
This PDF is a selection from an out-of-print volume from the National Bureau of 
 Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 5, number 3 

Volume Author/Editor: Sanford V. Berg, editor

Volume Publisher: NBER

Volume URL: http://www.nber.org/books/aesm76-3

Publication Date: July 1976

Chapter Title: Econometric Policy Model Construction: The Post-Bayesian Approach 

Chapter Author: Arnold M. Faden, Gordon C. Rausser

Chapter URL: http://www.nber.org/chapters/c10485

Chapter pages in book: (p. 349 - 362)



Annals of Economic and Social Measurement, 5/3, 1976 

ECONOMETRIC POLICY MODEL CONSTRUCTION: 

THE POST-BAYESIAN APPROACH? 

BY ARNOLD M. FADEN* AND GORDON C. RAUSSERT 

The recent bayesian revival constitutes a searching critique of orthodox statistical procedures, but is itself 
not free of difficulties. Its prescription imposes in general a crushing computational burden if taken 
literally. In practice, even avowed bayesians resort to drastic simplifications (e.g., conjugate 
distributions), and researchers in general seem to deviate considerably from this procedure. 

The “‘post-bayesian”’ approach takes formal account of this need for simplification. Specifically, in 
making cognitive judgments one balances the cost of inaccuracy against the cost of complexity of the 
various alternatives. Here “‘cognitive judgments” include the entire realm of statistical inference— 
selection of models, testing of hypotheses, estimation, prediction, etc. “Inaccuracy”’ refers not to 
deviations from the true state of nature as in conventional decision theory, but to deviations from one’s 
personal probability distribution as justified by prior assessments and available information. That is, one 
deliberately distoris one’s assessments for the sake of tractability incurring a (hopefully) small inaccuracy 
cost for a large reduction in. complexity cost. 

We apply these ideas here to some problems of prediction and control, the trade-offs being the 
complexity cost of including more predictor or control variables vs. the inaccuracy cost of missing the true 
or target values. The analyses are compared to the straight bayesian approach of Lindley, who covers a 
similar range of problems. 

The applications of econometrics to policy questions have grown dramatically in 

recent decades. Sophisticated techniques have evolved for the estimation of 

parameters, system identification, testing of models, setting of objective 

functions, incorporation of new data, etc. And yet there are certain doubts about 

the validity of much of this literature—doubts not ey about minor points but 

about the very foundations themselves. 

More specifically, the criteria used in economic policy applications are 

generally borrowed from statistical theory in a fairly uncritical manner—mostly 

from conventional statistics, as in the use of maximum likelihood methods, 

confidence intervals, significance tests and the like but also (especially in the 

control literature) from bayesian statistics. Now these criteria are themselves 

under attack. The recent bayesian revival constitutes a serious challenge to the 

validity of most conventional methods; on the other hand, bayesian methods 

themselves have certain shortcomings. In particular, a rigorous bayesian would 

need superhuman abilities—a perfect and infinite memory, perfect deductive 

powers, including faultless and instantaneous calculating ability, and the ability to 

understand questions of arbitrary complexity. 

Our basic approach is that the entire process of specifying, estimating, testing 

and applying models is itself an economic activity which should be judged by 

economic criteria, viz., the costs and benefits associated with alternative ways of 

* Associate Professor of Economics, lowa State University. 
t Professor of Economics and Statistics, lowa State University. 
+ The authors wish to thank two anonymous referees for valuable comments. 

' Many of the early developments in this field of investigation are summarized in Tinbergen 
[1956], Theil [1964] and Fox, et al., [1973] while more recent developments are available in Aoki 
[1967, 1975], Chow [1975], Heal [1973]. 
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organizing the . -search. This approach results in a strategy which involves the 

balancing between two costs: the cost of complexity and the cost of inaccuracy due 

to abstraction or distortion. It turns out that the approach yields criteria which 

differ substantially from both bayesian and conventional prescriptions.” 

