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ECONOMETRIC POLICY MODEL CONSTRUCTION:
THE POST-BAYESIAN APPROACH}

gy ARNOLD M. FADEN* AND GORDON C. RAUSSERT

The recent bayesian revival constitutes a searching critique of orthodox statistical procedures, but is itself
not free of difficulties. Its prescription imposes in general a crushing computational burden if taker
literally. In practice, even avowed bayesians resort to drasiic simplifications {e.g.. conjugate
distributions), and researchers in general seem 1o deviate considerably from this procedure.

The “post-bayesian™ approach takes formal account of this need for simplification. Specifically. in
making cognitive judgments one balances the cost of inaccuracy against the cost of complexity of the
various alternatives. Here *‘cognitive judgments” include the entire realm of statistical inference—
selection of models, testing of hypotheses, estimation, prediction, etc. *Inaccuracy’ refers not to
deviations frem the true state of natute as in conventional decision theory, but 10 deviations from one’s
personal probability distribution as justified by prior assessments and available information. That is, one
deliberately distorts one’s assessments for the sake of tractability incurring a (hopefully) small inaccuracy

cost for a large reduction in complexity cost.

We apply these ideas here to some prablems of prediction and control, the trade-offs being the
complexity cost of inciuding more predicior or control variables vs. the inaccuracy cost of missing the true
or target values. The analyses are compared to the straight bayesian approach of Lindley, who covers a

similar range of problems.

The applications of econometrics to policy questions have grown dramatically in
recent decades. Sophisticated techniques have evolved for the estimation of
parameters, system identification, testing of models, setting of objective
functions, incorporation of new data, etc. And yet there are certain doubts about
the validity of much of this literature—doubts not merely about minor points but
about the very foundations themselves.

More specifically, the criteria used in economic policy applications are
generally borrowed from statistical theory in a fairly uncritical manner—mostly
from conventional statistics, as in the use of maximum likelihood methods,
confidence intervals, significance tests and the like but also (especially in the
control literature) from bayesian statistics. Now these criteria are themselves
under attack. The recent bayesian revival constitutes a serious challenge o the
validity of most conventional methods; on the other hand, bayesian methods
themselves have certain shortcomings. In particular, a rigorous bayesian would
need superhuman abilities—a perfect and infinite memory, perfect deductive
powers, including faultless and instantaneous calculating ability, and the ability to
understand questions of arbitrary complexity.

Our basic approach is that the entire process of specifying, estimating, testing
and applying models is itself an economic activity which should be judged by
economic criteria, viz., the costs and benefits associated with alternative ways of

* Associale Professor of Economics, lowa Slale University.
t Professor of Economics and Siatislics, lowa Stale University.
1 The authors wish to thank two anonymous referees for valuable commenis.

! Many of the early developments in this field of invesligalion are summarized in Tinbergen
(1956}, Theil [1964] and Fox, et al., [1973] while more recent developmenis are available in Aoki
(1967, 1975], Chow [1975], Heal [1973].
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organizing the rescarch. This approach results .in a strategy which involyeg the
balancing between two costs: the cost of complexity and the cost of ir.'a('ruracy due
to abstraction or distortion. It turns out that the approach yiclds criteriy which
ditfer substantially from both baycsian and conventional prescriptions,?

The post-bayesian approach attempts not only to provide a supenor preserip-
tive theory than the bayesian or any conventional approuch, but also » supcrior
descriptive theory. The novelty of the approach involves the explicit introdugtion
of complexity costs. The incorporation of this notion brings us closer to the way
scientists actually do behave. Hence, by coming closer to the structure of costs and
benefits we can presumably provide a sounder guide for actual practice.

L1 Complexity. Onc dimension of the cost benefit structure of alternative
research strategies emanatcs from complexity. An intractable model is uselegs
except as an educational instrument for forging more tractable modcls. And evep
tractable models differ considerably in complexity. Cost here may takc the form of
money, time, resources or effort uscd in developing modcls, storing and retrieving
informationi, adapting them to various applications, solving them, and com-
municating their results to others. Some illustrative examples: ceteris paribus,
linear models arc simpler than non-lincar, deterministic models are simpler than
stochastic models, equilibrium models are simpler than dynamic models, lumped
parameter models arc simpler than distributed parameter models: in general,
complexity rises with the number of frec parameters.

