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Annals of Economic and Social Measurement, 5/3. 1976

ECONOMETRIC POLICY MODEL CONSTRUCTION:
THE POST-BAYESIAN APPROACI-i1

isv AtroLn M. FADEN* AND GORDON C. RAIJSSERt

The recent bayesian revival constitutes a searching critique of orthodox statistical procedures, but is itself

not free of difficulties. Its prescription imposes in general a crushing computational burden if taken

literally. In practice, even avowed bayesians resort to drastic stniplifications (e.g., conjugate

diitributions), and researchers in general seem to deviate considerably front this procedure.

The "post-bayesian" approach takes formal account of this need for simplification Specifically, in

making cognitive judgments one balances the cost of inaccuracy against the cost of complexity of the

various alternatives. Here "cognitive judgments" include the entire realm of statistical inference---

selection of models, testing of hypotheses, esrirnatian, prediction, etc. 'Inaccuracy" refers not to
deciations from the true state of nature as in conventional decision theory, but to deviations from one's

personal probability distribution as justified by prior assessments and available information. That is, one

deliberately distorts one's assessrnent.S for the sake of tractability incurring a (hopefully) small inaccuracy

Cost for a large reduction in complexity cost.
We apply these ideas here to some problems of prediction and control, the trade-oils being the

complexity cost of including more predictor orcontrol variables vs. the inaccuracy cost of missing the true

or target values. The analyses are compared to the straight bayesian approach of Lindley, who covers a

similar range of problems.

The applications of econometrics to policy questions have grown dramatically in
recent decades. Sophisticated techniques have evolved for the estimation of
parameters, system identification, test1ing of models, setting of objective
functions, incorporation of new data, etc. And yet there are certain doubts about
the validity of much of this literaturedoubts not merely about minor points but
about the very foundations themselves.

More specifically, the criteria used in economic policy applications are
generally borrowed from statistical theory in a fairly uncritical mannermostly
from conventional statistics, as in the use of maximum likelihood methods,
confidence intervals, significance tests and the like but also (especially in the
control literature) from bayesian statistics. Now these criteria are themselves
under attack. The recent bayesian revival constitutes a serious challenge o the
validity of most conventional methods; on the other hand, bayesian methods
themselves have certain shortcomings. In particular, a rigorous bayesian would
need superhuman abilitiesa perfect and infinite memory, perfect deductive
powers, including faultless and instantaneous calculating ability, and the ability to
understand questions of arbitrary complexity.

Our basic approach is that the entire process of specifying, estimating, testing
and applying models is itself an economic activity which should be judged by
economic criteria, viz., the costs and benefits associated with alternative ways of
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Many of the early developments in this field of investigation are summarized in Tinbergen
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[1967, 1975), Chow [1975], Heal [1973].
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organizing the research. This appu)ach results ifl a strategy
which InVOlvC5 thebalancing between two costs: the cost of conipiexity and the cost of inaccuracy dueto abstraction or distortion. It turns Out that the aI)l)roach yields Criteria Whichdiffer substantially from both bayesian and ConVentional prescri)tjflS2

The post-bayesian approach attempts not only to provide a superior Prescriptive theory than the bayesian or any conventional approach, hut also a superiordescriptive theory. The novelty of the approach involves the explicit Ifltrodtj0tiof complexity costs. The incorporation of this notion brings us closer to the wayscientists actually do behave. Hence, by coming Closer to the structure of costs andbenefits we can presumably provide a sounder guide for actual practice
1.1 comp1exiy. One dimension of the cost benefit structure of alternativeresearch strategies emanates from complexity. An intractible model is uselessexcept as an educational instrument for forging more tractable models And eventractable models differ considerably in complexity. Cost here may take the form ofmoney, time, resources or effort used in developing models, storing and retrievinginformation, adapting them to various applications, solving them, and cOflimunicating their results to others. Some illustrative examples: ceteris paribj,linear models arc simpler than non-linear, deterministic models are simpler thanstochastic models, equilibrium models are simpler than dynamic models, lumpedparameter models arc simpler than distributed parameter models; in general,complexity rises with the number of free parameters.