The post-bayesian approach attempts not only to provide a superior prescrip- 

tive theory than the bayesian or any conventional approach, but also a superior 

descriptive theory. The novelty of the approach involves the explicit introduction 

of complexity costs. The incorporation of this notion brings us closer to the way 

scientists actually do behave. Hence, by coming closer to the structure of costs and 

benefits we can presumably provide a sounder guide for actual practice. 

1.1 Complexity. One dimension of the cost benefit structure of alternative 

research strategies emanates from complexity. An intractable model is useless 

except as an educational instrument for forging more tractable models. And even 

tractable models differ considerably in complexity. Cost here may take the form of 

money, time, resources or effort used in developing models, storing and retrieving 

information, adapting them to various applications, solving them, and com- 

municating their results to others. Some illustrative examples: ceteris paribus, 

linear models are simpler than non-linear, deterministic models are simpler than 

stochastic models, equilibrium models are simpler than dynamic models, lumped 

parameter models are simpler than distributed parameter models; in general, 

complexity rises with the number of free parameters. 

To indicate how one would actually assess complexity costs, consider the 

problem of alternative regression models aimed, say, at predicting a certain 

variable of interest. Complexity will rise with the inclusion of every new explanat- 

ory variable, and it is reasonable to assume that complexity cost is a function of the 

number of explanatory variables. But which function? Certain aspects of cost go 

up linearly with the number of variables; e.g., tabulating the data; some go up 

quadratically, e.g., printing the covariance matrix; some go up cubically, e.g., 

inverting the moment matrix. These are not the only costs, but they suggest that a 

cubic polynomial may be one possible representation of complexity cost. 

1.2 Inaccuracy. The other important aspect of model construction is accu- 

racy. The more accurate a model is, the more benefit accrues from employing it to 

resolve various policy issues. Or, turned around, there is a cost associated with 

inaccuracy. But what is inaccuracy, and how does one measure its cost? We take 

the bayesian prescription as the ideal of perfect accuracy. That is, if (X;), i¢ I, is 

the family of random variables in which one is interested, the perfectly accurate 

model would be the probability distribution over this family which is justified by 

the available evidence and one’s prior beliefs. As a rule, however, such a 

distribution would be completely intractable, and so one resorts to simplifying 

approximations. 

The cost of an inaccurate model depends on how it is used. That is, for models 

that are used as guides in making decisions, inaccuracy tends to degrade the 

? For a more detailed examination of the foundations of this approach, see Faden and Rausser 
[1975]. In this paper, the approach is also applied to a number of traditional statistical problems— 
estimating (or testing) the mean of a normal distribution, point estimation in general, simple 
hypothesis testing, and optimal roundoff. : 

> A random variable refers to some unknown quantity and does not necessarily involve the idea of 
repeatability. This accords with the bayesian outlook and also with the language of stochastic 
processes. 

350 



quality of the decision. This implies that to assess the costs of inaccuracy, one must 

embed the model in a more complete policy framework. There are several ways of 

making this embedding, each generally leading to a different inaccuracy cost 

function. Thus, there is no absolute “metric” for inaccuracy. 

Our contention is that the entire realm of statistical procedures should be 

reconstructed in terms of the framework set out above. Questions of estimation, 

hypothesis testing and the like should be answered by selecting the model which 

minimizes the total cost of complexity plus inaccuracy. As previously noted, the 

results of such an approach differ sharply from the recommendations of conven- 

tional statistical procedures. 

In this paper, we explore some of these results in the context of both 

prediction and control. One surprising result is that the conventional dichotomy 

between estimation and testing seems to dissolve.* Specifically, the problem is 

formulated as one of estimation, but the solution is qualitatively what would arise 

from the problem of deciding which regression coefficients are significantly 

different from zero or which control variables should be set to zero. The source of 

this outcome is the discontinuity of the complexity cost function. 

Our aim in the following examples is to find the structure that an optimal 

model would have, taking account of both complexity and inaccuracy costs. To 

make this approach operational would require the specification of an explicit 

complexity cost function. We have not attempted this. 

1.3 Costs of Computing vs. Costs of Using Models. A further problem in 

implementing this approach is the very cost of finding the optimal model. In the 

following examples the search problem reduces to a combinatorial one, possibly 

of rather large size. Clearly, it will not do for the “‘cost of assessing the costs”’ to 

exceed the gain from model improvement. In this connection the following points 

should be noted. 