To indicate how one would actually assess complexity costs, consider the
problem of alternative regression models aimed, say. at predicting a certain
variable of interest. Complexity will rise with the inclusion of every new explanat-
ory variable, and it is reasonable to assume that complexity costis a function of the
number of explanatory variables. But which function? Certain aspects of cost go
up linearly with the number of variables; ¢.g., tabulating the data; some £0up
quadratically, e.g., printing the covariance matrix: some go up cubically, e.g.,
inverting the moment matrix. These arc not the only costs. but they suggest that a
cubic polynomial may be one possible representation of complexity cost.

1.2 inaccuracy. The other important aspect of model construction is accu-

resolve various policy issues. Or, turned around, there is a cost associated with
inaccuracy. But what is inaccuracy, and how docs one measure its cost? We take
the bayesian prescription as the ideal of perfect accuracy. That is, if (X;), i€ [, is
the family of random variables in which one is intercsted, the perfectly accurate
model would be the probability distribution over this family which is justified by
the available evidence and one’s prior belicis.” As 4 rule, however, such a
distribution would be completely intractable, and so one resorts to simplifying
approximations,

The cost of an inaccurate model depends on how ivis used. That is, for models
that are used as guides in making decisions, inaccuracy tends to degrade the

?For a more detailed examination of the foundations of this approach, sce Faden and Rausser
L1975]. tn this paper, the Approach is also applied to a number of traditional statistical problems—
estimating (or testing) the mean of a normal distribution, point estiination in general. simple
hypoxthesis testing, and optimal roundofl.

" A random variable refers to some unknown quantity and does not necessarily invelve the idea of

repeatability. This accords with the bayesian outlook and also with the language of stochastic
processes.

350



quality of the decision. This implies that to assess the costs of inaccuracy, one must
embed the model in a more complete policy framework. There arc several ways of
making this embedding. each generally leading to a diffcrent inaccuracy cost
tunction. Thus, there is no absolute “metric” for inaccuracy.

Our contention is that the entire realm of statistical proccdures should be
reconstructed in terms of the framework set out above. Questions of estimation,
hypothesis testing and the like should be answered by selecting the modcl which
minimizes the total cost of complexity plus inaccuracy. As previously noted. the
results of such an approach differ sharply from the recommendations of conven-
;onal statistical procedures.

In this paper, we explore some of these results in the context of both
prediction and control. One surprising result is that the conventional dichotomy
between estimation and testing scems to dissolve.” Specifically, the problem is
formulated as one of estimation, but the solution is qualitatively what would arise
from the problem of deciding which regression coeflicients are significantly
different from zero or which control variables should be set to zero. The source of
this outcome is the discontinuity of the complexity cest function.

Our aim in the following examples is to find the structure that an optimal
model would have, taking account of both complexity and inaccuracy costs. To
make this approach operational would require the specification of an explicit
complexity cost function. We have not attempted this.

1.3 Costs of Computing vs. Costs of Using Meodels. A further problem in
implementing this approach is the very cost of finding the optimal model. In the
following examples the search problem reduces to a combinatorial one, possibly
of rather large size. Clearly, it will not do for the “cost of assessing Lthe costs™ to
exceed the gain from model improvement. In this connection the following points
should be noted.

First, the trade-off between complexity and inaccuracy operates for methods
as well as for models, including methods of searching for a good model. Thus,
non-exhaustive searches leading to generally sub-optimal models may be justified
by the saving in searching costs. Specifically, the following examples involve a
search over the integers Ky =0, 1....,K, K, being the number of non-zcro
regression coefficients or active controls, and where the figure cf merit for each
integer may involve a complex computation. A heuristic procedure that suggests
itself is to search for a “local” optimnm, i.¢., an integer that does better than its N
nearest neighbors, where N is “mall compared with K. The best N is then itself the
subject of a “higher-order” search.

