B. 

i) 
(25) foe =5 Lies pw’, 

and the q’ = (q/,), . .., qj) are some vectors in the null-space of 2 (i.e., Aq’ = 0) 

satisfying 

(26) » q =0. 
jeB 

(3) The parameters y,,..., y, satisfy 

iP 
(27) y= -(in P,-4 Y In P,)+ s(n! Ap’-— ¥ Ap ) 

J ic J ics 

Remark. Equations (24), (25), and (26) imply 

(28) Bw = a | au’ -jt)+ 4 | 

Combining Equations (24) and (28) yields 

(29) Bu =Ai(u'— 2’) +qw- Wo (j #i) 

Equations (26) and (29) plus the conditions Qq/ =0 give 2J* equations in the 

J+J? unknowns B,, and Qi)- Hence, the existence of a solution requires, in 

general, conditions yielding dependencies between equations. For example, if 1) is 
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an identity matrix, then Equation (29) implies that a necessary condition for 

consistency is 41/4; = 4 () for i ¥j, k. 

Corollary 2.1. If © is non-singular, then a necessary condition for consistency 

is 

(30) Aj(ui-p*)=0 = for i¥j,k. 

Corollary 2.2. If J=2, then the solution 

(31) od - A(u' —p’) 

—Bey 

is consistent. 

Corollary 2.3. li By)= ... =Ba= -.. = By, then a necessary condition for 

sufficiency is that A;(y‘ — uw’) +q%)— qi) be independent of i and j for i 4}. 

Corollary 2.4. If 2)=...=Z@)=...=Zy, then the solution 

(32) By =A, ee l1)s 

with A,, the generalized inverse of the covariance matrix 1), ; of Z,), is consistent. 

Remark. By defining z,,, in Corollary 2.4 to contain all the variables of the 

original problem, we obtain the general result that any multivariate normal 

posterior distributions with a common covariance matrix are consistent with a 

multinomial logit model of the form of Equation (11) with every variable 

appearing in the attributes of each alternative. The preceding results show that 

additional conditions on the posterior distributions are required to obtain mul- 

tinomial logit models with added structure on the independent variables, as in 

Equation (10). 

Proof: Equations (14) through (17) continue to be necessary and sufficient for 

consistency with 

B’ =(0,...,0, By, 0, ..., 0). 

In order to express Equation (15) in more detail, partition A into submatrices Ai, 

each square and of the same dimension as §,;), and write yw’ = (w{1), . . . , #4) and 

5 = (8,1), . .., 5g) commensurately with z = (z,,), ..., Zy)). Then 

(33) By = X Njcbley — 8g) + 9%) 

(34) oo X Antes S+q) (i #3) 

or 

(35) By =X AnH Ha) +4) — I) (i Fj) 

where as before the yx’ are assumed to lie in the non-null space L of 0 and q' isa 

vector in the null space of 0 such that Equation (26) holds. Summing Equation 

(35) over i #j yields 

(J —1)B yj) =2 An( Jia . x is») +Jqij)- x Qj). 
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Using Equation (26), this implies Equation (28). Subtracting J times Equation 

(35) from Equation (28) yields Equation (24). Equation (27) follows from 

Equation (17). This completes the proof of the theorem. 

Corollaries 2.1 and 2.3 follow from Equation (35) and the observation that 

Qq’ = 0 and 2 non-singular implies q’ = 0. Corollary 2.2 is proved by verifying 

that the proposed solution satisfies 

g(z) = 4,(z)P;/p;(z) 

= Yexp[z(Bayt+ v: +1og K — 32'Az —z( By +z'Ap! 
ieB * 

—yj + log Pj 3m’ Au’) 

with the right-hand-side independent of j. One f-as 

—Z(yBaytz'Ap' ™ Z()(Animayt Ato) 

+2 (2)(Azzpe(2) + Arioe(ay) =2'5 

and 

—Z(2)Bi2y)+ z'Ap? = Z((AiHe) 

+ Z(2)(Ar2 M2) + Aa 4 )) = z'd, 

where 

“(Ay Aa?’ Per , 
A=( ), ielding the resuit. 