First, the trade-off between complexitv and inaccuracy operates for methods 

as well as for models, including methods of searching for a good model. Thus, 

non-exhaustive searches leading to generally sub-optimal models may be justified 

by the saving in searching costs. Specifically, the following examples involve a 

search over the integers K,=0,1,...,K, K, being the number of non-zero 

regression coefficients or active controls, and where the figure of merit for each 

integer may involve a complex computation. A heuristic procedure that suggests 

itself is to search for a “local” optimum, i.e., an integer that does better than its N 

nearest neighbors, where N is small compared with K. The best N is then itself the 

subject of a “higher-order”’ search. 

Second, the more important and general the problem to which the model is 

addressed, the greater the level of complexity which is justified, both in the model 

itself and in the methods used in searching for and constructing it. Thus, an 

exhaustive search might be justified for a model which is to be used over and over, 

but not for a “one-shot” model. 

2. ILLUSTRATIVE PREDICTION AND CONTROL APPLICATIONS 

2.1 Optimal Prediction. Consider a regression model Y = XB + U in which 

the objective is .0 estimate B so as to predict Y accurately. Inaccuracy loss is 

* This phenomenon also occurs in several of the models investigated in Faden and Rausser [1975]. 
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quadratic in the prediction error. Complexity loss goes up with the number of 

nonzero components of vector B. 

Though framed as an estimation problem, this can also be thought of as 

“testing the significance of the components of £.”’ The structure of the test is, 

however, quite different from the usual one, as might be expected since the truth 

of B; = 0 is not really the question at issue. 

As usual, random variables Y(T, 1) and X(T, K) of rank K are observed; 

scalar Y and X(1, K) are not yet observed, B(K, 1) and scalar a” are unknown. 

Of the following assumptions, (1) is the normal regression model, and (2) a 

weak version of the same. (3) is the formal expression of “complete ignorance” 

concerning B. (4) may be thought of as the bayesian counterpart of “estimating the 

second-moment matrix of X by the average second-moment of the observations 

X°’. It will generally not be satisfied exactly even when X and the rows of X are 

independently and identically distributed, but will be a good approximation in this 

case for large T.” 

Assume: 

(1) P(Y|X, X, B, 0?) ~ N(XB, o7 Ir); 

(2) E(Y|X, X, B, Y)= XB; 

(3) P(B|X, X, 07) 1; 

(4) E(X'X|X, Y)= $ 

and the variance terms in the following proof are all finite. 

Let B be the estimator of B, and let e= Y— XB be the forecasting error. 

Then, 

B'X'XB 26'X'Y 
1: E(e*|X, Y)= Theorem (e*|X, Y) T 7 +terms not involving B. 

Proof: 

(5)  P(B|X, X, Y, 0”) P(B, Y|X, X, 0”) cexp[—(XB — Y)'(XB — Y)/207] 

which yields 

(6) P(B|X, X, Y, 0?) ~ N[(X'X) | X’Y, 0° (X’X) "J. 

Let W= XB; then 

(7) P(W|X, X, Y, 0”) ~ N[X(X'X) |X’ Y, 0? X(X'X) 1X’. 

Hence, 

(8) E(W\X, X, Y, 0”) = X(X'X) 'X’Y. 

5 ~ 
In the univariate case (K = 1), assumption (4) is satisfied exactly if X and the components of X 

are independent with common density function 

p(x|h) = hx exp(—hx?/2), x >0, 

the parameter h being itself uniformly distributed over the positive halfline. 
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But also 

(9) E(¥|X, X, Y, 8) = XB = W, 

hence, 

(10) E(Y|X, X, Y) = X(X’X) 'X’Y. 

This yields 

(11) E(e|X, X, Y) = X[(X'X) 'X’Y-6] 

so that 

(12) E(e?|X, X, Y)=[(X'X) |X’ Y — BYX'X [((X'X) |X’ Y-B] 

+ variance ( (e|X, ~ vi. 

