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Annals of Economic and Social Measurement, 5/3, 1976 

MICROECONOMICS 

STOCHASTIC MODELS OF PRICE ADJUSTMENT* 

BY STEVEN BARTA AND PRAVIN VARAIYA 

Some models of siochastic approximation are presented which seek to explain how several sellers in a 
single market adjust their prices and quantities in disequilibrium and when the demand for their product is 
imperfectly known. These adjustment schemes have the known property that they permit sellers to 
simultaneously learn their demand function more accurately and to search for more satisfactory price 
levels with little computation. Some subtle effects of stochastic environments are discovered which have 
escaped informal discussions of the problem. 

1. INTRODUCTION 

Several authors seeking to explain how sellers set prices or quantities outside 

of equilibrium simplify their analysis by ‘‘avoid[ing] the problem of what firms 

should do when they do not know their demand functions” [4, p. 186]. The 

simplification is achieved by assuming either that sellers know very little or ignore 

their monopoly power [2, 8], or that sellers know their demand functions exactly 

[1, 3]. These assumptions are made in spite of the fact that in discussing their 

models these authors often argue in terms of the uncertainty in demand. 

When there is uncertainty about its demand function, the firm can experi- 

ment with its prices and observe the reactions of its customers, and with this 

additional information the firm may discover levels of profitable prices. The 

problem of finding the optimal sequence of prices can be posed as a problem in 

Bayesian decision theory, and this has been done for the case of a single firm in a 

very simple economic environment [4]. Such a formulation has two deficiencies. 

First, the computational effort necessary to calculate the optimal sequence is so 

great that even its normative significance is diminished if costs of computation are 

taken into account. Secondly, any attempt to extend along these directions the 

formulation to include several interacting firms appear to lead inevitably into the 

considerably more intractable theory of sequential stochastic games. (For some 

recent efforts in this area see [9, 10].) 

It is the objective of this article to present a family of price-adjustment 

processes for firms in a single market which (a) are robust as well as computation- 

ally simple, (b) exhibit the fact that firms must experiment to discover profitable 

prices, and (c) possess orthodox convergence properties. From the viewpoint of 

economic theory it is interesting to note here that the convergence of these 

processes is determined largely by the convergence of corresponding rules (such 

as those studied in [1, 2, 31]) where the firms know their demand functions in 

advance. This is because the processes presented here converge if (i) the behavior 

of consumers is systematic enough even while it is random so that each firm can 

* Research was supported by National Science Foundation under Grant GK-41647 and ENG 74- 
01551-A01. 
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learn, through repeated trials, the demand for its product at any set of fixed prices, 

and if (ii) assuming the firms know their demand functions, the adjustment 

processes lead to prices which converge to an equilibrium. Since condition (ii) has 

already been well investigated in the economics literature, our main task is to 

investigate condition (i). As we shall see this condition captures certain subtle 

phenomena which elude informal discussions of price adjustment under uncer- 

tainty. As an example, we may mention here that prices can stabilize to an excess 

supply situation simply because firms react faster to excess demand than to excess 

supply. 

From the mathematical viewpoint the proposed rules belong to the family 

known as “stochastic approximation” schemes following the pioneering paper of 

Robbins and Monro [7]. However, we shall follow the formulation due to Ljung 

[11] not only because it is considerably more general in several respects but also 

because it clearly points out the dual functions of learning and search mentioned 

above. Motivated by the same concerns as those mentioned above, Aoki[12, 13] 

has already used stochastic approximation methods to model some adjustment 

processes. The relation between his work and that presented here will be detailed 

in Section 4. 

In the next section we state the main results of [11] in the form of an abstract 

adjustment model. In Section 3 this model is used to investigate stochastic 

versions of the more concrete processes proposed in [1, 2, 3]. 

