
This PDF is a selection from an out-of-print volume from the National Bureau of 

Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 5, number 1

Volume Author/Editor: Sanford V. Berg, editor

Volume Publisher: NBER

Volume URL: http://www.nber.org/books/aesm76-1

Publication Date: 1976

Chapter Title: Interpreting Spectral Analyses in Terms of Time-Domain Models

Chapter Author: Robert F. Engle

Chapter URL: http://www.nber.org/chapters/c10429

Chapter pages in book: (p. 89 - 109)



Annals of Economic and Social Measurement, 5/1, 1976 

INTERPRETING SPECTRAL ANALYSES IN 

TERMS OF TIME-DOMAIN MODELS 

BY ROBERT F. ENGLE* 

This paper derives relationships between frequency-domain and standard time-domain distributed-lag 
and autoregressive moving-average models. These relations are well known in the literature but are 
presented here in a pedogogic form in order to facilitate interpretation of spectral and cross-spectral 
analyses. In addition, the paper employs the conventions and discusses the estimation procedures used in 
the NBER’s TROLL system. 

1. INTRODUCTION 

Although spectral analysis is a widely used tool in the statistical analysis of time 

series, the mathematical difficulties and the unfamiliarity of the concepts make it 

inaccessible to many economists. Increasing familiarity with time series models 

such as distributed lags and autoregressive-moving average processes (so called 

““Box—Jenkins” models), makes it now easy to describe and interpret spectral 

analysis without the use of complicated mathematics. Traditional time domain 

and more difficult frequency domain (spectral) analysis are just two ways of 

looking at the same phenomenon, but each has some advantages and the use of 

both can be an important aid in model building. Because frequency domain 

methods are more non-parametric, they are particularly useful in model specifica- 

tion. 

The computational difficulties of performing spectral analysis have been 

substantially reduced through an innovative computer algorithm called the fast 

Fourier transform and the availability of the NBER TROLL computer system 

throughout the U.S. and many places abroad. The system is used by telephone and 

easily performs both time domain and frequency domain analysis. All the facilities 

to be described in this paper are available in TROLL. 

The paper is intended to be a tutorial. It will develop in Sections 2 and 3 the 

correspondences between time and frequency domain analyses assuming only 

that the reader is familiar with time domain analysis. A short description of 

frequency domain estimation in Section 4 focuses upon confidence intervals and 

some adjustments which are available in TROLL. Finally, in Section 5, spectral 

analysis is used to provide a guide to the specification of time domain models with 

an example from economics. 

There are many excellent reference works on spectral analysis which should 

be consulted for more details. Granger [6]* is perhaps the easiest to read, while 

Jenkins and Watts [10] is the most comprehensive. Fishman [7] focuses on some 

economic estimation problems and Dhrymes [3, 4] extends this direction with 

somewhat more mathematics. Hannan [8] gives a very rigorous treatment of the 

* Research supported in part by National Science Foundation Grant GJ-1154X3 to the National 
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whole area. Relatively short and simple early expositions of the theory and 

practice are in Jenkins [9] and Parzen [13] with a good application to economics in 

Nerlove [12]. The book which is recommended as a companion to the TROLL 

system is Cooley, Lewis, and Welch [1] which is more application oriented and 

which describes, in Chapters 5 and 7, the basic concepts used in designing the 

system. Also see Cooley, Lewis, and Welch [2]. 

2. THE SPECTRUM 

Many data series can be considered successive chance observations over time 

called stochastic processes. Possibly, each observation is independent of the 

preceding ones. However, for most applications, there is some suspected depen- 

dence between the observations. Both spectral analysis (frequency domain) and 

the more familiar time domain analysis are ways to characterize this dependence. 