Now, variance (e|X, X, Y) = variance (Y|X, X, Y) does not involve 6. Taking 

expectations conditional on X, Y, we obtain 

ye 4 

(13) E(e*|X, Y)=[(X’X)'X’Y- gas 1UX'xy 'X’Y—6]+res 

rv B'X’XB 26'X'Y 

T T 

where res does not involve B. QED. 

The optimal estimator B (which may depend on the observations) is that 

minimizing the sum of two terms, the forecasting loss E(e 1X, Y), and the loss 

from allowing the complication B; £0. 

+res, 

Theorem 2: The optimal B has one of the following 2“ forms: partition X = 

(X,X,) and correspondingly B= (5). set B2=0 and 6, =(X1X;) ‘Xi Y°. 
2 

Proof. Given B, let Bi be the nonzero components of 8. From Theorem 1, the 

inaccuracy loss is then 

3'XiX;B, 2BiXiY 14 BiXiX;B;, 2BiX1 + 
(14) T T res 

As B, varies, complexity cost does not rise, so 8B, should be chosen to minimize 

inaccuracy loss, and this occurs at 

(15) 6, =(X{X,) 'X;Y. QED. 

° A referee has redone this analysis with assumption (4) weakened to E(X'X\X, Y)= W, a 
general positive definite matrix. Partitioning W conformably to (X, X,) he obtains 

B, =Ux, Wit Wi2KX'X) XY 

in place of (15), K, being the number of columns in id 
Also, (16) should be replaced by 

Ww WwW 
¥'x(x'x)"'| 1. - Jooxr 'x'y 

ats Wo, Wai Wir Wis 
: YY 
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Note that this result is equal to the posterior mean of B,, conditional on 

B2.=0 
Thus, the problem is reduced to a combinatorial one. Assume Y’ Y # 0, and 

define’ 

Y’X,(X{X1) ‘Xi Y 16 a 1 1 1 
(16) Ri= yy 

Theorem 3: The optimal solution B has the following structure. If there are K, 

nonzero terms, then the given nonzero subvector is that maximizing Rj over all 

possible subvectors of size K,. 

Proof : Fixing the number of nonzero components fixes complexity cost, hence the 

optimal subvector is that minimizing inaccuracy cost. Substituting the value 

B =(X{X,) 'X1Y yields 

¥'X(XiXi) | 

T 
E(e*|X, Y)=—- 

The minimizer of this is the maximizer of 

Y’X(XiX1) ‘XiY_ Y'Y 

T 7 
Ri. QED. 

2.2 Optimal Control.* Consider first the case of one-stage control. This again 

is a regression model with vector components Y(T, 1), x (TK ) of rank K, 

B(K, 1), Y scalar, X(1, K) as above. The interpretation of Y and Xi iS, however, 

quite different; X is now a control vector, subject to choice. Choosing xX yields a 

value Xp +U. As before, 6 and scalar U are unknown, distributed independently 

of each other and of X. The object is to hit a target value Y. Y itself may not be 

known exactly and has a distribution which is independent of B and of X. 

The loss from missing the target is assumed quadratic: 

(17) (XB +U-Y)’. 

In addition, there is a complexity loss which increases with the number of active 

controls. Specifically, partition X and B correspondingly into active X;, B;, and 

passive X>, B2 parts, so that 

(18) XB = X1B, + X2Bo. 

In what follows, Xp is set equal to zero.” The complexity loss then depends on 

K,, the number of components in X;, or B;. 

Let b; = Ep,, 2, = E(B: B}), and let V; be the covariance matrix of B, so that 

0, = V;+b,b;. (V; and Q, are assumed to be invertible.) 

7 Ri coincides with the ordinary coefficient of determination if Y=0, and if either X has a 
constant column or X = 0 (— indicates the average of the T observations). 

® This model is similar to that of Prescott (1971, 1972]. For an exposition, see Zellner [1971, 
Chap. XI]. 