2. AN ABSTRACT ADJUSTMENT MODEL 

N firms produce and sell a homogeneous product. At the end of period t firm 

n sets certain instrumental variables (e.g. prices or quantities) denoted by the 

vector v;. It is assumed that v; belongs to an a priori fixed, compact set B”. Let 

B=B'x...xB™. Let v,=(v},..., v,) be the distribution of these variables 

across the market. (In the following whenever a superscript is omitted from a 

variable name, it designates the vector whose components correspond to the 

various firms; thus y =(y',..., y”) etc.) In period t+ 1 consumers search among 

firms and react to the distribution v,. Their behavior as observed by the nth firm is 

formulated by it as the vector y/(v, &+1) where {é,} is a random vector sequence 

defined on the probability space (0, ¥, P). Note that y; is determined by the 

action of all firms v, and the random variable é,,.,; which does not depend on »,. 

Based on this observation the firm adjusis its instruments at the end of period 

t+1 according to the rule 

(2.1) vtss(w) =[v7(w) + ¥.H" (y7(v,(@), &41(@)))}? 

=[v?%(o)+ y.27(v,(o), &+1(@))]? 

Here y,>0 is a constant determining speed of adjustment, H"( ) is a function 

which relates an observation to desirable directions of change in the variable 

v", z"(v, €)= H"(y7(v, €)), and[ ]? is any function satisfying 

[x]® € Bforallx,[x]’=x for xeB. 
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For each fixed v let Z7(v) = Ez?(v, &+1). The explicit dependence of Z,(v) is 

supposed to be transitory. That is, if consumers face a constant distribution v then 

their average behavior stabilizes, i.e., there is a function Z(v) so that 

lim Z,(v)= Z(v) for each ve B. 

Thus the environment is “stationary” in an important sense. 

Next, it is assumed that as a result of firms seeking their goals, or as a hidden 

“‘aim”’ of market forces, the instrumental variables are directed to the v* defined 

by the “equilibrium” condition 

Z(v*)=Oi.e. Z"(v*)=0,n=1,...,N. 

If each firm n could directly observe Z"(v) then v* would be an equilibrium of the 

differential equation 

(2.2) b=Z(v). 

On the other hand, for any fixed v, Z"(v) can be estimated by 

(2.3) fi+1(0, w) 92 E+ yAz7(v, &,41(@)) re fi (v, w))|, Lo - 0. 

(For example, if y, = t”', then (2.3) yields £7? = 17 ' ¥.,<, z"(v, &,41) whichis a robust 

estimator.) Thus the actual adjustment rule (2.1) can be seen as a way of 

combining simultaneously the “learning” process (2.3) and the equilibrium- 

seeking process (2.2). 

We impose the following conditions. 

(C1) 0<y,=1, ¥, 20 as t>0, vy, =. 

(C2a) For each fixed v€ B, the random sequence {Z,(v)} generated by (2.3) 

converges to Z(v) a.s. 

(C2b) For each fixed é, the function z,(v, €) is uniformly Lipschitz in v belonging 

to an open set B°> B, with Lipschitz constant k,(¢). Furthermore, the random 

sequence {r,} generated by 

t+1(@) = r,(@) + yk, (E41(@)) — 17,(@)], ro = 0, 

converges to a constant r a.s. ‘ 

(C3a) The set B is defined by B = {v|B(v) = b} for some constant b where B is a 

twice continuously differentiable function, and there is a constant k so that 

E[(z7(v, &:+1))'Boo(u)z7(v, E+) =k 

for all ¢, and v, u in B. Here B,,(u) is the Hessian of B evaluated at u. 

(C3b) For all v € aB, the boundary of B, 

(B,(v))' Z(v) <0. 

(C3c) ‘v* is an asymptotically stable equilibrium of the differential equation 

(2.2), and its dumain of attraction contains an open set B°>B. 

We discuss these conditions after stating the main result. 

T2.1. Consider the random sequence {v,} generated by (2.1). Suppose (C1)-(C3) 

hold. Then v, converges to v* a.s. 
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Proof. The assertion is an immediate consequence of Theorem 3.1, Theorem 5.2 

and the subsequent remark in [11]. 

Consider the conditions in reverse order. (C3c) says that if Z “v) were directly 

observable then all solutions of (2.2) which start in B converge to v*. Since this 

case is well-studied in the literature, it need not detain us further. Since (C3b) is 

only slightly stronger than the statement that B is an invariant set of (2.2), it is 

usually satisfied whenever (C3c) is. (C3a) guarantees that the effect of the 

disturbances {é,} is not too large. For instance, it is easily verified if z/(v, €) is 

continuous in (v, €) uniformly in t and sup E|é,|* <0. 