Second, the more important and general the problem to which the model is
addressed, the greater the level of complexity which is justified, both in the inodel
itself and in the methods used in searching for and constructing it. Thus, an
exhaustive search might be justified for a model whicli is to be used over and over,
but not for a “‘one-shot” model.

2 JLLUSTRATIVE PREDICTION AND CONTROL APPLICATIONS
2.1 Optimal Prediction. Consider a regression model Y= XB+ U in which
the objective is to estimate 3 s0 as fo predict Y accurately. Inaccuracy loss 1s
* This phenomenon also oceursin ceveral of the models investigated in Fadenand Rausser{ 1975},
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quadratic in the prediction error. Complexity loss goes up with the Number gf
fionzZero components of vector B.

Though framed as ap estimation problem, this cap also be thought of as
“testing the significance of the components of B.” The structure of the test is,
however, quite different from the usyal one, as might be ¢Xpected since the truth
of B; =0 is not really the question at issue.

As usual, random variables Y(T, 1) and X(T, K) of rank K are observed,

case for large T°

Assume:
(1) P(Y|X, X, B, 62~ N(XB, o°1;);
) E(YIX, X,B, v)= XB;
i3) PBIX, X, 0¥,
) EXR|X, )= XX,

T ’
and the variance terms in the following proof are all finite,

Let B be the estimator of B, and let ¢ = Y~Xﬁ be the forecasting error,
en,

Theorem |- E(ele, Y)=%£B--2£%\I-Y+ terms pot involving ﬁ

6) PBlX X, v, o)~ NX'X) 'y, S(x'%)
Let W=Xg: then

) POWIX XY, 03~ Nk x XXV, X (xx) 3
Hence,

(8) EWIX X v, 0% = g(xrx) X'y

s . .
Inthe umvar!ate case (K =1), assumption (4) i satisfied exactly if X and the components of X
are independent with common density function

POxlh) = exp (— ), x >0,

the paramete, h being jtself uniformly distributed over the positive halfline,
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But also
E(Y|X, X, Y.8)= XB=W,

9
hence,
(10) E(V|X, X, ) =X(X'X) ' X'Y.
This yields
(11) E(elX, X, ¥)= X[(X'X)"'X'Y-B]
so that
(12) E@|X X, V)=[(XX)"' XY _AYRX(XX) ' X'Y - B]
+variance (¢|X, X, Y).
Now, variance (el}.(, X, Y) = variance (?lf(, X, Y) does not involve f. Taking

expectations conditional on X, Y, we obtain

(13) E(ezlx,Y)=[(X'X)“X'Y«é]’f—‘%[(X'xr‘X'v--é]ms
=————-—————T——+res,

where res does not involve é; QED.
The optimal estimator B (which may depend on the observations) is that

minimizing the sum of two terms, the forecasting loss E(e’|X, Y), and the loss
¢rom allowing the complication Bi#0.
Theorem 2: The optimal £ has one of the following 2X forms: partition X=

. . 2 (B s sl
(X1 X,) and correspondingly B = 5 ) set B,=0and B, = (X1 X)) ' Xi Y®.

Proof. Given é let [§| be the nonzero components of [§ From Theorem 1, the
inaccuracy loss is then

. 31 XX, By 2B1X1Y
14 BiXiXiBy _2Bid Y,
(14) T T res.
As [§| varies, complexity cost does not rise, SO l§1
inaccuracy loss, and this occurs at

(15) 8, =(XiX)'XiY. QED.

should be chosen to minimize

akened to E(X'XIX, V)=W, a

6
A referee has redone this analysis with assumption (4) we
X,) he obtains

general positive definite matrix. Partitioning W conformably to (X
Br=Ux, Wil WX X' XY

in place of (5}, K, being the number of columns in X;.
Also, (16) should be replaced by
W, w
Y'X(X'X)_l[ 1 1v2 ](X'X)MlX'Y
W'Zl WZI “’l ll Wl2
Y'Y '
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Note that this result is equal to the posierior mean of B1. conditional on
B2=1
- « . Lt .
Thus, the problem is reduced to a combinatorial one. Assunie Y Y0, and
define’
(16) Ri= VXXX XY
' b Y'Y '
Theorem 3: The optimal solution £ has the following structure. If thegc are K,
nonzero terms, then the given nonzero subvector is that maximizing R} over all
possible subvectors of size K.