To indicate how one would actually assess complexity
costs, consider theproblem of alternative regression models aimed, say, at predicting a certainvariable of interest. Complexity will rise with the inclusion of every new explanat-

ory variable, and it is reasonable to assume that complexity cost is a function of thenumber of explanatory variables. But which function? Certain aspects of cost goup linearly with the number of variables; e.g.. tabulating the data; some go upquadratically, e.g., printing the covariance matrix: some go up cubically, e.g.,inverting the moment matrix. These are not the only costs, hut they suggest that acubic polynomial may be one possible representatioti of complexity cost.1.2 Inaccuracy. The other important aspect of model construction is accu-racy. The more accurate a model is, the more benefit
accrues from employing it toresolve various policy issues. Or, turned around, there is a cost associated withinaccuracy. But what is inaccuracy, and how does one measure its cost? We takethe bayesian prescription as the ideal of perfect accuracy. That is, if(X), iEI, isthe family of random variables in which one is interested, the perfectly accuratemodel would be the probability distribution over this family which is justified bythe available evidence and one's prior beliefs3 As a rule, however, such adistribution would he completely intractable and so one resorts to simplifyingapproximations.

The cost of an inaccurate model depends on how it is used. That is, for modelsthat are used as guides in making
decisions, inaccuracy tends to degrade the

2 For a more detailed examination of the foundations of this approach ccc Faden and Rausser[1975]. In this paper, the approach is also applied to a number of traditional statistical problemsestimating (or testing) the mean of a normal distribution point estimation in general. simplehypothesis testing, and optimal roundoff.
A random variable refers to some unknown quantity and does not necessarily involve the idea ofrepeatahilit). This accords with the bayesian outlook and also with the language of stochasticprocesses
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quality of the decision. This implies that to assess the costs of inaccuracy, one must

embed the model in a more complete policy framework. There are several ways of

making this embedding. each generally leading to a different inaccuracy cost

function. Thus, there is no absolute "metric" for inaccuracy.
Our contention is that the entire realm of statistical procedures should he

reconstructed in terms of the framework set out above. Questions of estimation,

hypotheSiS testing and the like should be answered by selecting the iuodel which

minimizes the total cost of complexity plus inaccuracy. As previously noted. the

results of such an approach differ sharply from the recommendations of conven-

tional statistical procedures.
In this paper, we explore some of these results in the context of both

prediction and control. One surprising result is that the conventional dichotomy

between estimation and testing seems to dissolve.4 Specifically, the problem is

formulated as one of estimation, but the solution is qualitatively what would arise

from the problem of deciding which regression coefficients are significantly

different from zero or which control variables should he set to zero. The source of

this outcome is the discontinuity of the complexity cost function.

Our aim in the following examples is to find the structure that an optimal

model would have, taking account of both complexity and inaccuracy costs. To

make this approach operational would require the specilication of an explicit

complexity cost function. We have not attempted this.

1.3 Costs of computing vs. Costs of Using Models. A further problem in
implementing this approach is the very cost of finding the optimal model. In the

following examples the search problem reduces to a combinatorial one, possibly

of rather large size. Clearly, it will not do for the "cost of assessing the costs" to

exceed the gain from model improvement. In this connection the following points

should be noted.
First, the trade-off between complexity and inaccuracy operates for methods

as well as for models, including methods of searching for a good model. Thus,

non-exhaustive searches leading to generally sub-optimal models may he justified

by the saving in searching costs. Specifically, the following examples involve a

search over the integers K1=O, 1,..., K, K1 being the number of non-zero

regression coefficients or active controls, and where the figure of merit for each

integer may involve a complex computation. A heuristic procedure that suggests

itself is to search for a "local" optimum, i.e., an integer that does better than its N

nearest neighbors, where N is 'mall compared with K. The best N is then itself the

subject of a "higher-order" search.
Second, the more important and general the problem to which the model is

addressed, the greater the level of complexity which is justified, both in the model

itself and in the methods used in searching for and constructing it. Thus, an

exhaustive search might be justified for a model which is to be used over and over,

but not for a "one-shot" model.