(C2a) guarantees that it is possible to estimate Z(v) for any fixed v while 

(C2b) guarantees that estimates ¢,(v) converges to Z(v) uniformly for v € B, and 

this implies in particular that Z(v) is a Lipschitz function so that the differential 

equation (2.2) is well-behaved. 

The requirement y,>0 reflects the fact that in (2.1) z/ is a direction of 

desirable change in v;, whereas the bound y, = 1 is merely a normalizing condition 

in light of the second condition y, > 0. This latter condition is necessary if learning 

behavior is to Se exhibited since then as time progresses new observations should 

have decreasing importance. The condition is discussed more fully in the next 

section in the context of a specific example. The divergence of } y, is obviously 

essential. 

The interesting conditions therefore are (C2a) and (C3c). Roughly speaking, 

the former guarantees that learning is possible in principle, while the latter 

guarantees convergence in the absence of uncertainty. The remaining conditions 

link these in such a way as to ensure that both functions can be carried out 

simultaneously. 

We conclude this section by giving some simple conditions which guarantee 

(C2a) and (C2b). 

L2.1. Suppose &, satisfies (2.4) and y, satisfies (C1) and (2.5). 

(2.4) é,, €, are independent if |t—s|=M for some M<oo. 

(2.5) V+1=¥% and Y+1= y¥:(1 — ¥+41). 

(i) If for each v in B there exists a > 1 such that 

(2.6) E|z,(v, &+1)— Z,(v)|* = 87 

for some nondecreasing sequence 6, and 

(2.7) L y767<00, where & = min (a, 1+3a), 
t 

then (C2a) holds. 

(ii) If Ek,(é,.;) =r, converges to r, and if there exists a > 1 such that 

(2.8) E\k(&+1)—1,|° =6; 

for 5, nondecreasing and (2.7) is satisfied, then (C2b) holds. Furthermore, if 

1<a <2, then (2.5) is not needed. 
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Proof. See Appendix A.1. 

Consider (2.4). Note that the disturbance term is a consequence of consumer 

search. If periods remote in the past do not affect their search and hence their 

behavior in the present period, or if their behavior varies independently between 

distant periods, or is a new “generation’”’ of consumers replaces the previous 

generation every so often; in all such environments (2.4) may be reasonable.’ (2.5) 

has the following meaning. From (2.5), {7(v) can be expressed as a moving 

average 

fi(v)= XY c,-2(0, +1) 
Ts 

where ¢,, = yr-1 [5--(1—y,) if 7<t and c,, = y;-1, 80 that c,,41 = ¢,, if and only if 

Y, = Yr-1(1—y,). Thus (2.5) means that in the estimate {7(v) recent observations 

are weighted more heavily than previous observations. Condition (2.7) is more 

interesting since it exhibits a trade-off between the efficiency of search and 

learning. Specifically, the slower y, converges to zero the greater is the effect of 

disturbances on the learning process, but the faster is the convergence of v, to v* if 

it converges at all, and (2.7) displays this conflict in the two functions. 

3. SomE CONCRETE ADIUSTMENT PROCESSES 

In this section we follow the abstract model introduced above to obtain 

stochastic versions of some adjustment processes studied in the literature. 

3.1 Fisher’s Quasi-Competitive Adjustment 

For a discussion of this model the reader should consult [2]. At the end of 

period ¢, firm n (n=1,..., N), believing that it faces a flat demand curve, sets a 

price p’ and offers for sale the amount S"(p7). p; ¢ B" =[b, b]< R,, and S"(p") is 

just the inverse of the marginal cost curve. 

In period t+1 consumers search among various firms and register the 

demand d"(p,, &,+;) at firm n. {é,} is a stationary sequence of random vectors. Let 

x" (Dp E41) =A" (Pp &41)—S"(p?) be the excess demand of firm n at end of period 

t+1. For each p fixed let D"(p) = E[d"(p, &,)], and let X"(p) = D"(p)—S"(p). At 

the end of period t+ 1 the firm adjusts its price according to the rule 

{%.1) Pi+i=[pr+ yh"x" (Dp &4.)1° 

where h” > 0 is constant. 