Proof : Fixing the number of aonzero components fixes complexity cost, hence the
optimal subvector is that minimizing IACCUTacy cost. Substituting the valye
B=(X{X) "X}V vields

2 Y’X A”X ”lX!‘
Ee X, V)=~ X1X)) R

+res.
T res

The minimizer of this is the maximizer of
XMX’I_Y:_Y_'_Y]# QED.

1 T

2.2 Optimal Control ® Consider first the case of onc-stage control. This again
IS a regression model with vector components Y(T, 1), X(T, K) of rank K,
B(K, 1), ¥ scalar, ,‘2( 1, K) as above. The interpretation of Y and X s, zlowever,
quite different; X is now a control vector, subject to choice. Choosing X yields a
value )?B +U. As before, B and scalar U are unknown, distributed indcpendently
of each other and of X. The object is to hit a target value Y. Y jtself may not be
known exactly and has a distribution which is independent of B and of X

The loss from missing the target is assumed quadratic:
(17) (XB+U -y

In addition, there is 3 complcxity loss which increases with the number of active
controls.ySpeciﬁcally‘ partition X and g correspondingly into active X\, B, and
passive X, B, parts, so that

(18) XB=X\8,+ X,

In what follows, XoBs is set equal to zero.” The complexity loss then depends on
K, the number of Components in X, or B;.

Lets, = EB, 0, = E(6,81), and let V) be the covariance matrix of £, so that
0=V, +bib{. (V, and Q; are assumed to be invertible.)

7 Rf coincides with the ordinary coefficient of determination if Y=0, and if either X has a
constant column or X = (- indicates the average of the T observations).
This model is similar to that of Prescott [1971, 19721. For an €xposition, see Zellner {1971,
Chap. XI].
* This may beinterpreted either as aceepting a null hypothesis B,=0,o0ras setting the controls X,
to zero. Zero may be thought of as “'status-quo™’ setting, any alteration of which incurs an overhead
cost in use.
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Theorem 4: The optimal control seiting has the following structure. b€}, by is
maximized over all possible active subvectors having K components. The optimai
setting is

X, =(EY-EOb0,".

Proof. Fixing the number of active components fixes complexity loss, so X, should
be chosen to minimize inaccuracy loss, which is

(19)  E(X\Bi+ U~ YV =X,0, X +2X,b(FU-EYV)+ E(U- YY"
The minimizer of this expression is

(20) X, =(EY-EbiQ, ",

and the minimum value is

21 —(EY-EU’b10,'b+ E(U-YY.

Hence the optimal active subset is the one maximizing b1 ', QED.
Now, suppose that information concerring § has becn obtained from
previous observations of X, Y in the regression relation

(22) Y=XB+U.

(Here, the vector Y does not represent the preceding target values but instead the
attained values resulting from the settings of X.) We assume Y'MY>0. where
M=IT—X(X'X)‘]X'; T> K +2; the standard linear model with (unknown)
precision h,

23) P(Y|X, X, BY~ N(XB, I/ h):
and a noninformative prior (Jeffreys [1961]). i.c..
(24) P(B, h|X, X)oc1/h.
The posterior distribution of 8, conditional on X. X, Y, isthen a multivariate ¢
with mean b= (X'X)"' X'Y and covariance matrix
(25) V=YMY(X'X)'/iT-K-2).

(Zellner [1971, p. 67,383).  _ N
Now, for any partition (X; X;) of X into active and passive components,
partition X conformably into (X; X3), and let

(26) My = L= X5(X5 X ' X5,
The foliowing result then restates Theorem 4 in tefms of X,, X, and Y.