High correlations between neighboring observations or seasonal components 

might be important forms of this dependence. Once the stochastic process is 

characterized, it may be possible to forecast its values, improve the efficiency of a 

regression where this is the disturbance, or make an inference about the economic 

model which produced such a variable. 
Both frequency domain and time domain analyses begin with stochastic 

processes which are covariance stationary. This means that the covariance 

between an observation now and one a few periods later depends only on the time 

interval, not the dates themselves. Mathematically this can be expressed as 

(1) ¥(8) = B(X+5— w)(% — #) 

where y is the autocovariance function and yw is the mean. The important 

assumption is that neither depend upon t. While this assumption may seem strong, 

it is because of this condition that information from the past can be used to 

describe the present or future behavior. 

Many economic time series appear to violate this assumption, particularly 

those with pronounced trends. It is generally possible, however, to create an 

approximately stationary series by taking first differences, or extracting a trend, 

thus leaving the series with a constant mean of zero. There may also be trends in 

variance which can often be removed by first taking logs of the series. 

In the time domain the most common models are the autoregressive moving 

average models (ARMA). These may be purely autoregressive, purely moving 

average, or mixed. 

A p-th order autoregressive and a q-th order moving average model are 

defined in equations (2) and (3), respectively, while (4) is an ARMA (p, q). 

(2) X_ = QX,-1 + A2X%,-2+...+,%,_, + €, 

(2’) A(L)x, =e 

(3) X, = by &,_1 + b2€,-2+.. .+ bye, + €; 

(3’) x=B(L)e 

(4) Xp = AX, +... FAX,» +b €,1 +... +bg6:-g + &3 

(4') A(L)x = B(L)e 
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In these equations ¢ is a series of independent, identically distributed random 

errors with ¢, independent of x,_; for all i greater than zero; L is the lag operator 

and A(L) and B(L) are polynomials. These classifications are not unique since 

one type of process can, in general, be transformed into another. Nevertheless, 

they provide useful, simple models of time series which can be tested with data or 

used for analysis. Knowledge of A(L) in (2’), B(L) in (3’) or A(L) and B(L) in (4’) 

is equivalent to knowing the dynamics of the stochastic process of x. 

The spectrum provides another way of characterizing time series. In this case 

we think of a series as being made up of a great number of sine and cosine waves of 

different frequencies which have just the right (random) amplitudes to make up 

the original series. Thus the list of how much of each frequency component was 

necessary is also a full description of the time series. The spectrum is a plot of the 

squared amplitude of each component against the frequency of that component. It 

is continuous and always greater than zero as long as there are no deterministic 

elements (that is, no exactly repeating components, or components which can be 

predicted exactly on the ‘:asis of the past). This is a very general way to describe a 

stochastic process. 

The spectral density function is defined as the Fourier transform of the 

autocovariance function 

(5) f(0)= y(0)+2 ¥. y(s)cos(2m0s)= F y(sye?™ O0<0=<1 
s=—co 

where i = J-1, e’’ =cos (@)+i sin (@), and the last equality follows from y(s) = 

y(—s). There are several important features of this definition. First, although 

written in complex notation, the spectrum is real valued since all the imaginary 

sine terms cancel exactly. Second, since the cosine is symmetric f(@) = f(1—8@), 

and only the frequencies from 0 to 1/2 are needed to describe the spectrum. 

Third, integrating equation (5) from 0 to 1, shows that the area under the spectrum 

is equal to y(0), the variance. The spectrum is a decomposition of the variance into 

the components contributed by each frequency. A strict proof of the probabilistic 

basis of this interpretation is provided by the spectral representation theorem. 

Fourth, since @ is measured in cycles per period, it appears that there are no 

components from less than one cycle every two periods (the Nyquist frequency). 

The reason for this becomes clear upon reflection. When observing monthly data, 

weekly fluctuations will be indistinguishable from longer oscillations winch have 

the same value at the moment the observation is taken. The weekly component 

will therefore be counted with these lower frequencies. 

To clarify the interpretation of a spectrum and help with the notion of 

frequency components, consider the spectrum in Figure 1 which has been 

estimated from quarterly data. 