2. ILLUSTRATIVE PREI)IcrIoN AND CONrRoI APPLiCATIONS

2.1 Optimal Prediction. Consider a regression model Y= Xf3 + U in which

the objective is to estimate p so as to predict Y accurately. Inaccuracy loss is

This phenomenon also occurs in several of the models nvestlgaietl in Fadenand Rausserl 1Q751.
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quadratic in the prediction error. Complexity loss goes up with the number ofnonzero components of vector /3.
Though framed as an estimation problem, this can also be thought of as

"testing the significance of the components of /3.' The structure of the test is,
however, quite different from the usual one, as might be expected since the ttuth
of p = 0 is not really the question at issue.As usual, random variables Y(T, 1) and X(T, K) of rank K are observed;
scalar ' and X(1, K) are not yet observed, 13(K, 1) and scalar u2 are unknown.Of the following assumptions, (1) is the normal regression model, and (2) a
weak version of the same. (3) is the formal expression of "complete ignorance"
concerning /3. (4) may be thought ofas the bayesian counterpart of "estimatingthesecond-moment matrix of X by the average seconci-niornent of the observations
X". It will generally not be satisfied exactly even when X and the rows of X are
independently and identicallydistributed, but will be a good

approximation in this
case for large T.

Assume:

P( Y, X, /3. o) - N(X(3, o2Ir);
E(1,X,/3, Y)/3;

3)
P(I3(X,X,u2)1;

E'JcX, );
and the variance terms in the following proof are all finite.L.et /3 be the estimator of /3, and let e = YX13 be the forecasting error.
Then,

213'X'YTheorem 1: E(e2IX, y)J3XXI3
T +terms not involving /3.Proof:

P(j3, X, Y, 2)cc P(f3, Y, X, r2)exp[(X$ YY(X/3 Y)12r2]which yields

P((3j5,X, Y, o2)--N[(X'X1 X'Y; u2(X'XY'].Let W=k(3; then
P( W X, Y, 0.2)

N[X(X'K) tX' Y, 0.2'(X'X) 1X'I.Hence,

E(W, X, Y, ti2) = (X'X1X' Y.
In the univariate

case (K 1), assumption (4) is satisfied
exactly if X and the componentsof X

are independent
with common

density function

p(xh)hx exp(hx2/2),
x>O,the parameter h being itself

uniformly distributed over the positive
haifline.
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But also
E( c'i' X, Y, 3)= Xj3 =

hence,

E(YIX,X, y)=X(X'X)'X'Y.

This yields
E(eIX, X, Y) = 5C[(X'X)'X' Y ]

so that
E(e2IX, X, Y) = [(XrXII Xr Y -- Th'k RX'XY' X' Y

+variance (elX, X, 'Ii.

Now, variance (elX, X, Y)variaflcc (YX, X, Y) does not involve f. Taking

expectations conditional on X, Y, we obtain

E(eiX Y) - [(X'X)X'Y 1' -[(X'XY'X'Y

p'X'X13 21'X'Y
T T

reS,

where res does not involve 1. QED.
The optimal estimator 13 (which may depend on the observations) is that

minimizing the sum of two terms, the forecasting loss E(elX, Y), and the loss

from allowing the complication l3 0.

Theorem 2: The optimal has one of the following 2' forms: partition X=

(X1X2) and correspondingly 13 = (), set 132 = 0 and I = (X'X1Y'X'i Y.

Proof. Given , let be the nonzero components of ft From Theorem I, the

inaccuracy loss is then

(3iXiXif3i2P1'1+res
T T

As i varies, complexity cost does not rise, so J should be chosen to minimize

inaccuracy loss, and this occurs at
1=(XX1)'XY. QED.

6
A referee has redone this analysis with assumptIon (4) weakened to E(X'XIK, Y) W a

general positive definite matrix. Partitioning W conformably tO (X1 X) he obtains

i =[I, W W12](X'X)'X'Y

in place of (15), K1 being the numberof columns in X1.

Also, (16) should be replaced by

Y'X(X'XY' [
1 I I2 ]'' x' Y

R2
I YY
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Note that this ,e.u1t is equal to the posterior mean of f3. Couditionjj on$2 =
Thus, the problem is reduced to a Combinatorial one. Assume Y' V anddefine7

(16) R2= Y'X(XXY'XçY

Theorem 3: The Optimal soluflon 1 has the following structure. If there are K1nonzero terms, then the given nonzero suhvector is that maximizing R over allpossible suhvectors of size K1.

