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Annals of Economic and Social Measurement, 5/4, 1976 

QUANTAL CHOICE ANALYSIS: A SURVEY* 

BY DANIEL MCFADDEN 

This article surveys quantal choice analysis, focusing on derived selection probabilities, revealed choice 
models, and the Luce Model. Statistical analysis of selection probabilities is examined from the stand - 
point of functional forms, methods for estimation and inference, and extensions of the statistical choice 
problem. Particular attention is given to multivariate choice, separability, and independence, and 
unsolved problems are discussed. The survey concludes with some economic applications of these choice 
models. 

I. INTRODUCTION 

In traditional economic analysis of consumer decisions, for example, the 

demanded quantities of meat and potatoes, acts and outcomes are treated as 

real variables. In contrast, decision problems in other social and biological 

sciences often lead to acts or outcomes indexed by finite or countable sets; we 

term these qualitative or quantal response problems. Examples are migration 

in social demography, voting behaviour in political science, and mortality in 

bioassay. 

In recent years, economists have recognized that many important economic 

decisions involve quantai response. Examples are choice of occupation, family 

size, labor force participation, ownership and brand of consumer durables, 

household and workplace location, and shopping trip mode and destination. 

Investigation of these probiems has led economists to rediscover or translate 

models and methods from psy. :ology and statistics, and to elaborate and extend 

some results. I will attempt in t!:is survey to summarize these developments and 

point out problems for exploration. 

The prototypical study of quantal choice considers individual subjects placed 

in one oi N possible experimental choice settings. Each choice setting requires 

one of J possible responses from the subject. Choice setting n is characterized in 

general by a vector c, of measured characteristics of the subject and vectors 

Xiny - --> Xs, Of measured attributes of the alternatives. (We shali often deal with a 

vector, denoted z;,,, of numerical functions of the measured data x;,,, c,, and with 

z" =(Zin,---,Zm)-) In R,, repetitions of the presentation of the choice setting n to 

* Research was supported primarily by National Science Foundation grant GS-35890X, and was 
also supported in part by NSF grants SOC72-05551A02 and SOC75-22657, and by NSF grants 
GI-43740 and APR74-20392, Research Applied to National Needs Program, to the University of 
California, Berkeley. This paper was distributed as background material for the joint session of the 
Mathematical Social Science Board Workshop on the Theory and Measurement of Economic Choice 
and the National Science Foundation/National Bureau of Economic Research Conference on 
Decision Rules and Uncertainty, June 19-22, 1976, at the University of California, Berkeley. I wish to 
express my blanket appreciation to the long list of persons who have enlightened me by 
providing materials and comments. I apologize for the sins of commission and omission in this 
survey. 
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a subject, S;,, responses of alternative j are observed. (R,, may be one.) These data 

can be summarized in a J x N contingency table: 

Choice setting 
Responses Wa Reet 

1 Was sss Sea ds 

Alternatives j a eo 

J ae eee 

Explanatory variables hes maT E 

Repetitions ‘ eT Sarre 

Figure 1 

The response of a subject in choice setting n can be depicted as a drawing 

from a multinomial distribution with probabilities (P,,,, ..., P;,,); we term these 

the selection probabilities, and note that they are “‘observable” in the sense that 

they are estimated consistently by the observed relative frequencies 

(Sin/ Rn, ---;Sim/R,) as the number of repetitions approaches infinity. 

We can now pose two major questions: 

1. How are the selection probabilities related to the explanatory variables 

and to underlving theories of individual choice behavior? 

2. Given a structure for the selection probabilities, how can the observations 

be utilized for estimation and tests of hypotheses? 

I shall draw on the early literature on quantal choice to illustrate a consistent 

answer to tiiese two questions, and then organize my survey with the view that the 

ensuing literature is directed to improving and generalizing this solution. 

Consider the problem of binary choice (J=2). In the search for laws 

governing psychophysical phenomena, Thurstone (1927a,b) suggested a random 

utility model of choice in which individuals draw at random a member of a set of 

numerical scale functions, and then select the alternative whose attributes max- 

imize the value of the chosen scale function. Thurstone considered in particular 

the case in which scale values for different stimuli (attributes of alternatives) z;,, 

are independently identically normally distributed about mean values v(z,,), and 

established that the binary selection probabilities satisfy 

(1) 
P,, = @(2Gu)—2G)) 

oC 

where ® is the standard normal cumulative distribution function, and o is a 

parameter. Suppose the argument in (1) can be written as an unknown I: ear 
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combination of numerical functions of the data. 

v(Zin)— V(Z2n) a 
(2) ~ - 

K 
B'z"= 2 B,Z;.- 

Then equation (1) becomes the familar binary probit model of statistics, 

(3) P,, = O(6'2"). 

Thurstone’s construction is appealing to an economist because the assumption 

that a single subject will draw independent utility functions in repeated choice 

settings and then proceed to maximize them is formally equivalent to a model in 

which the experimenter draws individuals randomly from a population with 

differing, but fixed, utility functions, and offers each a single choice; the latter 

model is consistent with the classical postulates of economic rationality. 

A statistical procedure for estimating B was suggested by R. A. Fisher (1935) 

in the context of testing the hypothesis that 6 = 0 for the case of two choice 

settings (N = 2) and a single explanatory variable; in a generalization due to 

Berkson (1944), this takes the form of applying ordinary least squares to the 

equation 

(4) Da ‘(Sin/Rn)Wr = B'z"w,, +E, 

where ® * is the inverse cumulative normal function and w,, are weights satisfying 

(5) We = O(® "(Sin Rn)VR3/ Sin Som 

with @ the standard normal density.’ It is not difficult to show that as the number 

of repetitions approaches infinity, the usual rank and limit conditions assumed in 

least squares analysis are sufficient to guarantee that the estimator of B is 

consistent and asymptotically efficient. Thus, the Thurstone and Berkson argu- 

ments taken together provide a practical econometric model for binary choice that 

is consistent with the classical postulates of consumer behavior. The remainder of 

this survey will be devoted to generalizations of this solution. 

II. SELECTION PROBABILITIES AND THEORIES OF CHOICE 

1. Derived Selection Probabilities 

Starting from a specified theory of choice, one may derive properties of the 

selection probabilities. Further, this can be done abstractly or parametrically. 