This may be interpreted either as accepting a null hypothesis 82 = 0, or as setting the controls xX, 
to zero. Zero may be thought of as “‘status-quo” setting, any alteration of which incurs an overhead 
cost in use. 
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Theorem 4: The optimal control setting has the following structure. b{9;'b, is 

maximized over all possible active subvectors having K, components. The optimal 
setting is 

X, =(EY-EU)bio7'. 

Proof. Fixing the number of active components fixes complexity loss, so X, should 

be chosen to minimize inaccuracy loss, which is 

(19) E(X,\B,+U-Y) = X,0,X}+2X,b,(EU- EY) + E(U- Y). 

The minimizer of this expression is 

(20) X, =(EY-EU)bi0;", 

and the minimum value is 

(21) —(EY-EU)*b;Q;'b,+ E(U- YY. 

Hence the optimal active subset is the one maximizing 5; 'b,. QED. 

Now, suppose that information concerning B has been obtained from 

previous observations of X, Y in the regression relation 

(22) Y = XB+U. 

(Here, the vector Y does not represent the preceding target values but instead the 

attained values resulting from the settings of X.) We assume Y’MY >0, where 

M = I7-—X(X'X) |X’; T>K+2; the standard linear model with (unknown) 

precision h, 

(23) P(Y|X, X, B)~ N(XB, Ip/h); 

and a noninformative prior (Jeffreys [1961)), i.e., 

(24) P(B, h|X, X) 1/h. 

The posterior distribution of 8, conditional on X, X, Y, is then a multivariate 

with mean b = (X’X)_'X'Y and covariance matrix 

(25) V= Y’MY(X'X) '/(T-—K-—2). 

(Zellner [1971, p. 67, 383)). 

Now, for any partition (X, X2) of X into active and passive components, 

partition X conformably into (X, X>), and let 

(26) M) = Ip— X2(X3X2) 'X3. 

The following result then restates Theorem 4 in tefms of X,, X2, and Y. 

Theorem 5: The optimal control setting has the following structure: The 

expression 

(27) Y’M2X,(X{M2X,) 'X{M2Y 
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is maximized over all possible partitions (X, X2) of X, where X, contains K, 

columns. The optimal setting is 

(28) i= (EY —EU) Y'M2X; sii ; 

[Y'’MY/(T—K —2)]+ Y'M2X;(X{M2X,) |X{M2Y 

Proof: 

(29) 

(x'x)1= ery pissy ak igencatl a | 
X5X, X>X ee eee 

hence 

(30) V, = Y'MY(X{M2X,) '/(T-K-—2), 

and ; 

(31) by =(X{M2X1) '[X1— X1Xo( Xp X2) | X5]¥ = (X{M2X1) |X {M2Y. 

Now, 

(32) Oj" = [Vi +b,biT t= Vi! NE 

thus, 

+e 

(33) biQ;' =r 

and 

(34) biQ;'b, =e 

Hence, maximization of biO;'b; is equivalent to maximization of 

4 ty-tp, _ Y'M2X1(X1M2X,) 'Xi{M2Y 
(35) biVi b= Y’ MY/(T— K —2) 

Since Y’'MY>0 this proves the first statement of the theorem. Finally, the 

optimal setting 

= _(E\’—EU)biV;' 
28 = 
— M1 THB Vi bs 

and substitution yields the last statement. QED. 

One special case may be noted. If the columns of X are orthogonal, then 

M2X, = X;, and the optimal active subvector is the one in which 

(36) Y'X,(X{X,) ‘XY 

is a maximum, which is the same criterion as in the prediction model above. 

Turning to N-stage control some rather obvious results are immediate from 

Theorems 4 and 5. Let X, be the control setting at stage t, t=1,...,N, and 

consider first the case in which the settings on X, must all be announced at the 
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beginning of the first stage or planning period and remain unaltered thereafter. 

Under these circumstances, information provided by Y, in determining the 

optimal setting for X,,;, i >0, cannot be employed and thus the choice of X, will 

not affect the optimal determination for subsequent controls, i.e. X,,;, i>0. 

Hence, this N-stage problem reduces to N nonrecursive one-period problems. 