Proof: Fixing the number of nonzero Components flxes complexity cost, hence theoptimal subvector is that minimizing InaCCuracy cost. Substituting the value$=(XX1) 'X Yyjelds

E(e2X. ,1YX1(x1x1)
T

xY
+res.

The minimizer of this is the maximizer of

V'X1(X;x1)x;y 2
QED.

2.2 Optimal co,ziro Consider first the case of one-stage control. This againis a regrcssion model with vector components Y(T, 1), X(T, K) of rank K,/3(K, 1), Y scalar, X( 1, K) as above. The interpretation of Y and X is, howeverquite different; X is now a control vector, subject to choice. Choosing X yields avalue X$ + U. As before, /3 and scalar U are unknown, distributed independentlyof each other and of X. The object is to hit a target value Y Y itself may not beknown exactly and has a distribution which is independent of 1 and of X.The loss from missing the target is assumed quadratic:
(/3U_)2.

In addition, there is a complexity loss which increases with the number of activecontrols. Specifically partition X and /3 correspondingl into active X1, /3, andpassive X2, /3. parts, so that

X/3_XI/3I+X,p,
In what follø X2/32 is set equal to zero. The complexity loss then depends onK1, the nuniher of components in X or

Let b1 = E(31, I) E(/31p), and let V1 be the covariance matrix of /3 so that= V1 +b1b. (V1 and f11 are assume(J to be invertible)
R coincides with the ordinary coefficje of determination if = 0, and if either X has a

constant column or X = 0 ( indicates the average of the T obser%atiofls)8This model is similar to that of Prescott [1971, 1972}. For an exposition see Zellner [1971,
Chap. XIJ.

This may be intereted either as accepting a null hothesis = 0, or as setting the controls X2
to zero. Zero may he thought of as "status.quo"

setting, any alteration of which incurs an overhead
cost in use.
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Theorem 4: The optimal control setting has the following structure. b11 'b1 is
maxiniizcd over all possible active suhvectors having K components. The optimal

setting is

X1 =(EYEU)hU1

Proof. Fixing the number of active components fixes complexity loss, so X1 should
be chosen to minimize inaccuracy loss, which is

E(X1(31± U Y)2 X1f11+2X1h1(FUEY)-FE(U Y)t

The minimizer of this expression is

and the minimum value is

(EYEU)2h!l7h1 +E U Y)2.
Hence the optimal active subset is the one maximizing h)11b1. QE D.

Now, suppose that information concerning 13 has been obtained from
previous observations of X, Y in the regression relation

Y = X13 + U.

(Heie, the vector Y does not represent the preceding target values hut instead the

attained values resulting from the settings of X.) \Ve assume Y'PvIY>0. where

M = lTX(X\) X, T> K +2; the standard linear model with (unknown)

precision h,

P( X, f3) N(X13, i,J!i):

and a noninformative prior (JelTreys 196l1), i.e..

P(f3. hX, X) I/h.

The posterior distribution of (3,conditional on X. X, Y, is then a multivariate t

with mean b = (X'X)X'Y and covariance matrix

V= Y'MY(XX) 7(TK-2).

(Zdilner [1971, p. 67, 331).
Now, for any partition (X1 X2) of X into active and passive components,

partition X conformably into (X1 X2), and let

M2 I1.X,(XXYX.
The following result then restates Theorem -i in tetrns of X1, X2. and Y.

Theorem 5: The optimal control setting has the following structure: '[he

expression

Y'M2X1(X M2X ) 1X ?v1 Y
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I

is maximized over all possible partitions (X1 X) of X. where X Contaitis K1colunius. The optimal setting is

(E'' - EU) Y'M2X1
Xt[YMY/(T_ K 2)]+ Y'M2X1(XM2X1)1XM2Y

Proof:

_rxx1(X'XY' {x;x1
hence

V1 = Y'MY(XM2X1)/(TK2)and

b3 = (XM2X1) 1[X - XX2(X
X2i'X}Y = (XM2X1)1 Xil2 Y.Now,

c1=[Vl+hIbTt=V_V1
1-t-bVYb1thus,

and

Ij/34)
-1 1 1 UIk

I I 'i+b'Vh
Hence, maximization of b1b1 is equivalent to maximization of

YM2X1(XM2XJ)X1M2Yb1Vb1
Y'MY/(TK-2)

