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Annals of Economic and Social Measurement, 5/2, 1976 

NEIGHBORING STOCHASTIC CONTROL 

OF AN ECONOMETRIC MODEL* 

BY PETER WALSH AND J. B. Cruz, Jr. 

In this paper, an econometric model with parameter uncertainty considered by Kendrick and Majors, 
which extends the deterministic linear econometric model used by Pindyck, is modified further to account 
for additive errors in the structural equations and additive obse.vation errors in variables. The use of a 
linearized neighboring optimal stochastic control with a Kalman filter is investigated. Simulation resulis 
indicate that when a Kalman filter is used to improve the estimates of th. state variables and parameters, 
deviations from the desired paths tend to be attenuated. 

1. INTRODUCTION 

In recent years there have been many applications of modern control theory to 

economic stabilization and planning, such as the work done by Chow [4, 5], 

Friedman [6], Livesey [10], Pindyck [15, 16], and Sengupta [18]. Pindyck [15] 

used a 28 state variable linearized model, assumed to be deterministic, and a 

quadratic tracking approximation for the criterion function. The validity of a 

linearized model has been discussed by Pindyck [15, 16] and the economic 

justification of the quadratic criter‘on approximation has been discussed by Theil 

[19]. An approach to the problem which takes parameter variations into account 

has been done by Kendrick and Majors [8] utilizing Pindyck’s model for the case 

of stochastic state variable coefficients. 

In this paper, we allow for further uncertainties in the form of additive noise 

in the system equations. This is acommon method of representing uncertainties in 

economic estimation [3]. Furthermore, we will allow for error in the measurement 

of the state and parameter values and for uncertainty in the initial conditions. 

We will utilize a Kalman filter to improve the estimates of the state and 

parameter values. Kalman filter techniques have had a wide variety of successful 

applications in aerospace systems [7,9], yet relatively few in economics [1, i+}. 

We will show that by replacing the actual measurements by the improved 

estimates in Kendrick’s control rule that the resultant state and control paths will 

deviate less from the desired paths, thereby reducing the criterion function. We 

will also discuss a reformulation of Kendrick’s quadratic penalty in the criterion 

function which will better reflect how cl>sely the resultant solution comes to 

Pindyck’s original policy formulation. 

2. THE AUGMENTED SYSTEM AND THE THE FORMULATION 

OF THE CRITERION FUNCTION 

In this section we will briefly review the model used [15], Kendrick’s method 

of dealing with the parameter variations [8] and present our results on the 

formulation of the criterion function. Pindyck’s model consists of ten linear 

* This work was supported by the National Science Foundation under Grant ENG 74-20091. 
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structural equations in which the variables appear with multiple lags. The system 

is rewritten as twenty-eight first order equations in the form 

(1) X41 = AoXr41 + Aix, + Biu, + C,z, 

where x is the state vector (28 x 1), u is the control vector (3 x 1), and z is the ° 

vector of exogenous variables (2 x 1). Equation (1) can be rewritten as 

(2) (I— Ao) 141 = Aix, + Byu, + C,z,. 

It is desired to put the system equations into the form 

(3) X41 = Ax, + Bu, + Cz,. 

Define a, to be a vector of the stochastic parameters. Kendrick considered 

the problem of mapping the statistics of those elements of a contained in the Ao 

matrix into the A matrix of (3). This was done by translating those components of 

a from (1) into (3) via a first order Taylor series approximation of (2). : 

Defining 

filet, O41) = (I— Ao) X141- 

Equation (2) is approximated by 

(4) GXe41 F C041 = Aix, + Biu, +p 

where 

(5) Qe = C12, —fi xv, @) + Gxt. tea, 

of; of G ——, se, 
; OX441 e 0a 

with the derivatives evaluated at (x7,,, @),x* is the solution of the certainty 

equivalence problem, and @ is the mean value of a. 

Kendrick assumed that a follows a first order process of the form’ 

(6) M41 =a, + 6, 

where 6, is a vector of uncorrelated additive noise, with zero mean and a 

covariance matrix >. Combining (4) and (6) into an augmented system and 

solving yields 

(7) Yi+1 = Ay, + Bu,+ 4. + 6, 

where 

* A more general expression is to premultiply a, by p. In our case p equals the identity matrix. 
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Kendrick used a criterion function of the same form as that used by Pindyck [15]. 