Thurstone’s law of comparative judgement discussed above is an example of a 

parametric analysis starting from a theory of choice. Generalizing this approach, 

let U(z;,) denote a random utility associated with alternative j, and let V(Zin) 

' The argument in section III.2 justifies this form. The v-2ights w,, which correc: for heteroscedas- 
ticity may be omitted without affecting consistency. 
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denote the mean utility associated with this alternative. Write U(z;,)= 

V(Zin) + € (Zin). Assume respondents draw a random utility function U, and then 

select the alternative which maximizes utility. This random utility model then 

determines the selection probabilities from the condition 

Pin = Prob [U(zjn) > U(Zin) fork =1,...,J andk 4j] 

= Prob [€(Zxn) — € (Zin) < W(Zin) -— V(Zen) fork =1,...,J and k #j]. 

Specifying a parametric joint distribution for the stochastic terms in (6) leads to 

parametric functional forms for selection probabilities. With judicious choice of 

the joint distribution to reflect expected or hypothesized variations in tastes and 

perceptions in the population of respondents, this approach has the potential of 

yielding flexible and realistic selection probability functions. Unfortunately, the 

problem of computing selection probabilities generated in this way is usually 

formidable, particularly for multinomial response. 

In a series of seminal papers, Richard Quandt (1966, 1968, 1969) considered 

the selection probabilities generated by a population of consumers with log-linear 

utility functions with random coefficients. .”. generalization of the Quandt model 

due to Domencich and McFadden (1975) illustrates the conceptual flexibility and 

computational drawbacks of this approach. Suppose the random utility model has 

the form 

(7) U(Xin; Cn) =a 'Z(Xins Ch )+e (Xjns Cn ), 

where a is a KX1 vector of parameters which vary across the population, 

Zin = Z(Xjns Cn) is a K X1 vector of numerical transformations of the data, and 

€ (Xjny Cy) iS a random component in utility. 

This model permits a wide range of structures on the selection probabilities. 

If the taste parameters a, have degenerate distributions and the e€(xj,, c,) are 

independent, then we can have the Luce model described below. On the other 

hand, if the a, have much larger variances than the ¢(x;,,, c,,), then choice between 

alternatives which differ substantially in their attributes will be governed by the a, 

distribution, while choice between objects of similar aspects will be governed by 

the €(x;,, C,). Taking a classical illustration, suppose subjects are offered a choice 

of a bicycle or a pony. Aspects such as tastes for animate or mechanical objects, 

reflected in the a, parameters, effectively determine the binary selection proba- 

bility for subjects drawn randomly from i..e population. Suppose the choice is now 

expanded to include a second bicycle which differs from the first only in color and 

trim. The mode! conforms to intuition in yielding the result that subjects will 

continue to choose between the pony and the bicycles in roughly the same 

proportions (and, hence, the odds that the first bicycle is chosen over the pony 

falls). Since the two bicycles have similar attributes and the e(x;,,, c,) effects are 

small, subjects who definitely prefer the pony to the first bicycle will almost 

certainly also prefer the pony to the second bicycle. The choice between bicycles 

will be influenced more strongly by the e(x;,, c,,) terms since the dominant effects 

of tastes over aspects tend to cancel out. 
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We consider the form of the selection probabilities generated by this model. 

Write ¢;, =€(Xjn,C,), amd assume that the random variables a;,..., ax, 

Eins --+>€jn (N=1,...,N) are independent normal with Ea, = B,, Ee;, =0, 

E(a, —£,)° = 0%, Ee}, = 0%. Let D = diag (a7, . . ., 7%) and Cefine the K x J mat- 

rix Z” =(Zins---5 Zm)- Then (U(x,,, C,),-.-, U(X, C,)) is multivariate normal 

with mean vector B’Z" and covariance matrix 2 = 031+ Z"'DZ". With a suitable 

linear transformation, equation (6) for the selection probabilities cart be expressed 

as an iterated integral of standard normal densities. For the case of binary choice, 

a modification of the probit formula results, 

(8) Pin =OB'Z"t/Vt'N0, 

where t’ = (1, —1). For J >2, the selection probabilities cannot be expressed in a 

convenient closed form, and for J >4 the computational task of evaluating the 

selection probabilities makes the model impractical for use in standard iterative 

statistical algorithms. Current efforts to break this impasse are discussed in the 

section on statistical methods. 

2. Reveaied Choice Models 

An alternative to deriving selection probabilities from a parametric choice 

model is to postulate a particular structure for selection probabilities and then 

attempt to verify the consistency of these structures with the random utility model 

or other choice theory. In its most abstract form, this process is analogous to the 

theory of revealed preference in conventional consumer demand analysis; we 

seek necessary and sufficient conditions on selection probabilities to ensure their 

consistency with the random utility model. This problem was first investigated by 

Block and Marshak (1960), who obtained conditions for universes containing 

three or four objects of choice. Their result has been generalized to arbitrary 

universes of choice by McFadden and Richter (1970, 1971); a re-examination of 

the three-object case provides the key to the generalization. 

Suppose, in a universe of objects {1, 2, 3}, subjects are offered one of the 

binary choices {1, 2}, {2, 3}, or {3, 1}. Let P;2 denote the selection probability for 1 

from the choice set {1, 2}. The random utility model postulates maximizaticn of 

some preference ranking of ‘1, 2, 3. Then, there are six decision rules generated by 

the permutations of 1, 2, 3. The problem is to determine whether there exists a 

distribution (q- ..., q.) of decision rules in the population yielding the observed 

selection probabilities, i.e., whether the following system of linear inequalities 

has a nonnegative solution (q;,...,q«) with q,+...+q.5= 1, where an element 

of the coefficient matrix is one if the associated decision rule is successful in 

prvducing the observed response in the associated choice setting, and is zero 

otherwise. 
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123 231 312 132 321 213 