From the definition of the spectrum in equation (5), the highest frequency 

oscillation which can be distinguished is 0.5 cycle per period. At this frequency, it 

takes two quarters to complete a cycle so there are two cycles per year. There is a 

peak at 0.25 cycle which corresponds to a four-quarter, or annual cycle. This is 

most likely a seasonal component. Similarly, the peak at 0.5 also indicates a 

seasonal component since it has an even number of cycles per year. The peak at 
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Figure 1 Typical spectrum 

0.1 corresponds to a two and a half year oscillation. This might be a business cycle 

and economically interesting if it is significantly above its neighboring points. 

Generally, economic time series show behavior much like that of Figure 1. 

The purpose of this paper is to emphasize the relationship between these 

concepts of frequency domain analysis and the more conventional time domain 

analysis. The first order serial correlation coefficient is easily calculated in the time 

domain and is generally large and positive for economic time series. This finding is 

easily observed in the frequency domain as well. Multiply the spectrum by 

cos (27r@) and integrate to obtain from equation (5) just y(1), the first order serial 

covariance. Roughly, this amounts to multiplying low frequencies by a positive 

number, high frequencies by a negative number, and adding. If the result is 

positive, there is positive first order seriai correlation. Thus data series with 

generally downward sloping spectra have positive first order serial correlations 

while those with upward sloping spectra have negative serial correlations. Very 

important is the observation that spectra which are roughly symmetric about 0.25 

will show no first order serial correlation. 

A useful application of this analysis is found in interpretation of regression 

results. The assumption of no serial correlation in the disturbance is equivalent to 

the assumption that its spectrum is constant. The Durbin—Watson statistic gives a 

test against the possibility that there is first order serial correlation. This is a test 

against a general slope of the spectrum of the disturbance, whereas one would like 

to test against all forms of variation. In particular, notice that if the seasonality in 

Figure 1 were more severe, the spectrum might easily have no first order serial 

correlation but be far from constant. Durbin [5] formulated such a test based upon 

the spectrum of the residuals. In general, examination of the residual spectrum 

gives very useful information about the validity of the regression assumptions. 

The link between time domain and frequency domain is corapleted by a 

derivation of the spectrum corresponding to the ARMA models of equations 

(2)-(4). The basic result is quite simple but will be established in the appendix. 

Lemma 1: It x is a stochastic process generated by the model 

A(L)x, = B(L)e, 

where e¢, is a series of independent identically distributed random variables with 

variance ao”, and the polynomial A(L) has all roots outside the circle, then the 
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spectrum of x is given by 

(6) f.(0)=o"|B(z)P/|A(z)P, 9 z=e?™ 

Notice that z is a complex function of @. 

Several examples should help to illustrate the usefulness of this result. First, 

notice that the spectrum of the very simple (white noise) process which has no time 

dependence, is just a constant. It has equal contributions from all frequencies. 

Now consider the first order moving average process with parameter 9, 

X, = €, + pé,_,. From equation (6) the spectrum of x is 

f,(0) =|1+ pe?” Po” = {1+ p? + 2p cos (270)}o” 

Evaluating this for @ in the range (0, 1/2), gives a smooth spectrum which begins 

at (1+ p)° and ends at (1—p)”. If p is positive, this has the typical spe +tral shape 

which is common to most economic time series, and which implies a positive serial 

correlation coefficient, p/(1+p*). The first order autoregressive case is very 

similar but gives a somewhat steeper spectrum at low frequencies. 

A very simple autoregressive model which captures the behavior of purely 

seasonal stochastic processes for monthly data is 

x, = PX,-12 + €, 

From equation (6) the spectrum of this seasonal process is given by 

f,(0) = 07 /|1—pe~**” |? = a /(1+ p? —2p cos (2470)) 

which is plotted in Figure 2. There are peaks at all the harmonic frequencies: 

6=1/12, 2/12, 3/12, 4/12, 5/12, 6/12, and all are equally important. 

1-, 

l 
1+ 

— Ss i 0 
0 .25 a 

Figure 2 Spectrum of pure seasonal 

3. THe Cross SPECTRUM 

The techniques used above can also be used to describe the relations between 

two jointly covariance-stationary time series. Both the individual behavior and 

the interrelations can be decomposed into basic sinusoidal elements. 