However, he chose to track the solution to the certainty equivalence problem 

(x*, u*) which is found by solving the optimal control problem with the elements 

of a, set equal to their mean values. Kendrick’s criterion function is 

T - ~ 
(8) K= ELE (o-yVOO.— y+ (wut Rw,— uP} 

rE} OLS aes 

where Q and R are those used in Pindyck’s criterion function. The pair (x*, u*) 

are the solution of Pindyck’s problem which used (£, %) as the desired paths. 

It is appropriate to linearize about x* since in the limit, as the noise goes to 

zero, the state and control paths would go to (x*, u*). Moreover, in the presence 

of small stochastic disturbances the linearization is valid and we have a neighbor- 

ing optimal control. However, it seems more reasonable to try to track £¢ rather 

than x* since the parameter variations may occur in a manner more favorable to 

tracking £ yielding better results. The advantage of these variations would not be 

utilized if one were tracking x*. Thus, our formulation of the criterion function is 

where 

T be - 
(9) Jz = B| a [(y, nad 9.)' O.1y: ~% 9.) +(u, si i,)’R(u, — a))} 

[a | 
) oat 

a 

The two performance indices would generally yield different optimal con- 

trols. The control rule used by Kendrick is based on a linearized model. This 

approximation results in a suboptimal control. Due to the approximation, the 

control rule results in the same solution whether one uses (8) or (9). 

The control rule is of the form,” 

where 

(10) u, = D,y, + hy 

Notice that u, is explicitly a function of the parameter values via the augmented 

state vector, y,.° 

When the Riccati equations are solved using the a priori parameter values, @, 

the resultant values of the matrix D, and the open loop vector h, will be the same 

whether one tracks (£, @) or (x*, u*). The controls will, therefore, be the same. 

In order to obtain a more optimal solution, thereby gaining further advantage 

by tracking (£, &), it would be necessary to reformulate the optimization problem 

at each quarter, resolving the Riccati equations from the terminal time to the 

present time, utilizing our most recent parameter estimates. 

? For derivation, see Pindyck [15]. 
> See Kendrick [8] for adaptation of the control rule to the augmented system. 
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Since the added computation involved is prohibitive, we have simply solved 

Riccati equations, and therefore D, and h,, with the a priori parameter values, @. 

It should be recognized that although D, and h, are only dependent on a, the 

control, u,, is still explicitly dependent on the most recent parameter estimate, a,, 

via the augmented vector y,. 

If, indeed, the pair (%, %) are the desired target paths based on economic 

considerations, then using (%, %) in the criterion function, (9) is a more natural 

expression of deviations from the original policy objectives. ' 

3. THE ESTIMATION PROBLEM 

In this section we will present the application of Kalman filtering techniques 

to improve state estimation and in turn to improve the effectiveness of the control 

law utilizing the estimates.* We wiil discuss the details of applying the filter to a 

macroeconomic planning problem and the resultant improvement in the effective- 

ness of the control. The improvement can be seen by comparing the criterion 

function values and by analyzing the state and control paths of Monte Carlo runs 

performed with and without the filter. The system model is 

(11) ¥:+1 = Ay, + Bu, + G, + 6, 

which is identical to (7) except that general system noise, w,, is included 

eat 6, 

where @, is the vector of parameter variations as before. The vector, w,, has zero yl 

mean and covariance matrix, Q, which is assumed to be diagonal. So the 

covariance matrix of the vector [w,: 6,]' is 

aa [os] 

For the initial conditions we have 

E[y(0)]= So, E[(y(0)— $o)(y(0) — $o)']= Po 

where E[ - ] denotes expected value. 

The measurement noise is assumed additive, with z, the measurement 

(13) Z.=y,+v, 

where the noise v, has zero mean and a covariance matrix R, also assumed 

diagonal (i.e. measurement errors are uncorrelated with each other). For our 

experiments, the covariance matrices R, and O, are assumed constant. 