A few interesting implications of the N-stage control problem as specified 

here, however, can be obtained. In particular, the effects of variations in the 

distributions of target values or disturbances on X, and K,, across stages of the 

planning horizon can be ascertained. To examine these issues we shall iet the total 

cost be the sum of the costs incurred at each stage. Furthermore, complexity cost 

at stage t is presumed an increasing function, C, of the number of active control 

components, K,., utilized at that stage, the function itself being invariant in time. 

Inaccuracy cost at stage ¢ is again the squared error at that stage. Thus, we wish to 

minimize the expectation of 

N N 

vie L (¥,—XB-U,)'+ a C(K;,). 
t= t= 

Here Y, and U, are the (scalar) target values and disturbances at stage ¢. These will 

in general be unknown and are allowed to change from stage to stage. X, is the 

(1, K) control vector for stage ¢, the number of non-zero components of X, being 

of course K,,. B is independent of Y;,..., Yy, U; ... Un, and the joint distribu- 

tion of these variables is unaffected by the choice of any X;,..., Xw. 

Now suppose that the control vectors X;, . . . , Xj, must be chosen in advance, 

and suppose there is a unique optimal solution X},..., Xv. Then we have the 

following results. 

Theorem 6: Let t', t” be any two stages. 

(i) If 

EY, — EU, = EY,—EU+, 

then 

(ii) If 

then 

Kiy= Kir. 

That is, the number of active components at f’ is not less than the number of active 

components at f”. 

(iii) If Kyy = Ky, then x* and xX? are proportional to each other. 

Proof: (i) The expected cost at stage ¢ is 

(38) X,QX'+2X,b(EU, — EY,)+ E(U,— Y,)? + C(K,,). 

where 2 = E(@’) and b = Ep. lf EU, —- EY, = EU,»— EYy, then the expressions 

(38) for t’ and ¢” differ from each ot»er only in a term not involving the control 

vector. Hence a given X° minimizes the t'-expression iff it minimizes the expres- 

sion for t”. By uniqueness of solution, X°?. = X¢. t"- 
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(ii) Let X,,, Xi, be the active subvectors of xe: Xe. respectively; By, Biy be the 

corresponding subvectors of B; biy = EBiv3 bie = EBirs Qiy = E(Biv, Biv); and 

ie = E(Bie, Bie). 
We shall assume that K,,< K,, and reach a contradiction. Throughout we 

assume that |EY,- —EU,|>0, since otherwise (ii) is trivially correct. The costs 

incurred by X° at stage t’ are, from (21), 

(39) —(EY,— EU,)°b Qh bi + E(O, — ¥,)? + C(Kyp). 

Since X7% is optimal, (39) cannot exceed the total costs incurred by any other 

vector, in Particular by the vector whose active components (E Y,- 

EU,)b¢ 03-=Z say, where these components match those of X". The inaccu- 

racy cost incurred by this vector is 

(40) E(ZBi¢+ U— Y= —(E¥,— EO,)°b eQirbie + E(¥y— Oy 

Hence we get the inequality 

(41) —(EY,—EU,)’bieQirby+C(Kie) 
=< —(EY,—EU,) bi bi + C(Kiy). 

In fact, this is a strict inequality, since Z # Xj, and the solutions are unique. 

A similar argument applied to X?. yields (41) with ¢’ and t” interchanged 

throughout. Adding (41) to this latter inequality, and simplifying, we obtain 

(42) 0<[(E¥;— EU,)° —(EY¢— EU) 1b eQi7 bir — bie Grd). 

The first bracketed expression must be positive by assumption, hence 

(43) bie diy > dieQedre. 

But this contradicts optimality of X%-. For, by minimizing over vectors with 

Kiy < Ki, active components one could reduce complexity cost and, (by equation 

21), inaccuracy cost as well. This proves that K,, = Ki, 

(iii) The optimal active subset at t’ is the one maximizing 5;0Q; ‘b, over all subsets 

with K,, components by Theorem 4. By uniqueness of solution there is just one 

such maximizing subset. Since K,, = K,,”, the optimal active subset at t” solves the 

same maximization problem, hence the active subsets coincide. The active 

subvectors themselves are proportional to bi;' by (20), hence proportional to 

each other. Q.E.D. 