Theorem 5: The optimal control setting has the following structure: The
expression
(27) Y'M X, (XM X)) ' XiMaY
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is maximized over all possible partitions (X} X3) of X. where X\ containg K,
columns. The optimal setting is

(EY-EU)Y'M,X,

(28) X YMY/(T-K-2)j+ YMX (XM X)X My -

Proof:

29)

X'X)" = [x;x. x;le T _TXMy X! —(x;szn"x:Xz(X;xzr'}
hence

(30) Vi=YMY(XIMX\) ' /(T-K -2y

and

31) b:=(Xz'MzXI)"'[Xx’—Xin(Xz'X_a)"'Xz']Y=(XIMQX;)"XIMZY.

Now,

Vi'bb v
1 _ryr =yt Ya 0o, v
(32) Y =[Vi+bbi] ' = vy m
thus,

bl eyt bllv;l _

and

r0-1s _ biVi'e,
(34) ‘ lel b]—im:.

Hence, maximization of b{.Qf'b, Is equivalent to maximization of

Y'MaX\ (XM, X)) ' XM, Y

35 vl = LM X (XM, X 1Vl

G33) bivi'h, Y'MY/(T-K=2) ‘

Since YMY>( this proves the first stacement of the theorem. Finally, the
optimal setting

v, ¥V 1
(28a) %, =EY=EOpb v,
L+biVvip,
and substitution yields the Jast Statement. QED.
One special case may be noted. If the columns of X are orthogonal, then
M,X, = X\, and the optimal active subvector is the one in which

(36) Y'Xuxix) 'x:y




beginning of the first stage o planning period and remain unaltered thereafter.
Under these circumstances, information provided by Y, in determining the
optimal setting for Xivp, i >0, cannot be employed and thus the choice of X; will
not affect the optimal determination for subsequent controls, i.¢. X, i>0.
Hence, this N-stage problem reduces to N nonrecursive one-period problems.

A few interesting implications of the N-stage control problem as specified
here, however, can be obtained. In particular, the effects of variations in the
distributions of target values or disturbances on X, and K;, across stages of the
planning horizon can be ascertained. To examine these issues we shall let the total
cost be the sum of the costs incurred at each stage. Furthermore, complexity cost
at stage 1 i8 presumed an increasing function, C, of the number of active-control
components, Ky, atilized at that stage, the function itself being invariant in time.
Inaccuracy cost at stage £ is again the squared error at that stage. Thus, we wish to
minimize the expectation of

N . . N
G7 $ (7, xp- 00"+ I, ClKw.
= =

Here Y, and 5', are the (scalar) target values and disturbances at stage t. These will
in general be unknown and are allowed to change from stage to stage. X, is the
(1, K) control vector for stage (, the.number_of non-zero components of X, being
of course K. B 1S independent of Yy,.... Y Up- . UN, and the joint distribu-
tion of these variables is unaffected by the choice of any Xy, ..., Xn

Now suppose that the control vectors X, . . ., Xy must be chosen in advance,
and suppcese there is a unique optimal solution Xj. ... . X%. Then we have the
following results.

Theorem 6: Let t', 1" be any two stages.

() I
EY.—EU,=EY-—EUp,
then
Xo= X0
(i) If
\EY, - EU\=|EY-— EU,
then

KthKU'.

That is, the number of active components at 1’ is not less than the number of active
components at {".
(i) If Kir = K,r, then X" and X? are proportional to each other.

Proof - (i) The expected cost at stage ! is
(38) X.0X\+2Xb(EU,~ EY,)+E(U,- Y)*+ C(Ky)-

where (= E(BB’) and b= EB. If EU,o—E}.’,' = Ef],w—E}.’,-, then the expressions
(38) for 1" and ¢ differ from each other only in a term not invelving the control
vector. Hence a given x° minimizes the '-expression iff it minimizes the expres-

sion for t”. By uniqueness of solution, X = x5
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(i) Let X,,, X, - be the active subvectors of X, Xy, respectively; 8. B, be the

corresponding subvectors of B b =EB,,: b= EB, - {4 = F(B,,, B and
Q!r':E(BH"-B;I')- o .