Pi2 1 0 1 1 0 0 41 

P23 1 1 0 0 0 1 q2 

(9) P31 0 1 1 0 1 0 q3 

P21 " 0 1 0 0 1 1 qa 

P32 0 0 1 1 1 0 qs 

Pi3 1 0 0 1 0 1 46 

If a solution exists, then-the le ft-hand-side vector lies in the convex polytope 

spanned by the columns of the coefficient matrix, (9) holds with equality, and 

(q1,---, 4) defines the distribution of decision rules in the population. A neces- 

sary and sufficient condition for the existence of a solution is that no hyperplane 

with a nonnegative integral normal separate the left-hand vector from the convex 

polytope; i.e., 

(10) > Typ = Max d Tijijk: 
ij es 

where ij indexes the pairs 12, 21, etc., a, is an element in column k of the 

coefficient matrix, and r,; is any nonnegative integer. This condition generalizes 

directly to any finite universe of choice, and straightforwardly to non-finite 

universes. The particular result that is useful in the context of quantal choice is the 

following: 

Suppose the universe of attributes of alternatives is a metric space and each 

choice setting presents a finite set of alternatives. A necessary and sufficient 

cendition for the existence of a a-additive probability on the preference orderings 

of all attribute vectors which yields the selection probabilities in equation (7) is the 

following axion of revealed stochastic preference: For each finite sequence { j,n,} of 

alternatives and choice settings, |=1,...,L (with repetitions allowed), the sum 

p> a Pim, cannot exceed the maximum number of choices of j, (in setting n,) for 

l=1,...,L consistent with tne behavior of some preference-maximizing 

individual. 

This result can be used readily to obtain necessary conditions for consistency 

with the random utility model; however, verification of sufficiency becomes 

computationally intractable for a universe of more than a few objects. 

Once the question of the existence of a random utility model for given 

selection probabilities is resolved, the next interesting question is the extent to 

which the selection probabilities bound the probability distribution on the under- 

lying decision rules. Returning to the example of the three-object universe, we see 

for instance that p;.= 41, P23 = 41, Piz =: imply gq, S Min (p42, pi3, P23), and that 

93+ 44 P32 and q; = Pi2— 43— 44 imply 4; = p12 — P32. In a recent paper, Robert 
Hall (1973) has pointed out that these are examples of Tchebycheff systems 

(Karlin and Studden (1966)), and has extended this theory to develop systems of 

bounds in the case of choice theories indexed by a single parameter. Bounds for 

the general consumer choice problem have been investigated by McFadden 

(1975). 
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3. The Luce Model 

A practical approach to the specification of selection probabilities and 

determination of revealed choice theories is to postulate plausible axioms on 

selection probabilities and deduce the implications of these axioms for choice 

behavior. An influential work by Luce (1959) takes this tack, starting from an 

independence from irrelevant alternatives axiom on the selection probabilities. 

This axiom states, roughly, that the relative odds in a binary choice will remain the 

same for these alternatives when additional alternatives become available, and 

implies that selection probabilities can be written in the form — 

v(z;,,) 

(11) P, = a“ m 
y oe zkn) 

k=1 

where the v(z) are scale functions of the stimuli: This is often termed the strict 

utility model. We note that when v is linear in parameters, this is the multinomial 

logit formula encountered in the statistical literature. 

The results of Thurstone and Luce were introduced to economics by 

Marschak (1960) and Block and Marschak (1960), who established that each strict 

utility model could be derived from some random utility model. The Block- 

Marschak proof is a non-constructive demonstration that a joint distribution on 

the e(z;,,) variables exists such that (6) and (11) both hold. A simpler constructive 

demonstration due to A. Marley is reported by Luce and Suppes (1965); following 

this line, one can establish (McFadden (1973)) that a necessary and sufficient 

condition for the random utility model (11) with the e(z;,,) independently identi- 

cally distributed to yield the strict utility model (6) is that e(z;,) be Weibull 

distributed.” 

The multinomial logit model combined with the results relating it to the 

random utility model is particularly appealing in applications because of com- 

putational advantages and consistency with a theory of sampling from a popula- 

tion of classical utility-maximizing consumers. The primary drawback of this 

formulation is that it ignores some of the structural aspects of choice which make 

the independence from irrelevant alternatives property inappropriate in some 

applications. As pointed out by Debreu (1960), the strict utility model predicts too 

high a joint probability of selection for two alternatives which are in fact perceived 

as “similar” rather than “independent” by the subject. 

4. Extensions of the Luce Model 

The questionabie validity of the independence from irrelevant alternatives 

axiom in some applications has led to a search for alternatives which are 

empirically practical and are compatible with a plausible theory of choice. 

Examination of the properties of the Luce model suggests conditions which more 

flexible functional forms must satisfy. The Luce model is a member of a class of 

? A random variable Y is Weibull distributed if Prob [Y < y]=exp[—e ”]. 
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functional forms with selection probabilities satisfying 

(12) Pin = F(V(Zin) — V(Zin)s - - a V(Zin) — V(Zm)), 

where F is some increasing function of its arguments and the V(z;,,) are mean scale 

functions associated with the alternatives. Such models, in which the selection 

probabilities are functions solely of mean scale values and do not depend on the 

“orientation” or “similarity” of alternatives in attribute space, are termed simply 

scalable. Tversky (1972) has shown that simple scalability is equivalent to a 

condition of order independence: the selection probability for alternative 1 

exceeds that for 2 when both are available if and only if the selection probability 

for 3 when 2 is available and 1 is not exceeds the selection probability for 3 when 1 

is available and 2 is not. For example, p;2=p2; if and only if p;;=p23. The 

bicycle-pony example cited earlier shows that models satisfying order indepen- 

dence yield implausible conclusions when there are strong contrasts in similarity 

among the alternatives. Suppose alternatives 1 and 2 are bicycles differing in 

color, and 3 is a pony. Respondents are observed to be indifferent on the average 

between a pony and a bicycle, and to treat the two bicycles as equivalent. Then, 

the selection probabilities are p> = p13 = p23 = 1/2 for binary choice and p,23= 

P213 = 1/4, p312 = 1/2 for multiple choice, where p;, ‘s the probability of choosing 

i from the alternative set {i, j,k} and p3,;2=p3, = 1/2 since the two bicycles are 

viewed as equivalent. Order independence implies that if p3;2 > pi23, then p32> 

P31, contradicting the observed selection probabilities. We conclude that useful 

extensions of the Luce model must avoid the simple scalability (order indepen- 

dence) property. No functional form which evaluates alternatives in terms of 

mean scale values without accounting for similarities in observed or unobserved 

attributes can avoid the restrictive implications of simple scalability. In particular, 

simple probit or transformed logit (McLynn (1973)) versions of (12) share the 

basic drawback of the Luce model. 