The measurement and system errors are also assumed uncorrelated 

E[w,v1]=0 Vi, 7. 

* For a standard derivation see for example Gelb [7], Meditch [11], or Rhodes [17]. 
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In our notation, ¥,(+) is the expected value of y, given the measurements 

through time 1, i.e. §,(+) = $(t|t) = E(y,|{z,, 7=0, 1, ..., t}). Similarly, §(—)= 

§(t\t—1) = E(y,|z,, 7 =0, 1, ..., t— 1). The caret ( ) will denote expected value. 

The state estimate extrapolation is 

(14) $i+1(—) =A, G+) + Byu, + G.. 

The error covariance propagation is 

(15) P(-)=A,iPa(+)Aii+ HOH)’. 

The state and covariance updates are 

(16) I+) =9(—-)+ Kz, —-F—)] 

(17) P,(+)=[1— K,]P(—) 

where the Kalman gain is 

(18) K, = P(—)[P(-) +R] *. 

These equations are for measurements in the form of (13). More general 

equations can be derived for the case when the measurements are of the form 

z,= Cy, + v, 

' The controls, u, are the decisions made during quarter ¢. The information, z,, 

for the same quarter is not yet available. Therefore, when employing the filter, the 

state extrapolation (14) must be used in the control rule 

u, = DIA ai ) + h,. 

If the filter is not used the state must be extrapolated from the previous 

measurement by 

(19) §(—) = A,-12,-1+ By. + G-1- 

This puts complete confidence in the measurements, equivalent in our case to 

setting the Kalman gain equal to the identity matrix. 

The filter equations (14-18) are for a linear system and linear measurements. 

The actual system is not in fact linear when we allow for parameter variations 

since some of the elements of the system matrices are state variables of this 

augmented system. For this case, the system can be written in a general non- 

linear form 

¥i+1 =f (Yn Up 2,) + 6. 

The problem introduced by the nonlinearities is in calculating the expected 

value of f(y, u, z,) for which exact knowledge of the probability distribution 

functions of y, are required. It is therefore desirable to make a reasonable 

approximation such as utilizing some form of an extended Kalman filter.° 

° For a derivation, see Chapter 6 of Gelb [7]. 
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One applicable form of an extended Kalman filter is based on the approxima- 

tion of f(y, u, Z,) by a linearization about §,, the most recent estimate of y. 

A of A 
fy, u, Z)=f(S, uy, z+ 0 oa 7) 

where df/dy is evaluated at , The resultant filter equations are identical to 

(14-18) except that A,-1 is replaced by af/dy evaluated at f,_, in the error 

covariance propagation equation (15) and the state estimate extrapolation (14) is 

determined by the nonlinear system model, i.e. the matrices in (14) are evaluated 

with the most recent estimates of a,. For our simulations, however, we have simply 

applied the Kalman filter (14-18) to the model as linearized in (7). 

The system and measurement noise covariance matrices, Q, and R,, must be 

chosen by the economist in accordance with his confidence in the system model 

and the estimation (measurement) process. For example, if the model is consi- 

dered to be inaccurate, such as a linearization neglecting important nonlinearities, 

and if the measurement process is assumed to be fairly accurate, it would be 

appropriate to choose a relatively large system covariance matrix, O, and a 

relatively small measurement covariance matrix, R,. The large O,_;, and therefore 

P,(—), and the small R, cause the Kalman gain (18) to be large. That is, the 

updating of the state (16) depends heavily on the information in the latest 

measurement. Conversely, if the model is considered to be accurate and the 

measurements are inaccurate, the update will tend to ignore the current measure- 

ment and rely on the model. 

The first ten equations are corrupted with system noise, corresponding to the 

errors of the original ten structural equations. The augmenting equations describ- 

ing the parameter behavior are, of course, also corrupted with noise. The 

remaining equations, however, which propagate the delayed values of the 

endogenous variables, are not corrupted. 

The initial measurement of a state, say at time ¢, is corrupted but it is not 

recorrupted at a future time when it appears as a delayed state. The measurements 

of the parameter values are also corrupted at each time interval. 