We shall assume that Ki-< K and reach a contradiction. ’lhmughoug we
assume that (EY,.- EU{>0, since otherwise (i) is trivially correct. The Costs
incurred by X}’ at stage " are, from (21),

(39) ~(EY;~EU5bi, 0,1, + E(U:~ ¥+ C(K,,).

Since X* ig optimal, (39) cannot exceed the total costs incurred by any other
vector, in  particular by the vector whose active  components (EY, -
E[J,-)bifﬂg,l:Z, say, where these components match those of X7. The inaccy-
racy cost incurred by this vector s

(40) E(ZBII"+ Ur“ )‘,1)2 == (E}}l* EO{')ZI’;I"Q;:{bH""’_ E( }}1'“ Ul')z
Hence we get the inequality

@D =BV~ E0,%;,0506,+ (k) .
= T EYe—BU b, 008, + Lk, ),
In fact, this is a strict inequality, since 7 » X7 and the solutions are unique.
A similar argument applied to X' yields (41) with ¢ and t interchangcd
throughout. Adding (41) to this latter inequality, and simplifying, we obtain

“2)  O<EY, -ET,y-(gv,- EUIB, A0 b1~ b, 03 15,
The first bracketed expression must be positive by assumption, hence
(43) bieQirby > bi 07 b,

But this contradicts optimality of X\ For, by minimizing over vectors with
Kir <K, active components onc could reduce complexity cost and, (by equation
21), inaccuracy cost as well. This proves that K,, = K,

{iii) The optimal actjve subset at ¢’ is the One maximizing b,’(l['bi aver all subsets
with K. components by Theoren 4. By uniqueness of solution there jg just one
such maximizing subset. Since K, = K, the optimal active subset at 1" solves the
same maximization problem, hence the active subsets coincide. The active
subvectors themselves dre proportional o bt by (20), hence proportional to
cach other. Q.E.D.

. The intuitive explanation for part (ii) of Theorem 6 is that a larger absolute
EY, - EU, makes inaccuracy cost more sensitijye to achange in control. Hence, it
may pay to accept more complications to obtain a better “fix” on the target. Part
(iii) shows thay the number of active components actually determines the optimal
control vector, up to a scale factor.

If information from previous stages i employed to determine current con-
trols but not conversely, then we have the case of passive learning or sequential
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updating (Rausser and Freebairn| 1974]). Here, the solution does take account of
information in previous stages to arrive the control setting tor the £-th stage.
Letting Y(T, 1) and X(T. K) be as above, viz. the data available in advance;
X, (1, K) the control setting at stage 7, Y, (scalar) the realization (not the target) at
stage 7, 7=1.... 1L Yi=[Y'Yi. . Y, XF=[X X1 X ) M

Ty — X3IXE 21 X5 and MY =1, - XGUXT X "X# ihen we have

Theorem 7: The optimal control sctting has the following structure for the
sequential updating problem: in cach stage ¢, the expressien

(44) Y MEXTAXTMEXT) XTIME Y

is maximized over all possible partitions (X,*; X3,) of X%, 1=1.... N, where X,
contains K, columns. The optimal settings are

45) K5, = (EY,-EC)YIMIXY, B

\ [YFMIYT/(T+— K31+ IMEXTXUMIXT) ' XIMLY!

Proof. Just substitute X* Y% for X, Y along with T4t~ | for T in Theorem
5. QED.

Note that under Theorems S, 6 and 7 the first stage controls arc cquivalent;
differences arise only with respect to the second and subsequent stages. Further-
more, neither Theorems 6 or 7 admit any influence of subsequent controls on the
determination of current contro! settings, ie. the determination of current
controls is made without taking account of how thesc scttings affect subsequent
stage control settings. To account for this influence, an adaptive control approach
which explicitly recognizes the experimental design aspects of the problem is
required. We arc presently investigating this approach in context of the post-
bayesian framework advanced in this paper.