The cross covariance function is a direct analogue of the autocovariance 

function. For two series with mean zero this is simply defined as: 

(7) Yxy(S) = E(%1+sy1) 
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Again, notice that it does not depend on ¢. The cross spectrum is similarly defined 

as: 

aco 

(8) fy (0) < x Yxy(s) one 
s=-cO 

Because y,, is no longer symmetric the cross spectrum is not a real valued function 

of @ but rather a complex valued function. 

Although the cross spectrum summarizes all the information in the series, it 

cannot be plotted directly. Instead, one examines statistics called “coherence 

squared,” “gain,” and “‘phase.” These measures are defined here and given a 

rather extended interpretation below, connecting these concepts with the ideas of 

distributed lag regression models. 

The coherence squared (COH) is like a correlation coefficient and is defined 

as: 

(9) COH(6) =| f,,(0)|?/f.() f,(0) 

which is clearly between 0 and 1. 

The gain (G) indicates how much the spectrum of x has veen amplified to 

approximate that component of y. 

(10) G,,(0) =| fy(0)|/f.(0) 

This expression can clearly never be negative. However, if it is small, it indicates 

that at frequency @, x has little effect on y. 

The phase (PH) is a measure of the timing between the series. It is measured 

in the fraction of a cycle that y leads x. 

1 —Im (f,,(0 
(11) PH(6) = . arctan Gee, 

where Im and Re are the imaginary and real parts of the cross spectrum.* There is 

a natural ambiguity about the phase since adding or subtracting 1 whole cycle 

from an angle will not change its tangent. The phase is known only up to adding or 

subtracting an integer and therefore even the lead-lag relation is not known for 

sure. The plot of the phase is designed to emphasize this fact. It is possible to 

combine the phase and the gain in a simple expression 

(12) fy(0)/f.(0) = G,(0) @ oP 

Two other potentially useful measures of the cross spectrum are its amp- 

litude, which is merely its absolute value, and its time lag. The latter describes the 

phase in terms of the number of periods y leads x rather than the fraction of a 

cycle. Although this seems like a useful measure, the natural ambiguity of the 

phase also makes the time lag ambiguous and difficult to interpret. This may not be 

the case at low frequencies, where these difficulties are less likely to be important. 

* The appropriate quadrant for PH is chosen on the basis of the signs of the real and imaginary 
components of the cross spectrum. 
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A natural and very general way for economists to think about the relations 

between two time series is in terms of a bivariate distributed lag model, such as 

(13) y= L water 
J=P 

This is often rewritten in terms of the lag operator L as 

P ' . 
(14) y= ) wL’x,+u, = w(L)x,+ €, 

i=p 

where, for generality, leads as well as lags have been allowed and L™ is 

interpreted as a lead operator. The same techniques required for equations (5) 

and (6), establish frequency domain interpretations of equation (14). 

Lemma 2: If y is generated by a distributed lag model 

y=w(L)x+e 

where x and « are uncorrelated covariance stationary processes, then 

(15) fey(0) = w(z~') f,(8), 

and 

(16) f,(0) =|w(z))’f.(0) + f.(8) 

where z = e° 7”. 

Notice from (16) that the variance of y is broken into two parts: one which is 

the variation due to x modified by the lag distribution and the other due to the 

disturbance. Equation (15) shows that f,,/f, is an estimator of w(z) which is just a 

function of the lag coefficients. Once w(z) is known, all the lag coefficients can be 

found by merely taking the inverse Fourier transform. This is the basis of a very 

useful type of distributed lag estimation which is often called Hannan’s inefficient 

method.* 

Now consider running a regression of one component of y against the same 

frequency component of x. The regression coefficient would be the ratio of the 

covariance of x and y to the variance of x. In spectral notation this would be just 

f.y(0)/f,(0). The R-squared of this regression is one minus the unexplained 

variance over the total variance. Substituting (15) into equation (16) demonstrates 

that the coherence squared is just the R-squared of this regression. 