Ar, Ax . . - 

Corollary 2.4 is established by considering 

8(Z¢1)) = Gj(Zay) Pj/ pj (Za) 

as ’ ez, "ahs 
e 2X explzi]+ + y, + log K —32(Ai12)— Z(By 1€ d 

+Z(yAimiy— ¥ +log P; 3m) u?: i 

where A,, is the generalized inverse of the covariance matrix 0, of Z(1). When 

By) = Aii#(), the right-hand-side of this equation is independent of j. Q.E.D. 

VII. THE ROBUSTNESS OF DISCRIMINANT ESTIMATES OF THE LOGIT MODEL 

We have established conditions under which statistics derived from posterior 

distributions under the postulate of normality provide consistent estimates of the 

selection probability parameters. ‘The prior distribution required by these condi- 

tions, a probability mixture of the posterior distributions, seems unlikely to be 

realized in applications. Hence, it is of interest to €Xamine the robustness of the 

estimator of the selection probability parameters derived under the postulates 

above when alternative prior distributions prevail. We consider the alternative of 

a normal prior. Suppose binary choice and a single real explanatory variable, with 

(41) p(B, z) = 7°97 /(2 7471 + @ 72772) 

=1/(li+e ” *) 
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where y = y1— ¥2 and z = z;—2Z>2, and 

42 (z)==e*™”. (42) 4 lon 

Then 

Y oe dz 
, pak ns 
(43) . Ve = l+e"" 

1 +00 z ale 
44 = | e 7? dz 
sa Mo ta)» te 

(45) f2=—P p/P 

1 sty (z—m)” —z2/2 
46) oi= |. ,* ae 
( DB tad, 1407 

(47) a3 =(1—P,o{— Pi —P23)/P, 

(48) o’ = P,oi+ P2703 

(49) B=(u1-p2)/o7 

(50) ¥ = (log P,/P2)—(uj{—3)/o°7 

where P;, ;, 0; are the mean selection probability, posterior mean, and posterior 

variance, respectively, for i= 1,2, a” is the “pooled” variance, and B, y are the 

discriminant estimators of B, y. As shown in Figure 1, the discriminant estimator B 

underestimates in magnitude the true parameter £. The percent of the selection 

probabil'ties lying between 0.i and 0.9 is 73 percent at B = 2, y = Oand 19 percent 

Percentage 
ad 

50 

40 

30 

20 

1 2 3 4 5 6 7 8 9 10 
true B 

Figure 1 Percentage downward bias in discriminant estimate of B 
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at B = 9, y = 0; these values would Lracket the corresponding percentage in many 

applied studies. We conclude that for a typical prior distribution of the explana- 

tory variables, multivariate normal, estimates of the selection probability parame- 

ters based on discriminant analysis will be substantially biased. \Note that the 

discriminant estimator 6 coincides in finite samples with a linear probability 

model estimator; hence, this conclusion is consistent witli results showing that the 

linear probability estimator applied to logistically generated responses leads to 

underestimates of the true parameters (McFadden (1973)). 

VIII. CONCLUSION 

We conclude this comment with some observations on the experimental 

settings in which logit or discriminant analyses are appropriate. The first distinc- 

tioa to be made concerns the interpretation to be given to the response function 

j= D(B, z, €) in Equation (3). On one hand, we may view this as a causal 

relationship, with z and the unobserved vector é determining j. On the other 

hand, we may view (j, z) as being conjoint, or jointly distributed with no causal 

effect running from z to j. In the first case, the function D is of intrinsic 

methodological interest, while in the second case it is merely one of the ways of 

characterizing the joint distribution of (j, z). Two examples will aid in exploring 

the implications of this distinction. 

Example 1. (Causal model): Seeds are planted and observations z are made 

on seed age, soil acidity, temperature, and time allowed for germination. 

Responses j = 1 (germination) and j = 2 (no germination) are observed. 

Example 2. (Conjoint model): Eggs are candled, and observations z are made 

on translucency. Responses j=1 (high yoik=good egg) and j=2 (spread 

yolk = bad egg) are observed. 