The intuitive explanation for part (ii) of Theorem 6 is that a larger absolute 

EY,— EU, makes i inaccuracy cost more sensitive to a change in control. Hence, it 

may pay tc accept more complications to obtain a better “‘fix” on the target. Part 

(iii) shows that the number of active components actually determines the optimal 

control vector, up to a scale factor. 

If information from previous stages is employed to determine current con- 

trols but not conversely, then we have the case of passive learning or sequential 
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updating (Rausser and Freebairn [1974]). Here, the solution does take account of 

information in previous stages to arrive the control setting for the f-th stage. 

Letting Y(T,1) and X(T, K) be as above, viz. the data available in advance; 

X,(1, K) the control setting at stage +; Y, (scalar) the realization (not the target) at 

stage tr, r=1..., t-1; Yr=[Y’Y;... ¥i-s); X7’ =[X’ Xi... Xi); MZ= 

Ty+1-1 — X31 X3; X3,J' Xd; and M* sas Ir+: ~~ XtLX?" Xt] Xx?" then we have 

Theorem 7: The optimal control setting has the following structure for the 

sequential updating problem: In each stage {, the expression 

(44) Yi"M3.Xt( Xt M3.X4,) | Xt M3, 

is maximized over all possible partitions (X,*, X3,) of X*¥,t=1...., N, where X%, 

contains K,, columns. The optimal settings are 

45) Xt = (EY, — EU,) ¥7'M3,X7, 

[YR M¥ Y¥/(T+t—K —3)]+ Y¥M3,X4¢(X*)M2.X%) (XtEMEY? 

Proof. Just substitute X%, Y% for X, Y along with T+t—1 for T in Theorem 

5. QED. 

Note that under Theorems 5, 6 and 7 the first stage controls are equivalent; 

differences arise only with respect to the second and subsequent stages. Further- 

more, rieither Theorems 6 or 7 admit any influence of subsequent controls on the 

determination of current control settings, i.e. the determination of current 

controls is made without taking account of how these settings affect subsequent 

stage control settings. To account for this influence, an adaptive control approach 

which explicitly recognizes the experimental design aspects of the problem is 

required. We are presently investigating this approach in context of the post- 

bayesian framework advanced in this paper. 

2.3 Lindley’s Approach. These examples invite comparison with the results of 

Lindley [1968]. He also considers both a prediction and a control problem. In 

each case there is a quadratic loss from missing the true or target value of the 

dependent variable and an additional cost depending on the variables selected for 

observation or control. 

In Lindley’s control problem (1968, pp. 46-53], the controls are random 

variables, the uncontrolled variables taking values stochasticaily according to a 

distribution conditioned on the selected values of the contrclled variables. In our 

example, of course, the “uncontrolled” variables are kept at their status-quo 

value of zero. Not surprisingly, the two analyses diverge completely in their 

recommended selection of controls and settings. . 

in Lindley’s prediction problem [1968, pp. 33-46], X and the rows of X are 

ultimately assumed to be i.i.d., multinormal, with common random parameters 

having a Fisher-Cornish prior. (By contrast, (4) is the only distributional assump- 

tion we make on the X or X variables). The real contrast, however, is not so much 

in the different stochastic assumptions, as in the cost structure of the models, 

which illustrates neatly the distinction between the bayesian and post-bayesian 

approaches. Our second cost component refers to the complexity of the model, 

which can be reduced by dropping the terms X,82—that is, actually distorting the 

model in a most unbayesian manner. Lindley’s cost, on the other hand, is the cost 
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of observing variables; the analysis is of the standard “preposterior’’ form 

[Raiffa-Schlaifer, 1961], balancing this cost against the expected benefit of 

making the observation. 