Since Y'MY>O this proves the first statement of the theorem. Finally, theoptimal setting

(28a)
I l+bV1b1

(EYEU)b%'Y
and substitution yields the last statement. QED.One special case may be noted, if the columns of X are orthogonal, thenM2X1 = X1, and the optimal active subvector is the one in which

Y'XI(XXIYX Yis a maximum, which is the same criterion as in the prediction model above.Turning to N-stage control some rather obvious results are immediate fromTheorems 4 and 5. Let X, be the control setting at stage t, t 1.....N, andconsider first the case in which the settings on X, must all be announced at the
356
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beginning of the first stage or planning period and remain unaltered thereafter.
Under these circumstances, information provided by Y in determining the

optimal setting for X1 , i >0, cannot be employed and thus the choice of X, will

not affect the optimal determination br subsequent controls, i.e. X,, >o.

Hence, this N-stage problem reduces to N nonrecursiVc one-period problems.

A few interesting implications of the N-stage control problem as specified

here, ho\Vever, can be obtained. In particular, the effects of variations in the

distributions of target values or disturbances on X1 and K, across stages of the

planning horizon can be ascertained. To examine these iSSUeS we shall let the total

cost be the sum of the costs incurred at each stage. Furthermore, complexity cost

at stage is presumed an increasing function, C', of the number of active-control

components, K11, utilized at that stage, the function itself being invariant in time.

InaccuracY cost at stage (is again the squared error at that stage. Thus, we wish to

minimize the expectation of
N

(37) (Y,X,13-- Uy-F C(K11).

Here Y, and U, are the (scalar) target values and disturbances at stage tThese viIl

in general he unknown and are allowed to change from stage to stage. X, is the

(1, K) control vector for stage 1, the_nurnber,9f non-zero components of X, being

of course K11. 13 is independent of Y1.....YN, Ut... UN, and the joint distribu-

tion of these variables is unaffected by the choice of any X1.....XN.

Now suppose that the control vectors X .....XN must be chosen in advance,

and suppose there is a unique optimal solution x?,.. . , X. Then we have the

following results.

Theorem 6: Let t', t" be any two stages.
If

EYEU EYE EU,-,
then

if
- EU,.EYr EUr,

then
K11 K11.

That is, the number of active components at t' is not less than the number of active

components at 1".

if K11 K11, then X. and x? are proportional to each other.

Proof: (i) The expected cost at stage I is

(38) K,IX+ 2X,b(EU, - EY,)+E(U1 C(K11).

where Eq3f3') and b = E13. If EU, EY, = EUr EYr, then the expressions

(38) for 'and " differ from each other only in a term not involving the control

vector. Hence a given X° minimizes the ('-expression if it minimizes the expres-

sion for t". By uniqueness of solution, x. =- X.
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(ii) Let X11, X1,. he the active subvectors of X, X, respectively; 13,. 13 be thecorresponding suhveetors of 13; F?,; b, = E311: fli,' E(I,, (3,); andt= F($,-. 13).
We shall assume that K< K11 and reach a contradiction. Throughout weassume that fEY,- EU,.. ;> 0, since otherwise (ii) is trivially correct. The Costsincurred by X at stage 1' are, from (2 1),

-(EY,'-EU,)2b,.U11h11+E(U, - Y)2± C(K11).
Since X'. is optimal, (39) cannot exceed the total costs incurred by any othervector, in particular by the vector whose active components (Ec'1-EU,)b1,t = Z. say, where thesecomponents match those of X'. The inaccu-racy cost incurred by this vector is

E(Z1311.+ Li,.- Y)2 -(LY,.-EUh',.b12+ E( Y,.- (J,.)2
Hence we get the inequality

- (EY,. - EU,)2b',f,b, + C(K11.)