By employing a Kalman filter, we have a method of accurately quantifying 

our confidence in both our model and in the latest measurements. Inherent in the 

filtering process is the effect of weighting differently the value of the information 

contained in the measurements of the various states. Thus, for example, by proper 

choice of the covariance matrices we can be very selective, utilizing the measure- 

ment of one state while ignoring another. 

In some applications, one might have perfect measurements of the endogen- 

ous variables, where only the parameter values are uncertain. In this special case, 

the order of the system, which now only describes the parameter behavior (6), is 

reduced to the number of parameters being estimated. The same parameter 

measurement equation could be used and the filter algorithm applied. However, 

we could take much better advantage of the measurements of the endogenous 

variables. Since the system equations give us a relationship between the endogen- 

ous variables and the parameters, these equations can be reformulated as the 

parameter “measurement” equations, that is, the system equations can be rewrit- 
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ten as a measurement equation 

X41 = Ca, + 4, 

where x,+, is the vector of the directly measured endogenous variables, a, is the 

vector of parameters, C, is a matrix of present and past endogenous variables, and 

6, is the actual system’s noise which now takes the role of the measurement error. 

Thus, the often interesting case in which only parameter values are uncertain 

can be readily treated by a Kalman filter. 

4. ESTIMATION OF THE COVARIANCE MATRICES 

It is our intention to demonstrate the possible advantages of applying Kalman 

filtering techniques to the estimation of state and parameter values in a mac- 

roeconomic planning problem. The results, in practice, are dependent on one’s 

ability to accurately estimate the values of the covariance matrices which charac- 

terize the uncertainties. 

A realistic approach to characterization of the system noise is to estimate the 

standard deviations of the system noise by the standard errors of the estimation 

process. However, for the purpose of our simulations, we chose to set the standard 

deviations of the system disturbances equal to a fraction of the corresponding 

initial conditions. To choose the scaling factor, we adjusted it until reasonable 

state and control paths were obtained. A realistic level was found when the 

standard deviations were set at one percent of the initial condition values. 

In simulations, our covariance estimate and the standard error would both 

yield consistent results in that equivalent improvements in performance would be 

achieved. In practice, of course, the standard errors from the estimation process 

would be more appropriate estimates of the standard deviations of the system 

noise. 

The parameter covariance estimates are known from the estimation of the 

consumption equation. In our experiment, as in Kendrick’s, three parameters in 

Pindyck’s consumption function are chosen to be stochastic, the coefficient of 

current disposable income, the coefficient of current disposable income lagged 

one period, and the constant term. The covariance matrix chosen to drive the 

parameter noise was proportional to the covariance matrix 2, for the parameters 

from the estimation of the consumption function. 

0.001833 —0.001345 0.04254 

2, = |—0.001345 0.003295 0.05318 

0.042540 0.053180 6.55000 

where the mean values of the parameters are 0.415, —0.0282, and 5.299. When 

the covariance matrix was set at about one or two percent of &,, realistic state and 

control paths were obtained. 

For the purpose of simulations, we have assumed that the standard deviations 

of the measurement noise are proportional to the corresponding initial conditions. 

This choice at least takes into account the effects of the units of measurement on 
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the covariance levels. Again, setting the standard deviations equal to about one 

percent of the initial conditions gave the most realistic results. 

In the economic literature, Vishwakarma [20] has determined estimates of 

the measurement error covariance for a model of the Netherland’s economy but 

has offered no justification nor insights into the procedure for obtaining the 

estimates. 

Chow [2] has discussed the applicability of Kalman filter algorithms but, 

again, has not considered the procedural aspects of obtaining estimates of the 

measurement error covariance matrices. 

In practice, the accurate estimation of the statistics of the measurement error 

is a formidable problem. Empirically, one could base the estimates of the statistics 

on the historical patterns of revisions in preliminary data estimates. 

To develop a more accurate estimation procedure one might consider the 

specific structure of the measurement process of each variable and then, in 

combination with data on past revisions of preliminary data estimates, the 

covariance levels could be estimated. 