The multinormal model in (7) avoids the simple scalability restriction, 

provided covariances are allowed to vary to reflect differential patterns of 

similarity. This model appears to have the greatest potential as a flexible choice 

model, provided computational barriers can be overcome. An alternative 

approach which may yield practical functional forms for applications is to seek 

more general axioms characterizing classes of selection probabilities. One such 

construction is the elimination by aspects model of Tversky (1972); the problems 

and potential of this model in economic applications have been discussed by 

McFadden (1975b). 

5. Unsolved Problems 

Each of the approaches to spe ification of selection probabilities discussed 

above suggests a number of quesuons for future study. Equation (6) yields a 

general form for selection probabilities, 

+00 

(13) Pin=| F,(t, v2—v,+t,...,v0,;—v, +t) dt 
—GD 

where F(e,,..., €,) is the cumulative joint distribution of the ¢; = ¢(Xj,, C,), F, is 

the derivative of F with respect to its first argument, and v; = V(Xjn» Cy) is the 
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non-stochastic scale function for alternative j. Can joint distribution functions F 

be found which permit order non-independence and for which the selection 

probability (13) can be expressed in simple closed form? Suppose, more specific- 

ally, that utility has the structure given in (7). Given a distribution for the 

&(Xjny Cn), One Can use (6) to derive selection probabilities conditioned on a, which 

we denote by p;,,(a’Z"). For example, assuming the ¢(x;,, c, ) to be independently 

identically Weibull distributed would iead to the multinomial logit formula for the 

Pin(a'Z”). The selection probabilities would then satisfy 

+cO 

(14) Pn=| pala'Z")g(a) da, 
—co 

where g is the joint density function of the random parameter vector a. Can a 

plausible joint density g be found, say in the case that the p,, are multinomial 

logistic, which allows (11) to be expressed in a simple closed form? Which allows 

P;,, to be computed easily? 

The direct specification of selection probability functions and tests of the 

consistency of these functions with plausible choice theories has received little 

attention other than the elimination by aspects model of Tversky. Problems to be 

solved include development of (1) a practical parametric version of the Tversky 

model, (2) generalizations and simplifications of the Tversky model, for example 

the elimi: ation by strategy model discussed by McFadden (1975b), and (3) links 

between properties of taste variations at the leve! of the individual and properties 

of the selection probability functions for the population. 

The empirical consistency of choice theories also deserves examination. 

Although we have. emphasized the compatibility of the random preference 

mvucel with the classical economic model of fixed preference maximization, the 

analyses may be on sounder behavioral ground in postulating random preferences 

within each subject. It would be desirable to go further and test the validity of the 

random preference model of individual choice using psychological and economic 

data; the McFadden-Richter axiom provides a framework in which such tests 

could be carried out. One possible outcome of such an analysis would be the 

conclusicn that behavior of a population of economic consumers can be described 

satisfactorily by a probability mixture of individuals, each of whom satisfies a 

random preference model. An interesting question would then be the “compo- 

nents of variance” within and between individuals and the problem of “spurious 

contagion” in predicting individual behavior. 

Finally, the work of McFadden, Richter, and Hall on characterization of the 

underlying probability measures induced by selection probabilities suggests sev- 

era! q ‘estions: Is it possible in principle to identify a unique underlying measure 

from specified classes of experiments yielding selection probabilities? Can useful 

computational procedures be developed to provide Tchebycheff bounds? 

Ill. STATISTICAL ANALYSIS OF SELECTION PROBABILITIES 

1. Functional Forms 

Theories of individual choice can be used to deduce a structure on selection 

probabilities, or to motivate the inclusion or exclusion of explanatory variables. 
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On the other hand, parametric specifications of the selection probabilities such as 

the multinomial logit model can be used (misused) in empirical analysis without 

reference to choice theoretic foundations. In this sense, parametric quantal 

response models are aralogous to the linear statistical models used throughout 

econometrics, and all the usual econometric issues appear: consistency, efficiency, 

and robustness of estimators, errors in variables, multivariate systems. compo- 

nents of variance structures, structural identification. and simultaneous equations 

estimation. Unsurprisingly, most large sample theory for linear statistical models 

carries over to the quantal response case, although differences in detail often 

require argument. Small sample theory is in a much less satisfactory state, and is 

hampered by the lack of closed form estimators with satisfactory statistical 

properties. 

The statistical literature divides into non-parametric tests of association in 

contingency tables, and parametric estimation and hypothesis testing in models of 

the probit or logit type. The first of these topics is reviewed by Lewis (1962), 

Goodman and Kruskal (1959), and Mosteller (1968). Parametric models have 

been much more influential in economic applications, and will receive the most 

attention here. An excellent general survey of results and handbook covering this 

area is C. R. Cox (1970); other surveys by Maxwell (1961) and Finney (1971) 

emphasize applications in psychology and bioassay, and a survey by ieFadden 

(1973a) concentrates on multinomial response. Recent books by Bishop, 

Fineberg, and Holland (1975) and Haberman (1974) emphasize contingency 

table analysis, but also treat probit and logit models. 