2.3 Lindley’s Approach. These examples invite comparison with the resultsof
Lindley [1968]. He also considers both a prediction and a control problem. In
each case there is a quadratic loss from missing the true or target value of the
dependent variable and an additional cost depending on the variables selected for
observation or control.

In Lindley’s control problem (1968, pp.46-53], the controls are random
variables, the uncontrolled variables taking values stochastically according to a
distribution conditioned on the selected values of the controlled variables. In our
example, of course, the “uncontrolled”’ variables are kept at their status-quo
value of zero. Not surprisingly, the two analyscs diverge completely in their
recommended selection of controls and settings. .

In Lindley’s prediction problem [1968, pp. 33-46], X and the rows of X are
uitimately assumed to be i.i.d., multinormal, with common random parameters
having a Fisher-Cornish prior. (By contrast, (4) is the only distributional assump-
tion we make on the X or X variables). The real contrast, nowever, is not so much
in the different stochastic assumptions, as in the cost structure of the models,
which illustrates neatly the distinction between the bayesian and posi-bayesiar
approaches. Our second cost component refers to the complexity of the model,
which can be reduced by dropping the terms X.B.—thatis, actually distorting the
maxdel in a most unbayesian manner. Lindley’s cost, on the other hand, is the cost
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of observing variables; the anaiysis is of the standard “preposterior’” form
[Raitfa—Schlaifcr, 1961], balancing this cost against the expected benefit of
making the observation,

The essential distinction is brought out in a comment made by Lindley in the
discussion following his paper. Considering the case of polynomial regression
(5=¥%, j=o0, 1,2,..)), where the cost of observing all the components ¥; is
scarcely greater than the cost of observing one of them, Lindley states- “My
Bayesian solution would fit a polynomial of degree n 1 to n points .. .. This is
absurd . . . Ip practice I would fit a lowdegree polynomial, but | do notknow why,
or at ieast not in any way that I can €xpress precisely. The ¢xample is a usefu] test
case for Bayesian methods_ [Lindley, 1968, p. 66). Our reply, of course, is that to

applications considered in this paper, was possible to employ very crude
estimates of these costs to motivate procedures which proved superior to conven-
tional treatmenis,

“1tis interesting to note that Lindley's prediction model implies the conclusions of our Theorems
2 and 3 despite its rathet different assumptions (1968, p, 42]. Any modification of either model would
in general destroy this coincidence. See footnote 6 above, for example.
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We intend to go well beyond the prediction and control applications
advanced in section 2. More specifically, in addition to our previous work (Faden
and Rausser {1975]) and the examples presented in Section 2, we are presently
examining the implications of the appreach for dealing with aggregation, selection
amongalternative functional forms, specification and estimation of distributed lag
relationships, pooling of cross-section-time-series data, regime changes, determi-
nation of the number of classes in discriminant analysis, and the construction of
autoregressive-moving average processes. Moreover, some preliminary results
are now available on a comparison of the post-bayesian approach with conven-
tional stepwise regression routines (Dahm, et. al. [1975]). It is clear from these
results that rather substantial differences are obtained when costs of complexity
are explicitly recognized.

Other potential applications where the approach would prove valuable are
not difficult to isolate. These applications might be classified under one of three
categories, (i) specification of econometric models, (ii) selection of estimation
methods, and (iii) selection of policy or control solution methods. The first
category covers such questions as whether a model for a particular system should
be specified as a set of stepwise recursive, block recursive, or simultaneous
equations. The second addresses issues such as the selection of estimation
procedures for dynamic, stochastic models which do not admit estimators with
determinable small sample properties. Since most economic policy problems
require the formulation of a rational, multiperiod decision problem under condi-
tions of imperfect information (an adaptive control problem) for which no
analytical control solution s available (Rausser and Freebairn [1974]), the third
category is concerned with the selection of “approximate” solution procedures
which involve some alterations of the originai structure of the problem. The
severity of these alteraiions will depend npon the combined cost of complexity
and inaccuracy. The specification of these costs and use of the resulting post-
bayesian procedures will allow researchers to determine the optimal degree of
approximation to adaptive or dual control problems.

Iowa State University
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