-(EY,-- EU,.)2b11.th.'b11..-F C(Kir).In fact, this is a strict inequality, since Z Xv,, and the solutions are unique.A similar argument applied to X yields (41) with t' and c' interchangedthroughout. Adding (41) to this latter inequality, and simplifying, we obtain
0 <[(Ec',. EUe)2-(EY,.- EU,.)2}[b,fl11b11 -

The first bracketed expression must be positive by assumption, hence
h,b11 >

But this ccntradicts optimality of X... For, by minimizing over vectors withK1, <K1 , active components one could reduce complexity cost and, (by equation21), inaccuracy cost as well. This proves that K11 K11...(iii) The optimal active subset at 1' is the one maximizing bffb1 over alt subsetswith K11 components by Theorem 4. By uniqueness of solution there is just onesuch maximizing subset. Since K11 = K11-, the optimal active subset at i' solves thesame maximization problem, hence the active subsets coincide. The activesubvectors themselves arc proportional to h by (20). hence proportional toeach other. Q.ED.
The intuitive explanation for part (ii) of Theorem 6 is that a larger absoluteEY, EU, makes inaccuracy cost more sensitive to a change in control. Hence, itmay pay to accept more complications to obtain a better "fix" on the target. Part(iii) shows that the number of active components actually determines the optimalcontrol vector, up to a scale factor.If information from previous stages is employed to determine current Con-

trols hut iiot conversely, then we have the case of passive learning or sequential
3



updating (Rausscr and Freehairu 11 974j). Here, the M)ILitiOfl (toes take accouiil ot
information in previous stages to arrive the control setting br the t-th stage.
Letting Y(T, 1) and X( T K) be as above, viz. the data available in advance;
X(1, K) the control setting at stage i-; Y (scalar) the realization (not the target) at

stage r, T 1..., tL Y=[Y'YL.. Y ]; X'=IX' X . X Mi
- XTX X1 -1'r'; and M = 1r - X( X' X I X,' then we have

Theorem 7: The optimal control setting has the following structure for the
sequential updating problem: in each stage t, the expression

(44) 'X;M, Y

is maximized over at! possible partitions(X1 X1) of X,: I .....N, where X
contains K1 columns. The optimal settings are

- [Y'M Y/(T± : K 3)]+ Y Y

Proof. Just substitute X, Y for X, Y along with T+ t - I for T in Theorem

5. QED.
Note that under Theorems 5, 6 and 7 the first stage controls are equivalent;

differences arise only with respect to the second and subsequent stages. Further-

more, neither Theorems 6 or 7 admit any influence of subsequent controls on the

determination of current control settings, i.e. the determination of current

controls is made without taking account of how these settings affect subsequent

stage control settings. To account for this influence, an adaptive control approach

which explicitly recognizes the experimental design aspects of the problem is

required. We are presently investigating this approach iii context of the post-

bayesian framework advanced in this paper.
2.3 Lindley's Approach. These examples invite comparison with the results of

Lindley [1968]. He also considers both a prediction and a control problerm In

each case there is a quadratic loss from missing the true or target value of the

dependent variable and an additional cost depending on the variables selected for

observation or control.
In Lindley's control problem (1968, pp. 46-531, the controls arc random

variables, the uncontrol!ed variables taking values stochastically according to a

distribution conditioned on the selected values of the controlled variables. In our

example, of course, the "uncontrolled' variables are kept at their status-quo

value of zero. Not surprisingly, the tV() analyses diverge completely in their

recommended selection of controls and settings.

In Lindley's prediction problem [1968, pp. 33-46], X and the rows of X are

ultimately assumed to be i.i.d., multiriormal, with common random parameters

having a Fisher-Cornish prior. (By contrast, (4) is the only distributional assump-

tion we make on the X or X variables). The real contrast, however, is not so much

in the different stochastic assumptions, as in the cost structure of the models,

which illustrates neatly the distinction between the bayesian and poM-baye.Siafl

approaches. Our second cost component refers to the complexity of the model,

which can be reduced by dropping the terms X2f2that is, actually distorting the

mxIel in a most unbayesian manner. Lindley's cost, on the other hand, is the cost
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of observing variables; the anaiysis is of the standard "preposterior" form{RaiffaSchlaifer, 1961], balancing this cost against the expected benefit ofmaking the observation.
The essential distinction is brought out in a comment made by Lindley in thediscussion following his paper. Considering the case of polynomial regression