The most extensive statistical investigation of quantal response models has 

been made for binary choice. It was quickly recognized that the binary probit 

model is a special case of the class of functional forms 

(15) Pi, = F(B"(Zin —Z2n)), 

where B is a K X1 vector of unknown parameters, the z;, are K X 1 vectors of 

numerical functions of the data, and F is any cumulative distribution function on 

the real line. It is worth noting some of the cases covered by the general 

linear-in-parameters specification B'(z;,,—2Z2,). The components of z;,, may be 

simple or complex (non-linear) numerical functions of the data (xj,,¢,); in 

particular, they may be terms in a “Hamel basis” for the space of all 

“smooth” scale functions of (x;,, c,) So that B’z;, is a uniform approximation to 

an arbitary smooth function V{x;,, c,). The interpretation of B'z;, as an approxi- 

mation is discussed further in McFadden (1975). In a case with Zj,, = Xjn, (where k 

denotes the component) for j=1,2, aspect k of the alternatives is valued 

generically. In acase with Zin, = Xing, Z2n, = 9, Zing: = 9, Z2n,- = X2n,» the expression 

B'(Zin —Z2n) contains the term B,X1,, —BxX2n,, and an “alternative-specific”’ 

valuation of aspect k occurs. If in the last case, we had taken Z,,, =Cn,, Z2n, =9, 

Zim: = 9, Zon,-=Cn,, then B’(Z1,—Z2,) contains the term (6, —B,:)c,,. Then a 

normalization, say B, +B, = 0, is required. Models with this structure are termed 

tolerance models. 

In addition to the probit model, commonly used transformations in (15) are 

the logit model (Berkson, 1944), 
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(16) P,, = 1/(1+e° @="2), 

the arctan model derived from the Cauchy distribution (Urban, 1910), 

(17) Py =5 += tan" B'(214-Zan) 

and the linear model derived from the uniform distribution, 

i (B"(Zin — Z2n) = 1) 

(18) Pin =) B'(Zin—Z2n) (O<B'(Z1n —Z2n) <1) 

0 (B'(Z1n — Z2n) =9) 

2. Methods for Estimation and Inference 

The parameter vector B in any of these models can be estimated from 

individual observations (i.e., R,, = 1) by maximum likelihood methods, and from 

repetitions (i.e., R, > 1) by maximum likelihood, minimum chi-square, or mod- 

ified minimum chi-square; iterative procedures are normally required to obtain 

solutions. An alternative method first exploited by Berkson (1944) for the logit 

model is to make a Taylor’s expansion of the inverse transformation F”'(P,,,) = 

B'(Zin — Z2,) Of (15) about the observed relative frequency S,,,/R,,, obtaining 

(19) ¥n =F "(Sin/ Rn) = B'(Z1n —Z2n) +n 

where 

’ (S:,/Ra)— Pin 
20 n= 
sae . fé) 

f is the frequency function corresponding to F and é, is a point between B'x,, and 

F~'(S,,,/R,,). When the number of repetitions R,, becomes large, the second term 

in (19) is approximately normally distributed with mean zero and asymptotic 

variance P,,,(1—P:,)/Rnf(B'(Zin —Z2n))’. Weighted least squares applied to (19) 

then provides a consistent asymptotically efficient (as R,, > +00) estimator of B 

under mild conditions on F and the explanatory variables. A good discussion of 

this method is given by Cox (1970). 

When repetitions of choice settings are observed, the Berkson procedure has 

great computation advantages over the maximum likelihood estimator; Monte 

Carlo experiments (Berkson, 1953, 1955) suggest that it may also be statistically 

more satisfactory in small samples. However, many econoraic applications do not 

provide exact repetitions, making it necessary to group data in order to apply 

these methods. Monte Carlo experiments with grouping find generally that the 

Berkson procedure yields lower variances, larger biases, and comparable mean 

square errors when compared with maximum likelihood estimation (Domencich 

and McFadden, 1975, p. 112). This suggests that application of the Berkson 

method to grouped data, combined with a correction for the bias due to grouping, 

may be superior to other estimators. However, it should be noted that for more 

than three or four independent variables, it is often impossible to group data 

satisfactorily. 
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The linear probability model can be fitted to individual observations bv 

ordinary least squares; the primary disadvantage of this model is that the 

estimator is extremely sensitive to specification error in the response curve 

(Domencich and McFadden, 1975; Nerlove and Press, 1973). Ladd (1966) has 

shown that the usual discriminant model estimator is formally equivalent to the 

ordinary least squares estimator of the linear probability model. Further, the 

relative odds of correct binary classification are given by the logit formula. 

Nevertheless, the discriminant model is based on a statistical structure that is 

incompatible with most choice theories, and the discriminant estimator is not in 

general a consistent estimator of the parameters in the logit model when the 

selections are generated by the latter model (McFadden, 1976b). 

Charles Manski (1975) has recently suggested a class of maximum score 

methods which provide consistent estimators of the (normalized) parameters in 

the quantal response mode! (15) without specific distributional assumptions of F. 

These techniques are based on maximization of the (weighted) number of 

predictive “successes” of the model, where a success in choice situation n is 

defined as observation of a response j such that B’z;, >B'Zin for i#j. Maxi- 

mum score methods require iterative computational procedures, and cannot in 

general be efficient, but have the asset of robustness with respect to the transfor- 

mation F. 

The statistical analysis of multinomial response models has developed rapidly 

in the past decade, with considerable impetus from economists. The multinomial 

logit model was first developed for a special case of tolerance analysis by Gurland, 

Lee, and Dahm (1960), and more generally by Bloch and Watson (1967), Bock 

(1968), Rassam et al. (1971), McFadden (1973a, 1975a), Nerlove and Press 

(1973), Stopher (1969), and Theil (1969, 1970).° 

Theil (1969) has provided a generalization of Berkson’s method for the 

multinomial logit model in which the parameters are estimated by application of 

multivariate least squares with linear restrictions across equations. When repeti- 

tions of choice settings are observed, or the data can be satisfactorily grouped, this 

procedure has considerable computational merit. Maximum likelihood estima- 

tion is most commonly used when data cannot be conveniently grouped. The log 

likelihood function for the multinomial logit model 

N J 
(21) L=% YX S,, log Pin, 

n=1j=1 

* These developments seem to have occured in at least three independent streams. The statistical 
literature (Bloch, Bock) stems from the Gurland, Lee and Dahm paper, and concentrates on problems 
in bioassay. The work of Theil (1969), and unpublished works for the same period by John Cragg, stem 
from the Warner (1962) analysis of binary travel decisions, which also influenced Stopher and others 
working on problems of travel demand. The approach of McFadden (1968, 1973) grows out of the 
choice theory analyses of Luce (1959) and Marschak (1960), and was stimulated by a problem of 
Phoebe Cottingham (1966) on the analysis of highway route selection decisions. The author developed 
a maximum likelihood program in 1965 to perform multinomial logit estimation, and became aware of 
the parallel! developments of Cragg and Theil during a visit to the University of Chicago duving 
1966-67. 
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with 