The problem can be approached more readily from within the framework of 

the Kalman filter. As discussed by Mehra [13], one can test the optimality of the 

filter based on the innovation property of the filter. That is, from the estimable 

statistics of the innovation sequence {z,—¥,(—)}, one can test whether the 

covariance matrices O and R are accurate. If the covariance matrices are not 

accurate, then the autocorrelation function of the innovation process can be used 

to obtain asymptotically unbiased and consistent estimates of the covariance 

matrices O and R. Further discussion on identification can be found in Mehra 

[12]. 

A thorough treatment of the problem is beyond the scope of this paper. We 

have demonstrated the applicability of Kalman filter algorithms assuming that, in 

practice, a procedure is utilized for making sufficiently accurate estimates of the 

measurement error covariance matrices. 

5. SIMULATION RESULTS 

We performed experiments for the period from the first quarter of 1957 

through the first quarter of 1962. For all runs the use of the Kalman filter reduced 

the value of the criterion function, typically by 10 to 20 percent. Some representa- 

tive values are shown below. 

Normalized Criterion Function Values 

with filter without filter 

1.002 1.190 
7.609 8.873 
3.584 3.826 
7.656 7.706 
5.832 6.479 

Examples of some of the paths followed are shown in Figures 1 through 4. In 

all of the runs we notice a general tendency of the state and control paths to be 
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more oscillatory when the filter is not employed. Without the filter, decisions are 

made based solely on the measurements. These decisions will be inaccurate and, 

in general, will have a detrimental effect. Corrections must be made during the 

following period, but again based solely on the measurements, thus the oscilla- 

tions. This effect can be seen in Figure 1 which shows the short term interest rate. 

Both the short and long term interest rates were very sensitive to this effect. Using 

the filter not only suppresses the variations but also maintains the states closer to 

the desired levels. The disturbances of this particular run caused a general 

increase in consumption, Figure 2, and in the price level, Figure 4, above the 

desired values but the employment of the filter mitigated this rise. The distur- 

bances were favorable toward the money supply objectives, Figure 3, and by using 

the filter, better advantage was taken of this shift. A particular control or state may 

often deviate more from its desired path when the filter is in use; however, the 

overall performance, reflected by the criterion function, is consistently improved. 

For all figures, the horizontal axis is time in quarters beginning with the first quarter of 1957. 

Line #1. With Kalman filter 
#2. Without Kalman filter. 
#3. Desired path (Z). 
#4. Pindyck’s certainty equivalence solution ( x*). 

The interest rate is in percent. 
The consumption and the change in the money supply in billions of dollars. 
The price level equals 100 in 1958. 
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Figure 1 Short term interest rate Figure 2 Consumption 
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Figure 3 Change in the money supply Figure 4 Price level 
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6. CONCLUSIONS 

Our results have shown that when applying Kendrick’s technique for dealing 

with parameter variations, the penalization about the original desired path leads 

to the same neighboring optimal solution as that obtained by penalizing about the 

certainty equivalence solution, when the state equations are linearized using the a 

priori parameter estimates, @. We have argued that conceptually the penalization 

about the original desired path will make the criterion function a more meaningful 

expression of the deviations from the original policy objectives. In general the two 

stochastic control problems will yield different optimal solutions. 

In order to deal with imperfect measurements of the states and parameters, a 

Kalman filter can be used to obtain more accurate estimates. The Kalman filter 

algorithm does not replace conventional econometric estimation, but rather it 

supplements it, giving improved estimates. Due to its recursive nature, the filter’s 

dimension does not increase with increased sample size. By using the improved 

estir ates in the control rule, we have shown that a significant improvement in the 

performance of the system results. This is demonstrated by the state and control 

paths tracking the desired paths more closely. This, of course, results in a decrease 

of the criterion function value. 

Improper choice of covariance matrices and inaccurate model formulation 

can result in a degradation of the performance. If the measurements are suffi- 

ciently accurate, modeling errors can be partially compensated for by appropriate 

choice of the covariance matrices. An approach to study how well the filter can 

compensate for the inaccuracies of a linearized model would be to perform 

simulations using a nonlinear model to determine the system’s response to 

controls while using a linearized model in the Kalman filter, or by using an 

extended Kalman filter. The improvements obtainable with the filter are signifi- 

cant but, of course, are dependent on the accuracy of the model. 

University of Illinois 
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