Similazly, from (12), the regression coefficient is the gain times e *”""’. The 

regression coefficient is just the gain if there is no time lag between the indepen- 

dent and dependent variables. If there is a time lag, the gain can be interpreted as 

the regression coefficient if the series were lagged just the right amount to 

eliminate any phase shift, and the phase is the angle by which they would have to 

be shifted (or the phase over the frequency is the time shift which is necessary). As 

a particular example, if the series are negatively related, the gain will still be 

positive but the phase will be 0.5. 

* It is inefficient because it does not use the properties of the disturbance to construct an estimator 
with the smallest possible variance. It too is available in TROLL. 
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In summary, the coherence squared, the gain and the phase at a particular 

frequency can be interpreted in terms of a regression using only data at that 

frequency. The coherence squared is the R’, the gain is the regression coefficient 

once any delay has been eliminated, and the phase is the angular shift needed to 

make this Gelay. 

From Lemma 2 it is simple to plot the gain and phase corresponding to any 

particular time domain distributed iag model. A variety of these plots, often called 

Bode plots, are presented in Figure 3. In the balance of this section these figures 

will be analyzed for salient characteristics; and in Section 5 these are used to help 

specify a distributed lag model. 

. Simple Static Model 

w(L) = Wo 

w(z~') = Wo 

G(8) = Wo 

PH(6) = 0 

G 

Wo 

0 
4 

2. Simple Delay 

w(0) = w,L! 

w(z~") = we 2H 

G(8) = Wj 

PH(6) = —j0 

G 

my 

3 
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Wo + W, 

(17) 

3. One Period Lag 

wW(L)=Wo+w,L wo, w, >0 

w(z~ ‘) = Wo + w,e7"l@ 

G(0) = ./w 2 + wi + 2w, wo cos 220 

PH(@) = arctan w, sin 270 
Wo + w, cos 2x0 

wo —w| 

4. Geometric Lag 
w(L) = Wo 

=a 

0<w,<! 

Wo 
= we 218 w(z~") = 

G(0) = wo./1 + w? — 2w, cos 2x0 

PH(@) = arctan [ —nesin 2d 
a 1 — w, cos 20 

Wo 
l-—w, 

Wo 
l+w, 

6 
4 

w(z ')=w, 
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The simplest models are the static model described in (1) and the delay model 

shown in (2). Each has only one w; # 0; thus 

The gain of these models is therefore constant and equal to w, and the phase plot 

will be a straight line with siope —j. The (negative) slope of this line is just the delay 

of the dependen* variable behind the independent variable. For any lag distribu- 

tion, the mean lag is the slope of the phase at zero frequency (as long as the gain is 

non-zero). For the delay model, the slope is everywhere equal to the mean lag. 



5. First Differences 

wWL)=wWo—wW,L wow, >0 PH 

IF 
w(z~") = wo — wien 

G(0) = ./we + wi — 2wow, cos 2x0 
te Wo=Wy 

PH(@) = arctan — sin 2x0 Wo > Wy; 
Wo — W, cos 220 4 
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6. Four Period Differences 

w(L) = wo(1 — L*) PH 

= l b ~ ~ w(z 1) an wo(1 ae e&si?) ~~ he 

_ \ \ 
G(0) = wo ./2 — 2cos (826) 

4 5 

1 — cos 8x0 

: | Secale 

anf i wos 

PH(@) = arctan ey 
be 

be Re 

Models (3) and (4) include current and one lagged independent variable, and 

a lagged dependent variable, respectively. These very common types of lag 

distributions are used to model processes where the dependent variable only 

adjusts partially to a change in the independent variable in the current period. In 

model (3) the adjustment is completed in the second period, while in model (4) it 

continues forever but with geometrically declining effect. 

In both of these cases, the gain is largest at low frequencies and then falls at 

higher frequencies. At zero frequency z = 1 and the gain is the sum of the lag 

coefficients or the long run propensity. Since z cannot exceed one, the peak of the 
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gain function will always be at zero frequency if all the lag weights are positive. 