Assume that é, is bounded a.s. Let B° > B be an open set such that for fixed 

é, x"(p, é) is Lipschitz in p ¢ B° with constant k(€) and 

(3.2) k(é,) is bounded a.s. 

Assume further that for each fixed p 

(3.3) x"(p, &,) is bounded a.s. 

’ Also, as seen from [11], (2.4) can be replaced by weaker conditions which imply that v, and &,,; 
become independent as t > 00. 
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Finaily, assume that p*e B is a unique, globally stable equilibrium of the 

differential equation 

(3.4) p”" =h"X"(p),n=1,...,N 

with a domain.of attraction containing B°, and that 

(3.5) X"(p)>0_ if p"=b; X"(p)<0 if p"=b. 

T3.1. Suppose the assumptions made above hold. Suppose y, satisfies (C1), (2.5) 

and for some a >i 

(3.6) yy: <0. 

Suppose &, &, are independent for |t—s|=M. Then the random-sequence {p,} 

generated by (2.1) converges to p* a.s. 

Proof. Because of T2.1 we only need to verify conditions (i), (ii) of L2.1. Because 

of (3.2), (3.3) and (3.6) these conditions hold for 5, = constant. 

Since Fisher has extensively discussed the stability of (3.4), we need not 

consider it any further. (3.5) is reasonable in the partial equilibrium context of the 

model. Hence we shall only deal with the stochastic aspects of (3.1). 

At first sight the stationary but myopic adjustment process 

(3.7) P41 =P: th"x"(p, 41) 

may appear more plausible than (3.1). Similar schemes have been studied for 

example in [6] and [15].’ However (3.7) is incompatible with learning in the sense 

that if the firm knows it faces randomly fluctuating demand and if its intention is to 

discover constant levels of price and production which are compatible with 

average conditions of demand, then this intention cannot be realized through 

(3.7). For suppose for simplicity that N = 1, S(p) = s9+ sp, d(p, &,) = do—dp+ &, 

and é, are independent with zero mean. Suppose further that h is so small that 

|1—h(s+d)|<1. Then Ep, p and E[p,— Ep, > 0’ where so+sp = d+ dp and 

ao’ =h*[1—h(s+d)] -Eé?>0 if Eé? >0. Thus, while the statistical average of the 

excess demand tends to vanish, actual prices and production levels fluctuate 

constantly with the demand.’ On the other hand, if the firm is aiming to meet 

average demand then, as it gains information about this average demand, it must 

respond less and less to instantaneous fluctuations. This accounts for y,>0. A 

similar phenomenon occurs in [4] where the firm eventually stops adjusting its 

price even though demand continues to change randomly. 

Instead of prices adjusting in proportion to excess demand, we could consider 

(3.8) Pi+1 =p; +y,H"[x"(p, &+1)] 

where H” is a sign-preserving function. Suppose H” has at most linear growth. 

Then p, > p a.s. where EH" [x"(p, &,)]=0so that p may not equal the competitive 

?Our information regarding [15] is limited to the discussion in [5]. 
. Incidentally, a time-continuous version of this example shows that Theorem 3.3 of [6] is 

incorrect. 
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equilibrium p*. Indeed, consider the specificatic, of the preceding example with 

n=1, H(x)=ax if x>0, H(x)=x if x<0. Then p is determined by 

EH[x(p)+é]=0 or aE[x(p)+éJ" = E[x(p)- 4) where f° =fVO and f = 

(—f) V0. It follows that if a> 1, i.e., the firm reacts faster to positive excess 

demand, then X(p)<0 so that at the equilibrium price there is positive excess 

supply. Furthermore, the greater is the :andomness in demand, the larger will be 

the value of |X()|. For instance, if , is uniformly distributed over [—a, a], then 

X(p) =—(1+a)(a—a) ‘a. Thus if we interpret the sellers as workers supplying 

labor and if wages rise faster in conditions of excess demand than they fall in 

situations of unemployment, then wages will converge to an equilibrium where 

there is unemployment. Of course, the opposite tendency prevails if a <1. 