The essential distinction is brought out in a comment made by Lindley in the 

discussion following his paper. Considering the case of polynomial regression 

(<=, j=0,1,2,...), where the cost of observing all the components <; is 

scarcely greater than the cost of observing one of them, Lindley states: “My 

Bayesian solution would fit a polynomial of degree n—1 to n points . . . : This is 

absurd . . . . In practice I would fit a low degree polynomial, but I do not know why, 

or at least not in any way that I can express precisely. The example is a useful test 

case for Bayesian methods.” [Lindley, 1968, p. 66]. Our reply, of course, is that to 

justify this common practice one must go beyond Lindley’s bayesian approach and 

consider explicitly the cost of complexity in selecting models. 

Finally, note that observation costs may be subsumed under complexity 

costs: if one excludes a variable from a model, one need not observe it. Thus, 

Lindley’s costs should be incorporated as a contributor to the complexity cost 

function."° 

3. CONCLUDING COMMENTS 

In the construction and use of econometric models for various purposes, we 

have argued that conventional procedures are lacking. Their limitations emanate 

from their failure to explicitly recognize complexity costs and thus the need to 

balance these costs with the cost of inaccuracy due to abstraction or distortion. 

The incorporation of these costs leads to what we have characterized as the 

post-bayesian approach and requires a reexamination of model construction 

procedures. The result of such an examination is hopefully not only a better 

prescriptive theory than the bayesian or any conventional approach, but a 

superior descriptive theory as well. 

The main practical thrust of the post-bayesian approach for problems of 

prediction and control is that it provides a correct formal apparatus for accomp- 

lishing what researchers are now doing either on a purely intuitive basis or with the 

aid of tests which are inappropriate. Somehow a selection of “significant” 

explanatory variables or “appropriate” control variables must be made from a 

pool of such variables which is indefinitely large, and the proper estimates or 

settings made on the variables selected. The post-bayesian approach makes this 

selection in a systematic way involving the weighing of alternative costs, avoiding 

the inappropriate tests inherited from conventional statistics. 

In practice, of course, we do not generally have accurate estimates of 

complexity and inaccuracy costs and thus post-bayesian procedures must often be 

implemented with crude estimates of such costs. Nevertheless, for the illustrative 

applications considered in this paper, it was possible to employ very crude 

estimates of these costs to motivate procedures which proved superior to conven- 

tional treatments. 

 Itis interesting to note that Lindley’s prediction model implies the conclusions of our Theorems 
2 and 3 despite its rather different assumptions [1968, p. 42]. Any modification of either model would 
in general destroy this coincidence. See footnote 6 above, for example. 
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We intend to go well beyond the prediction and control applications 

advanced in section 2. More specifically, in addition to our previous work (Faden 

and Rausser [1975]) and the examples presented in Section 2, we are presently 

examining the implications of the approach for dealing with aggregation, selection 

among alternative functional forms, specification and estimation of distributed lag 

relationships, pooling of cross-section-time-series data, regime changes, determi- 

nation of the number of classes in discriminant analysis, and the construction of 

autoregressive-moving average processes. Moreover, some preliminary results 

are now available on a comparison of the post-bayesian approach with conven- 

tional stepwise regression routines (Dahm, et. al. [1975]). It is clear from these 

results that rather substantial differences are obtained when costs of complexity 

are explicitly recognized. 

Other potentiai applications where the approach would prove valuable are 

not difficult to isolate. These applications might be classified under one of three 

categories, (i) specification of econometric models, (ii) selection of estimation 

methods, and (iii) selection of policy or control solution methods. The first 

category covers such questions as whether a model for a particular system should 

be specified as a set of stepwise recursive, block recursive, or simultaneous 

equations. The second addresses issues such as the selection of estimation 

procedures for dynamic, stochastic models which do not admit estimators with 

determinable small sample properties. Since most economic policy problems 

require the formulation of a rational, multiperiod decision problem under condi- 

tions of imperfect information (an adaptive control problem) for which no 

analytical control solution is available (Rausser and Freebairn [1974]), the third 

category is concerned -with the selection of “approximate”’ solution procedures 

which involve some alterations of the original structure of the problem. The 

severity of these alterations will depend upon the combined cost of complexity 

and inaccuracy. The specitication of these costs and use of the resulting post- 

bayesian procedures will allow researchers to determine the optimal degree of 

approximation to adaptive or dual control problems. 

Iowa State University 
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