(i1 = j 0, 1, 2,. . .), where the cost of observing all the components i isscarcely greater than the cost of observing one of them. Lindley states: "MyBayesian solution would fit a polynomial of degree n -- 1 to a points isabsurd . .. . In practice I would fit a low degree polynomial, hut I do not know why,or at least not in any way that 1 can express precisely. The example is a useful testcase for Bayesian methods." [Lindley, 1968, p. 66]. Our reply, of course, is that tojustify this common practice one must go beyond Lindley's bayesian approach andconsider explicitly the cost of complexity in selecting models.Finally, note that observation costs may be subsumed under complexitycosts: if one excludes a variable from a model, one need not observe it. Thus,Lindley's costs should he incorporated as a contributor to the complexity costfunction.'°

3. CONCLUDING COMMENTS
in the construction and use of econometric models for various purposes, wehave argued that conventional procedures are lacking. Their limitations emanatefrom their failure to explicitly recognize complexity costs and thus the need tobalance these costs with the cost of inaccuracy due to abstraction or distortion.The incorporation of these costs leads to what we have characterized as thepost-bayesian approach and requires a reexamination of model constructionprocedures. The result of such an examination is hopefully not only a betterprescriptive theory than the bayesian or any conventional approach, but asuperior descriptive theory as well.

The main practical thrust of the post-bayesian approach for problems ofprediction and control is that it provides a Correct formal apparatus for accomp-lishing what researchers are now doing eitheron a purely intuitive basis or with theaid of tests which are inappropriate. Somehow a selection of "significant"explanatory variables or "appropriate" control variables must be made from apool of such variables which is indefinitely large, and the proper estimates orsettings made on the variables selected. The post-bayesian approach makes thisselection in a systematic way involving the weighing of alternative costs, avoidingthe inappropriate tests inherited from conventional statistics.In practice, of course, we do not generally have accurate estimates ofcomplexity and inaccuracy costs and thus post-bayesian procedures must often beimplemented with crude estimates of such costs. Nevertheless, for the illustrativeapplications considered in this paper, it was possible to employ very crudeestimates of these costs to motivate procedures which proved superior to conven-tional treatments.
1D1 is

interesting to note thatLindleys prediction model implies the conclusions of ourTheorems
2 and 3 despite its rather dilterent

assumptions 11968, p. 421. Any modification
of either model would

in general destroy this coincidence. See footnote 6 above, for example.
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We intend to go well beyond the prediction and control applications
advanced in section 2. More specifically, in addition to our previous work (Faden
and Rausser [1975]) and the examples presented in Section 2, we are presently
examining the implications of the approach for dealing with aggregation, selection
among alternative functional forms, specification and estimation of distributed lag
relationships, pooling of cross-section-time-Series data, regime changes, determi-
nation of the number of classes in discriniinant analysis, and the construction of
autoregressive-moving average processes. Moreover, some preliminary results
are now available on a comparison of the post-bayesian approach with conven-
tional stepwise regression routines (Dahm, et. al. [1975]). It is clear from these
results that rather substantial difierences are obtained when costs of complexity
are explicitly recognized.

Other potential applications where the approach would prove valuable are
not difficult to isolate. These applications might be classified under one of three
categories, (i) specification of econometric models, (ii) selection of estimation
methods, and (iii) selection of policy or control solution methods. The first
category covers such questions as whether a model for a particular system should
be specified as a set of stepwise recursive, block recursive, or simultaneous
equations. The second addresses issues such as the selection of estimation
procedures for dynamic, stochastic models which do not admit estimators with
determinable small sample properties. Since most economic policy problems
require the formulation of a rational, multiperiod decision problem under condi-
tions of imperfect information (an adaptive control problem) for which no
analytical control solution is available (Rausser and Freebairn [19741), the third
category is concerned with the selection of "approximate" solution procedures
which involve some alterations of the original structure of the problem. The
severity of these alterations will depend upon the combined cost of complexity
and inaccuracy. The specification of these costs and use of the resulting post-
bayesian procedures will allow researchers to determine the optimal degree of
approximation to adaptive or dual control problems.

Iowa Stare University
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