In Example i, theory suggests a causal relation between the explanatory 

variables and probability of germination. Then, the response function D and 

selection probability will be of primary methodological interest. The selection 

probability would be used to forecast germination frequency for a new sample of 

seeds. It is not meaningful in this example to speak of two seed populations, 

“‘germinators” and “‘non-germinators,”’ and attempt to classify seeds into one or 

the other. However, it is possible to classify seeds by probability of germination, 

and a binary classification into high and low probability germinators on the basis 

of selection probability is formally equivalent to a discriminant classification 

procedure. 

In Example 2, translucency and yolk height can be viewed as jointly 

determined by unobserved variables, with no causal relation from translucency to 

yolk height. Then, the posterior distributions, or conditional distributions of z 

given j, have the same status as the selection probabilities, or conditional 

distributions of j given z. It is meaningful to speak of the populations of “good” 

and “‘bad” eggs, and attempt to classify an egg into one of these populations; this 

classification can be made using the selection probabilities. 

We conclude from the comparison of these two examples that aside from the 

special causal interpretation given to the selection probabilities in causal models 

and the interpretation of the posterior populations in conjoint models, the 
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problems of statistical analysis are identical, particularly with respect to the 

classification problem of forecasting response for new observations. Logit-type 

and discriminant-type statistical analysis could be used interchangeably, keeping 

in mind the logical interdependence of these models worked out earlier in this 

comment. Jn any causal model, it becomes critical when the statistical formulation is 

of the discriminant type to check whether a consistent prior and selection probabilities 

exist, and whether the implied form of the selection probabilities is compatible with 

the underlying axioms of causality. 

An important distinction among quantal response models is whether it is 

meaningful to pose the question “If a policy is pursued which shifts a component 

of z, what is the effect on responses?’’. Clearly in a causal model this question is 

always meaningful, whether the component of z is a characteristic of the subject 

or an attribute of an alternative. Thus, in Example 1, one may seek to determine 

the responsiveness of the germination probability to seed age or to time allowed 

for germination. What is important here is that the functional specification of the 

selection probabilities is assumed to not change when the policy changes, since it is 

determined by the underlying causal model. In a conjoint model, the question 

cannot be answered in general without specifying a causal relationship between 

underlying policy variables and (j, z): there is no basis for assuming the functional 

specification of the selection probabilities remains unchanged when policy 

changes. 

One distinction which has not been made in comparing causal and conjoint 

models is between characteristics of subjects and attributes of alternatives. It is 

often natural to associate with characteristics of subjects the notion of classifying 

the population into observable subpopulations according to response prob- 

abilities, and to associate with attributes of alternatives the notion of causal 

response. However, we have noted in discussing Example 1 that both types of 

variables, and the notion of classification, arise in causal models. Further, while 

conjoint models typically involve only characteristics of the subject, it is possible 

to give examples where attributes of alternatives enter, e.g., in Example 2 a 

dummy explanatory variable might appear indicating the method of measuring 

yolk height. We conclude that there is no logical relationship between causal or 

conjoint models on one hand and characteristics of subjects or attributes of 

alternatives on the other hand. 

In summary, we see in causal models (1) that it is natural to specify problems 

in terms of selection probabilities, (2) that forecasting leads to classification 

problems within this model based on the selection probabilities, (3) that the model 

makes it meaningful to analyze the effects of policy affecting the explanatory 

variables, and (4) that the posterior distributions implied by the selection prob- 

abilities and prior distribution may provide a useful starting point for estimation of 

the selection probability parameters in a discriminant-type analysis, but this 

procedure does not tend to be robust with respect to misspecification of the prior. 

In conjoint models, (1) the posterior distributions and selection probabilities are 

alternative conditional distributions characterizing the joint distribution of (j, z), 

and functional specifications can be made from either starting point, (2) classifica- 

tion procedures coincide with those of causal models despite the differing 

interpretation, and it (3) is generally not meaningful to pose questions about the 
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effects of policies which shift the explanatory variables. In most social science 

applications, causal models are natural, suggesting that the models should be 

formulated in terms of selection probabilities, with discrimiriant-type methods 

applied to the posterior distributions only if there is considerable confidence in the 

validity of the implied specification of the prior. 

University of California, Berkeley 
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