One final remark in connection with nonlinear functions H” may be of 

interest. Under the conditions on X(p) in [2], p* is the competitive equilibrium 

and so, in particular, all of its components p " are equal. The equilibrium is given 

by EH"[X"(p)+é,]=0n=1,..., N. Even under the same conditions as in [2], it 

is, of course, no more generally the case that all the p” are equal. A similar 

conclusion is reached in [4, p. 201] except that these differences in adjustment 

processes arise from different beliefs about the structure of the random demand. 

3.2 Diamond’s Adjustment Model 

The reader should consult [1] for the model discussed here. Again there are 

several firms. In each period consumers search randomly among these firms but 

they do not discriminate between them on the basis of previous experience. 

Therefore each firm faces demand functions whose statistical properties are 

identical and so we need consider one firm only. A consumer who entered the 

market at some time 7 < ¢ stays in the market until he encounters a price p, which 

exceeds his own cutoff price q;. He then purchases the amount d(p, é,.;). The 

cutoff price gq; depends in some random way upon previous prices p,, . . . , P,—;. In 

keeping with the spirit of the search process as described in [1], it is assumed here 

that {é,} is a sequence of stationary, independent random veciors. 

Let N;(p) be the (random) number of consumers who entered the market at 7, 

who are still in the market at ¢, and whose cutoff price exceeds p. Then the demand 

function facing our firm in period t is ),<,d(p, &+:)Ni(p). The firm’s unit 

production cost is constant, and we may assume it is zero, so that its profit function 

is pd(p, &41)N,(p) where N,(p) =<: Ni(p). 
Let r(p, &+1)= pd(p, &,4,;) and R(p)= Er(p, &,;) for each fixed p. Let p, € 

B=([b, b]— R, be the price set by the firm at the end of period ¢. Then in period 

t+1 it observes N,(p,) and r(p, &+:)N,(p,) so that it knows r( p, +1). 

Suppose for the moment that the firm wishes to set its price at a level p’ at 

which R(p*) equals some “satisficing” level R*.* Then if p, is adjusted according to 

the rule 

(3.9) Pr+i = [pr + y,(R*- r( Do E4.))1°, 

* We do not discuss the role of N,( p) any further since under the assumptions on the adjustments 
of the cutoff price given in [1], N,(p,)> N, the total (fixed) number of customers in the market, 
whenever p, converges. 
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it will converge to p’ a.s. under appropriate conditions which can be obtained 

from the results of the previous section. 

Now suppose the firm wishes to maximize R(p). Then if the maximum value 

of the profit is not known, a rule such as (3.9) is clearly inappropriate. In essence, 

the firm needs to obtain information from which it can infer whether or not it has 

eached a profit-maximizing position, and if it has not done so which direction of 

change would lead to an increase in profits. Such information is provided by the 

marginal revenue function M(p)=(dR/dp)(p). Suppose momentarily that at 

each ¢ the firm can obtain a sample m,( p,, 7,1) where {7n,} is a random sequence so 

that, for each fixed p, Em,( p, 7.41) =M,(p)> M(p) as t> 00. Then prices adjusted 

according to 

(3.10) Pi+i = [pr + y,m,( Po ee) 

would, under appropriate conditions; converge to p* at which M(p*) = 0. 

The sample m,( p, 7,41) may be obtained directly in some way not explicitly 

considered in the model, or it can be obtained by experimentation in the following 

way. Suppose each period ¢ consists of two subperiods labeled (t, 1) and (t, 2). 

Suppose at the end of period (¢, 1), the firm’s price is p,; and in period (¢, 2) it 

observes r(p,i, &,2). At the end of period (t, 2), it sets the price p,2 = p,; — a, where 

a, >0 is a predetermined sequence to be specified further. In period (t+ 1, 1) the 

firm observes r(p,; — @, &+1,1). Define 

(3.11) m,( Pris Nh+1) gt ~Er( pu, &,2) —r( Pri ap &411)] 

where 741 = (&,2, &4+1,1). Suppose now that p,,,,; is adjusted according to 

(3.12) Pr+t.1 =U Pert yer (Pir, m+? 

in a way quite similar to (3.10). 