J 
(22) Pp =e] ¥ ef, 

i=1 

is strictly concave, with a Hessian matrix which is independent of the observed 

responses. Consequently, efficient computer programs can be written to produce 

the estimates.* Details of the maximum likelihood method applied to multinomial 

logit, including its statistical properties, are discussed in McFadden (1973). The 

log likelihood functica (21) assumes a sample randomly drawn from the popula- 

tion without reference to the observed choices. Let p,;(z) denote the selection 

probability, g(z) denote the prior distribution of the explanatory variables, q,(z) 

denote the posterior distribution of the explanatory variables conditioned on 

choice of i, and P; denote the population mean sclection probability. Then, the 

joint distribution of z and i is p,(z)g(z) = 4q,(z)P;, and the log likelihood function 

for observations obtained by random sampling of z is (except for combinatorial 

factors which do not enter optimization) 

N J 

(23) L=% XY Sn log (p(z)g(z)). 
n=1i=1 

Since g(z) does not depend on the selection probability parameters under the 

choice theory specification, this equation is equivalent to (21). 

An alternative sampling procedure, based on observed choices, has been 

investigated by Manski and Lerman (1976). This approach is of great importance 

for applications, where respondents are most readily observed at the “place of 

choice” (e.g., on-board surveys of commuters, surveys of convicted criminals), or 

where enriched sampling of a iow-probability outcome is desired (e.g., welfare 

recidivists, migrants). With this sampling procedure, the log likelihood function is 

(excluding combinatorial factors): 

oe 
L= 3 2 Sin log qi(z) 

(24) n=1i=1 

N J 
=> X S,, log (p,(z)g(z)/P,), 

n=1li~=1 

with 

(25) P,=| pilz)g(z) dz. 

* The following routines are currently available: (1) XLOGIT, a program written by McFadden, 
Varian, and Wills for the CDC 6400 and adapted to the IBM 360 and Burroughs computers, (2) 
ULOGIT, a program written by the U.S. Bureau of Standards for IBM 360, (3) a multinomial logit 
program written by Manski for the IBM 360, and used at M.1.T. and elsewhere, (4) QUAIL, a program 
written by Berkman, Brownstone, McFadden, Murano, and Wills for the CDC 6600, and (5) a 
multivariate multinomial logit program written by Nerlove for the RAND Corporation. There are a 
number of commercial programs also available. The, Manski program is the most readily adapted and 
used for small and intermediate estimation tasks. ULOGIT is available at installations which have the 
U.S.D.O.T. Urban Transportation Planning Package. QUAIL is a flexible program which permits 
data transformation and storage, and retrieval of intermediate results, in addition to basic estimation 
commands. 
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Since P, depends on the parameters of the selection probabilities, this likelihood 

function is distinct from (21), and maximization of (21) using a choice-based 

sample will, in general, produce inconsistent estimates. Lerman and Manski 

establish a procedure for weighting the observations S,,, in (21) so that maximiza- 

tion of this function yields consistent estimates. 

The lack of explicit forms for multinomial selection probabilities except in the 

logit case has hindered progress iri developing alternative statistical procedures. 

Several investigations have employed models of the form 

(23) Pp, =< BZ) 
: i=1 F(B'Zin)’ 

where F is a positive increasing real valued function. This becomes the multino- 

mial logit model when F(b) = e’. Alternatives include taking F to be a standard 

cumulative normal function. This is sometimes misleadingly termed the multino- 

mial probit model; this term might more appropriately be reserved for the model 

of equation (7) when the distribution of the stochastic components of utility is 

multivariate normal. Models of the form (23) share with the multinomial logit 

model the sometimes undesirable property of independence from irrelevant 

alternatives, and can be interpreted as versions of the strict utility model with the 

nonlinear-in-parameters scale functions v(z;,,) = log F(8'z;,,). There appears to be 

little gain in functional generality in this specification, and the computational cost 

entailed in the loss of the concave programming structure of the multivariate logit 

model may be considerable. 

Estimation of alternatives to the multinomial logit model by the maximum 

likelihood method raises a computational problem of evaluating the selection 

probabilities in an iterative procedure. Analysis of methods has concentrated on 

the multinomial normal model (7). Let Q=(@;)= ail+Z'DZ denote the 

covariance matrix of the deviations of utility levels from the mean scale values 

V; = B'Zjn- Define 

(24) Aj = 2; + @11 — @2; — Wj; 

and recursively, for i=3,..., J, 

i-1 
(25) Nik = Wie +@11— Wj) — Oi — Y AjiAjx/ Ajj (k =2,...,J). 

j=2 

Then Domencich and McFadden (1975, p. 67) show that the selection probability 

for the first alternative can be written 

1 V,-V2 t V,—V3—-23/A22)to t 

Pu-z——| * ‘o5)I o(). Anz... Ay A22 A33 (26) t2=-cO t3=-—cO 

P ae | 
V¥3y-Vjy— i (Aja/ Ay tj t 

j= 
a | (4) dt;... dt, 

§=—cO Ay 

where ¢ is the standard univariate normal density. Evaluation of this formula by 
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numerical methods is elementary for J = 3, but is costly for J=4 and 5 and 

prohibitive for J>5. The use of advanced numerical methods (Dutt, 1976; 

Hausman and Wise, 1976) promise improvements in computation time, but do 

not appear to make this approach practical for large J. 

Several indirect methods for calculating multinomial selection probabilities 

are being investigated. A promising Monte Carlo method developed by Manski 

substitutes calculated deviates in (7), and then estimates probabilities from the 

relative frequencies of calculated utility maxima. A second approach, suggested 

by Talvitie, is to approximate the ¢ error terms in (7) with Weibull errors, yielding 

the formula 

ka'z,,, 

(27) Pi, * | oe) da, 

where x(a) is the density of the random taste parameters a and k ‘s a large 

positive parameter. If the dimension of the taste parameter vector is low, then 

direct numerical evaluation of this formula is practical. Alternatively, approxima- 

tions can be obtained by making a series expansion of the logistic formula in (26) 

such that the expectation with respect to a can be calculated term by term. This 

has been done by Talvitie using a Taylor’s series expansion in powers of a, by 

Spence using an expansion in terms of moment generating functions, and by 

McFadden using Fourier series expansions. Results to date suggest that these 

expansions converge slowly, particularly for extreme probabilities, making them 

impractical in interative statistical procedures. The question of the existence of 

expansions with rapid convergence deserves further exploration. 