We can use T2.1 and L2.1 to obtain sets of conditions under any one of which 

the sequence p,, generated by Diamond’s process (3.12) converges to the 

profit-maximizing price. Here is one such result whose proof can be readily 

constructed using T2.1 and L2.1. 

T3.2. Let B°>B be an open set such that 

(i) M(b)>0, M(b) <0, M is monotonic on B°, 

(ii) Elr(p, &)—r(p) <o7<0 for peB’, 
(iii) _r(p, €) is twice continuously differentiable in p for fixed € and 

or dR} _ 2 0 onan = axa = < Fe (p, &,) oe <o,,<0 for peB 

2 

(iv) 0=<y,=1, ¥: > 0, a,> 9, yu =%, 5 () <0. 
t t \Qy 

Then p,; (and hence p,» also) converges to P* a.s. where M(p*) =0. 

Suppose the firm had a direct estimate of M(p) so that it could use (3.10). 

Then, convergence of (3.10) to p* would be guaranteed under conditions (i), (ii), 
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(iii) and 

(iv’) 0<¥ <1, 770, Ly%=%,Lyi<w. 
t t 

Note that (iv’) is considerably weaker than (iv) because since a, > 0 a sequence {y,} 

satisfying (iv) must decrease much faster than if it had to satisfy (iv’). In turn this 

means that convergence of p, under (iv) is considerably slower than under (iv’). 

This is a reflection of the fact that obtaining an estimate of the marginal revenue 

function M(p) from observations of random demand is a subtle process since M is 

not given in parametric form. Of course, if it were parametrized, say, it is known to 

be a linear function with unknown slope and intercept, then faster convergence is 

possible. 

3.3 Adjustment to a Nash Equilibrium 

For discussion of the model introduced here see [3]. In a certain sense this is 

an extension of Diamond’s model discussed earlier. Consusi:er search behavior 

causes the demand faced by a firm to depend upon the other firms’ prices. Each 

firm realizes that it faces a sloping demand curve, and its objective is to exploit this 

monopoly power. 

If p; ¢ B" =[b, b]< R, is the price set by firm n at the end of period 1, then the 

demand for its product during period t +1 is d"(p, &+1) where p,=(p:,..., pis 

the distribution of prices among the N firms and {é,} is a stationary random 

sequence. Let D"(p)=Ed"(p, &,). C"(q") is the cost function of firm n. We 

assume that D” and C” are twice continuously differentiable. Define the profit 

function 7”(p) = p"D"(p)—C"[D"(p)]. We assume with Fisher [3, p. 449] that 

for fixed values of p',i#n 

(3.13) a” (p) is strictly concave in p” € B". 

It follows from a result due to Rosen [14] that there exists a Nash equilibrium price 

vector p€ B, i.e., 

~1 
w'(p,.. 

5 
.»p",..-,p )s7"(p) for p"€B",n=1,...,N. 

Next we assume (see [3, Theorem 3.1]) that 

(3.14) p is the unique Nash equilibrium in B 

and for each n 

n 
Om 

1 (3.15) ap" 
0 Pe ° n = 

(p)>0 if p" = byTx(p)<0 if p"=h, 

which is reasonable and self-explanatory. 

° Fisher assumes the existence of the Nash equilibrium when in fact it is a consequence of the 
concavity assumption. 
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Now, for each p=(p',..., p’)€ B, let p" = p"(p) € B" be the price at which 

firm n maximizes profit when all the other firms’ prices are fixed at p’, i ¥ n,i.e., 

a St eae Kg ee RR for p" €B". 

Equivalently, in view of (3.15), p” is determined by 

aa" 1 —n Ny _ 
(3.16) dh ected 

Fisher imposes enough additional conditions to guarantee that the adjust- 

ment rule 

(3.17) p" = H"[p"(p)— p"], 

where H" is any sign-preserving function, has an asymptotically, globally stable 

equilibrium p (see [3, Theorem 3.2]). Now for (3.17) to be a good description of an 

adjustment process, it presupposes that each firm n has an accurate knowledge of 

its profit function 7”(p), so that it could solve for p" from (3.16). If, however, it 

does not have this knowledge, the firm can still attempt to estimate da"/dp” from 

the observed random demand d"(p, &,,,) and its own cost function, as was 

proposed in regard to the Diamond model. For simplicity we assume that the firm 

has directly available to it the observation m"(p,, ,+;) such that 

(3.18) Em"(p, %) =r () for each fixed pe B, 

and it uses this observation to adjust p” according to the rule 

(3.19) Pisi = Pit yen" (Pp Me+1)- 

We can prove the following convergence result. 

T3.3. Assume that (3.14), (3.15) held and that p is the unique asymptotically, 

globally stable equilibrium of (3.17) (for any sign-preserving H”) with domain of 

attraction containing B. Assume that {n,} is a bounded, stationary process with 

N» N; independent when |t—s|=T for some T<©. Let {y,} be a sequence 

satisfying 

(3.20) O<y,=1,%70 a8 20, Yui=HX(1-Yu1), LH=WLY <co 

for some a > 1. Then the random sequence {p,} generated by (3.19) converges a.s. 

to p. 

Proof. See Appendix A.2. 

From our earliest discussion it is clear that if instead of (3.19) we consider the 

more general rule 

Pi+i ne pit y:H"[m"(p, +1] 

we still get convergence to p if H"(x) = h"x for h" a positive constant, whereas, if 

H" is a nonlinear sign-preserving function then the process is likely to converge to 

a different equilibrium. One additional remark which concerns the Fisher adjust- 

ment process (3.17) may be of interest. In the proof of T3.3 we show that the 
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stability of (3.17) and the concavity assumption (3.13) together imply that the 

trajectories of 

a ia 
(3.21) p"(t) ap" (p(t) 

converge to p. Now, from relatively abstract mathematical considerations (see 

[16]), we know that Nash equilibria are unlikely to be stable equilibria of systems 

with gradient dynamics as in (3.21). This consideration provides an argument (in 

addition to those made by Fisher himself) that the assumptions which guarante 

stability of (3.17) are very restrictive. 

4. CONCLUSIONS AND NUMERICAL RESULTS 

We have tried to show how disequilibrium adjustment processes which 

consider only “‘deterministic’’ environments can be modeled as stochastic approx- 

imation schemes so as to take into account uncertainties on the part of sellers. In 

doing so we have discovered a variety of subtle phenomena which have escaped 

informal discussions of the subject. 

Aoki appears to be the first to have used stochastic approximation methods to 

model adjustment processes and he has been motivated by the same concerns. In 

[12] he has compared a Robbins—Monro scheme with three Bayesian formula- 

tions, all for a single firm whose demand function depends only on its own price, 

and shows that they are asymptotically equivalent. In [13] he considers several 

interacting firms in the same industry. In each period t each firm n adjusts its 

output rate q; (subject to an exogenous disturbance), and then learns the common 

market clearing price p, based on which it adjusts the next period’s output rate. 

Thus in [13] the interacting firms are Marshallian quantity adjusting firms, 

somewhat similar to [17], unlike the price adjusting firms described here. 

While we have given conditions which guarantee convergence to an equilib- 

rium, the actual rate of convergence and the behavior of the price sequence 

outside of equilibrium depends critically upon the adjustment coefficients y, and 

the magnitude of the disturbances. While estimates of the asymptotic behavior of 

the random price sequence are available (see [11]}-{13]), these estimates provide 

no understanding of the “transient’’ behavior. Therefore we present below the 

results of a numerical experiment of the scheme of Section 3.1 for a two-firm case. 