In maximum likelihood estimation of multinomial quantal response models, 

it is convenient to define residuals and measures of goodness of fit analogous to 

those in linear statistical models. The likelihood ratio statistic provides a 

convenient basis for defining an index of “proportion of variance explained,” 

(28) p =1-L,/L, 

where L, is the log likelihood function evaluated at the maximum likelihood 

estimate for the model under consideration, and L, is the log likelihood evaluated 

at the maximum likelihood estimate for a model in which only pure alternative 

effects appear. The properties of this index are discussed by McFadden (1973). A 

more conventional measure of goodness of fit, corresponding to the multiple 

correlation coefficient, can be based on the weighted sum of squared deviations of 

observations from predicted values, 

N J 
(29) = YY RDiw 

n=1j= 

with 

(30) D; om (Sin a R,,Pin )/ . R,.Pin- 

The statistic y* is asymptotically chi-squarea with N(J-—1)—K degrees of 

freedom when the R,, > +00; but is less stable in small samples when valued at the 

maximum likelihood estimator than is the likelihood ratio. In samples without 
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repetitions (R,, = 1), this measure is poorly behaved, and its use is not recom- 

mended. The residuals defined in (30) can be used in tests for the importance of 

excluded variables and for the multinomial logit specification. A transformation 

of the residuals suggested by Cox and Snell (1968) for the binary case can be 

generalized to provide residuals which are approximately uncorrelated, with 

mean zero and unit variance, when the model specification is correct. The details 

of these constructions are given in McFadden (1973). 

3. Extensions of the Statistical Choice Problem 

An area of multiple quantal response where models other than the multino- 

mial logit form have been estimated successfully is the study of binary transition 

probabilities in a Markov chain. Data on waiting times, for example, can be 

described by a negative binomial distribution, with the binomial probability given 

by a binary probit model or similar form. Papers by Heckman and Willis (1974) 

and Boskin and Nold (1974) apply such models to the estimation of conception 

probabilities and welfare recidivism. Mulitinomial transition probabilities can also 

be estimated using the logit model; a typical formulation is 

, J , 
(31) Py =e%/ ¥ efits, 

k=1 

where P;; is the transition probability from i to j and (z;,..., z,) describe the 

attributes of the alternative states. 

The model in (31) assumes a homogeneous population; the estimation 

problem is complicated considerably under the assumption of heterogeneity. This 

problem, which is a generalization of the classical ““mover-stayer” problem in 

sociology and demography, has been analyzed by Hall (1973), Heckman and 

Willis (1974), and Spilerman (1972). 

4. Multivariate Choice, Simultaneity, and Independence 

We have thus far viewed the quantal choice experiment as the observation of 

one of J possible alternatives along a single dimension of choice; for example, the 

choice among several colleges. However, the alternatives j = 1,..., J can also be 

taken to index the joint responses on several quantal choices. Suppose, for 

example, an individual is considering J, travel modes and J, possible destinations. 

Then there are J, - J,=J possible joint responses, now more conveniently given 

the double index ik, where i is the mode and k is the destination, rather than a 

single running index j. We see from this example that the problem of multivariate 

multinomial quantal response can always be treated formaily as one of univariate 

multinomial response. However, the multivariate structure introduces a series of 

important new questions and problems. The first is that interest in applications is 

often on the conditional or marginal selection probabilities for a particular 

quantal response variable. For example, one may wish to forecast mode 

choice conditioned on destination, or to estimate the marginal destination choice 

selection probabilities for all mode choices. Concentration on conditional and 
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marginal selection probabilities may also make it possible to avoid treating a 

prohibitive number of total alternatives. 

One approach to the problem of formulating simultaneous choice mode!s is 

to begin with the random utility model, and utilize separability properties of the 

underlying utility functions to derive statistical properties of the selection prob- 

abilities. This tack has been followed by Domencich and McFadden (1975) and by 

Ben-Akiva (1972). To illustrate the structural features of this method, consider an 

example in which the utility associated with alternative ij is 

(32) U(x;, yj, Zi;) = @'Zj + Bx; + y'yi + €i, 

where Z;,;, 1:, and y; are explanatory variables, ¢, is a random effect, and we now 

suppress the choice setting index n. The most interesting and challenging case 

occurs when ¢; has a components of variance structure; however, we initially 

assume the ¢,; are independently Weibull distributed, yielding the multinomial 

logit model 

(33) , = xP la'zy + B's + y'y) 

4 Yd a exp [a'2y, +B'x, + y'y] 

The marginal probabilities are then 

(34) P, =P) = —eiexPla’zy + B'xi + y'y) 

j Yds ©XP [a Zu+B X, +y yi] 

and the conditional probabilities satisfy 

exp [a’z, + y'y;] 
(35) Pi, = P,/P; = - _ 

‘ : Le exp[a'zx +y'yx] 

The conditional probabilities from the multivariate multinomial logit model are 

again multinomial logit; this is a consequence of the iadependence from irrelevant 

alternatives property and is not true for general selection probabilities. The 

condition for the two responses to be statistically independent (i.e., P,, = P,P;) is 

that a’z,; be zero. 