In terms of the notation introduced there N = 2, d"(p, €,) = D"(p) + &? where 7 is 

10P, 106 

r104 

10 (20, 100) NR T 

—_— i. aeninctal a ar 
10 \ 14 16 “32-26, 

r98 

5 

+ 94 

Figure 1 
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uniformly distributed over [—a, a],n=1,2. The average demands D"(p) are 

taken to be 
p 

B 12 = ~ D'(p)= at +p bp’, 

1 
2 Pp B ee = . =+ x D‘(p) p+p p +p 5°p 

where 5', 5” and B are positive constants. The supply functions are taken as 

S"(p")=a"(p"+c"),° n=1,2 

with a”, c” as positive constants. Equation (3.1) now reads 

(4.1) Pisi=[prt+y(D'(pr)+é:—-S"(p))), = n=1,2 

Nine sample paths of (4.1) are presented corresponding to three different 

values of {y,} and three different values of the noise parameter a, as shown in 

Table 4.1 below. In Figures 2a, b, c, y, =0.012, a constant. Since y, is large, initial 

convergence is rapid but as ¢ increases we do not get convergence since y, does not 

10P, 105 105 

n {030 Pa : a RQ ?.. 

bp te es “S os ® 

% 95 

(a) (b) 

r105 

are 
Pe Gc 100) 25 30 

Figure 2 

° The parameter values used in the numerical example are these: B= 100, 6'=27, 57=0, 
a’ =a" =1/18, c' = 4860, c? = 30. 
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' TABLE 4.1 

Y inn i 
0.012 5(250+ t) 0.1t 

a 

1.0 2a 3a 4a 

a> 2b c 3b 4b 

5.0 2c 3c 4c 

converge to zero. In Figures 3a, b, c we obtain convergence. In Figures 4a, b, c 

conveizence is extremely small since y, is smail. In all cases t= 1,... , 1250. It is 

10P,4105 =4105 

P, (20, 100 P, 
+f 

10\ 15 1 15 
(20, 100) 

195 195 

(c) 

Figure 3 

10P,1105 we: 1h 

(20,100) Pp, (20,100) _P, 

10 15 25 30 10 15 25 30 

N46 Ss 

(a) . (b) 

10? 21 105 

4 i (20, 100) ¥.< 
10 15 25 30 

ae 

(c) 

Figure 4 
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evident from these Figures that increased values of a leads to poorer convergence 

behavior. Ljung [11] has shown that asymptotically the behavior of the random 

sequence (4.1) is similar to the behavior of the trajectories of the differential 

equations 

(4.2) p” = D"(p)—S"(p) n=1,2 

and, for purposes of comparison, one trajectory of (4.2) is plotted in Figure 1. 

Electronics Systems Laboratory, MIT 

Electronics Research Laboratory, 

University of California, Berkeley 

APPENDIX 

A.1. Proof of L2.1 

Since the proofs of (i) and (ii) are identical, we only prove (i). Let A, = 

7 (v, €41)—Z7(v), C41 = z7(v, €41)—Z7(v). Then, by (2.3), 

Aus = A,+ Vi(Cr41 —A,) 

and it must be shown that A,>0 a.s. For m=1, ..,M define the random 

sequence {e;"} by 

ms if t=m modulo M 
e = 

0 otherwise. 

Then Ee;"=0 and e;", e;" are independent for t#s because of (2.4). By (2.6) 

Ele?"|* = 87 and we have (2.7), Y, y;5; <©. It follows from Theorem 4.3 of [11] 

(where condition (2.5) is used) that the random sequence Aj">0 a.s. where 

Arti = Af'+ y,(e7+1— Af’). But since e, = ¥,,, e7" we have A, = ¥,,,, Aj”, so that A, > 0 

a.s. 

A.2. Proof of T.3 

The only difficulty in applying T2.1 and L2.1 is to show that under the 

hypothesis of the theorem p is a globally asymptotically stable equilibrium of 

dar” 
ap" (p). (A.1) p"= 

Now suppose p” = p"(p) # p” so that 

r"(p', ey P',.-.5p)>1"(p). 

It is then a consequence of (3.13) and the definition (3.16) of p” that 

n 
0 
a 20 according as p"—p”" 20. 

280 



SORE PS 

Mads eal 

Hence there is a sign-preserving function H” (which depends on p) such that 

oar” 

ap" 

and the stability of (A.1) follows. 

= H"(p"—p") 
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