One could estimate the parameter vectors a and y from (35) employing 

conditional data on j given i. Considering the case that / is binary, and assuming 

repetitions, we can write (35) in the form 

S; 
(36 log = . —Yo)+ (z; —Z;2) +n, 

R,- $4; Y Wi Ya) Fa (21 — Zia) +0 

where R; is the number of responses where i is chosen and S,; is the number of 

these for which j = 1 is chosen, and 

(37) U] =(S); —-RPy;)/RPyQ — Py). 
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One can easily verify that 7 and (z;,; — z;2) are uncorrelated, so that ordinary least 

squares applied to (36) provides unbiased estimates of the coefficients. This 

conclusion implies that in applications such as estimation of traveler mode choice 

conditioned on auto ownership or household monthly probability of conception 

conditioned on contraceptive technique, no bias is introduced by including the 

value of the conditioning quantal response as an explanatory variable. Consider 

the particular case with z,,= 1 and z,)= Z2; = Z22=0. Then the model can be 

written 

(38) log ga = V1 ya) +28, +n, 

where 6; is a dummy variable which is one if i = 1 and zero otherwise. Then, 6; can 

be interpreted as the outcome of chuice in the dimension i, and (38) can be 

interpreted as an equation for the conditional choice j which depends via the shift 

effect a5; on the choice of i. We then have the remarkable conclusion that the 

presence of an “endogeneous” quantal response variable on the right-hand-side 

of (38) does not disturb the consistency of the ordinary single equation maximum 

likelihood estimator. However, it should be emphasized that this conclusion 

depends critically on the assumption that the random components in utility ¢,; are 

independent. If, to the contrary, these errors contain unobserved components 

which tend to increase the probability that j = 1 when i = 1, the classical statistical 

problem of “spurious contagion,” also known as the “mover-stayer”’ problem, 

arises. Intuition suggests that in a model such as (36) where the possibility of a 

misspecification exists which would lead to a correlation of (z;;—z;2) and y, an 

instrumental variables procedure should produce more satisfactory estimates. In 

an application, McFadden (1974) has used as an instrumentai variable a “‘reduced 

form’”’ fitted logit probability for 4; in (38). However, no argument is given for the 

statistical desirability of this procedure. 

A comprehensive treatment of simultaneous equations with quantal 

response has recently been made by Heckman (1975). Methods for direct analysis 

of multivariate responses in the multinomial logit framework have been 

developed by Nerlove and Press (1973), who develop an analysis of variance 

framework for multivariate multinomial logit analysis. Their structure is an 

extension of the example above, and is closely related to the log linear models 

treated by Bishop et al. (1975) and Haberman (1974). A second approach by 

Amemiya (1974) begins with a specification of the selection probabilities that is 

related to earlier statistical work on tolerance analysis. In the case of two binary 

responses, a binomial probit model is defined. 

P,, = N(a'x, B’y, Q) 

P19 = N(a'x, +00, )— N(a'x, B’y, Q) 

Po, = N(+00, B’y, Q)— N(a'x, B’y, 2) 

Poo = 1+ N(a’x, B’y, 2)— N(+0, B’y, Q)— N(a'x, +00, 0), 

(39) 

where a'x and f’y are linear-in-parameters functions of the respective binary 

alternatives, © is a 2X2 covariance matrix, and N is the bivariate cumulative 
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normal distribution. There does not appear to be a random utility model which 

will produce this specification of the selection probabilities. However, the model 

itself is of considerable empirical appeal, and will be applicable in many cases 

where a choice theory rationalization is irrelevant. 

5. Unsolved Problems 

We conclude this section by listing some problems of statistical analysis for 

future study. First, there is need for further work on estimation methods in simple 

quantal response models, and on the small sample properties of the estimators. It 

would be particularly interesting to pursue distribution-free methods such as 

Manski’s maximum score es:imators. Since maximum likelihood estimation will 

probably continue to be the most useful general purpose estimation procedure, 

work should be done on correcting these estimators to improve their statistical 

properties in samples of moderate size. Data grouping methods for use of 

Berkson’s methods should be investigated. There is need for further development 

of computer programs to carry out estimation, particularly when large numbers of 

observations are involved or forms other than multinomial logit are adopted. 

There is a pressing need for development of practical models for selection 

probabilities which do not have the independence of irrelevant alternatives 

property. The issues arising in such constructions may also be relevant to 

construction of components of variance models where the mover-stayer problem 

can be analyzed. It would be particularly useful to achieve a computational 

breakthrough on the multinomial normal model. 

The subject of multivariate and structural estimation of quantal response 

requires further work in almost every aspect; in particular, there has been little 

work on estimators for structural models. 

IV. ECONOMIC APPLICATIONS 

Economic applications employing binary quantal choice models have been 

most common in studies of travel demand modal split, migration, and the demand 

for consumer durables. A selection of papers are Allouche (1972), Amemiya and 

Boskin (1972), Fisher (1967), Korbel (1966), Lave (1970), Lee (1963), Lisco 

(1967), McGillivray (1970), Moses et al. (1967), Reichman and Stopher (1971), 

Stopher (1969), Stopher and Lisco (1970), Talvitie (1972), Thomas and 

Thompson (1971), Uhler (1968), Walker (1968), Warner (1962), and Zellner 

(1965). 

The most extensive use of ‘multinomial response models has been in travel 

demand analysis; the reader is referred to the following contributions: Ben- 

Akiva (1972), Brand (1972), Lave (1970), McFadden (1973a), Domencich and 

McFadden (1975), McFadden and Reid (1974), McLynn (1971), Stopher and 

Lisco (1970), Talvitie (1972, 1973), Watson and Westin (1973), Watson (1972), 

and Wigner (1973). Of particular interest are the issues of choice structure and 

independence discussed in ben-Akiva (1972) and Domencich and McFadden 

(1975), and the problems of forecasting in aggregate models discussed by 

McFadden and Reid (1974), Talvitie (1973), and Watson and Westin (1973). 
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Other areas of application are analysis of college-going behavior (Miller and 

Radner, 1970, 1974, and Kohn, Manski, and Mundel, 1976); occupational choice 

(Boskin, 1972) and housing location (Friedman, 1974, Pollakowski, 1975, and 

Lerman, 1975). Areas in which quantal choice models have been used on only a 

limited basis, and in which substantial potential exists for useful exploitation of 

these methods are fertility behavior, migration, economic determinants of voting 

behavior, ownership and brand of consumer durables, and labor market behavior, 

including job search and occupational choice. The techniques for quantal 

response analysis surveyed in this paper may prove useful for these problems, and 

for related problems in other social sciences. On the other hand, the topics 

suggested here for further investigation and the requirements of new applications 

may lead to the development of practical quantal response models which provide 

a more accurate description of individual choice among qualitative alternatives. 

- 
University of California, Berkeley 
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