The phase will be zero at zero frequency and then will decline with a slope equal to 

(minus) the mean lag. For more complicated models with all positive lag weights, 

the phase may change sign for higher frequencies; nevertheless, the initial slope 

will be the mean lag. 

The final two models have a different character. In these cases, the dependent 

variable is influenced by the rate of change of the independent variable; the lag 

weights change sign. The peak in the gain function can now occur at any 

frequency, but it will generally not be at zero. In fact, if the sum of the lag weights 

is zero as with first differences, the gain will be zero at the beginning. Notice the 

interesting double peak associated with a four period difference. A twelve period 

difference would of course have six peaks and a three period difference would 

have one and a half (the second peak would occur at @ = 0.5). 

The phase plots can have both positive and negative portions. If the gain is 

non-zero at the origin, then the slope of the phase at the origin will be algebraically 

equal to (minus) the mean lag of the distribution. But, the mean lag is not a useful 

measure when the lag weights are of different signs. In particular, a negative mean 

lag does not imply a lead. 

Both plots can be constructed for many other lag distributions either by hand 

or using the computer. A simple corollary of Lemma 2 will make it easy to 

combine these simple forms into more complicated lag distributions. 

Corollary. If a lag distribution can be written as the product of two lag 

distributions such as 

w(L)=u(L)v(L), 

then 

G,,(0) = G,,(6)G,, (6) 

PH,,(6) = PH,,(@) + PH, (6). 

The rule for combining lag distributions is that the gains multiply and the 

phases add. A special case of this is familiar from the time domain: the product of 

two lag distributions will have a long run propensity which is the product of the 

separate propensities and a mean lag which is the sum. 

As an example, consider the geometric form when the independent variable 

is lagged two periods. This is the product of a two period delay and a lagged 

dependent variable. Thus the gain is the product of a constant and the geometric 

gain, while the phase is the sum of the constant slope of the delay and the variation 

shown for the geometric. 

4. SPECTRUM ESTIMATION 

There are several distinct methods for estimating spectra and cross-spectra. 

The advantages and disadvantages of each have been extensively discussed. In 

particular, see Cooley, Lewis, and Welch [1] and Parzen [14]. Since the rediscov- 

ery of the fast Fourier transform, computational considerations suggest that 

periodogram averaging may be the most efficient method for spectrum estimation. 

In addition, it is conceptually simplest and leads to great versatility in the 
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estimation procedures. Finally, the usefulness of the periodogram in regression 

and various test procedures makes it sensible to compute this as a first step. See 

also Jones [11] and Tick [15]. 

The periodogram is defined as the square of the absolute value of the Fourier 

transform of the data series at each frequency, all divided by m, the number of 

observations. The formula for the periodogram is 

4 m-1 = 
27itO 

y xe i 
t=0 

(18) 1.(6) == 

where 0,=j/m and j=0, 1, 2, ...,m. This quantity is an estimator of the 

spectrum, but it is not a very good one. The expected value of the periodogram is 

m—1 (m—|v}) 

(19) E(I,(6@))= YL ——y(v)e?"™. 
p=—m+1 m 

For large values of m this estimator is an unbiased estimator of the spectrum, since 

y(v) is small for large v. Unfortunately, it is not a consistent estimator since the 

variance does not decrease as the sample approaches infinity. In fact, the 

periodogram at each frequency is approximately proportional to a chi squared 

random variable with two degrees of freedom, regardless of the number of 

observations. An intuitive explanation for this unusual circumstance is that as the 

sample becomes larger, more and more frequency points are estimated rather 

than obtaining better estimates of a fixed number of parameters. This explanation 

also suggests the solution. The average of a few neighboring points should give a 

better estimate of the spectrum in that neighborhood. Thus smoothing procedures 

must be used to obtain consistent spectrum estimators. 

Two averaging or smoothing procedures, called “‘windows”’, are commonly 

used with periodogram averaging. A rectangular moving average gives the 

minimum variance for smoothing over a flat spectrum using only a certain number 

of points. However, when there are peaks in the spectrum, the rectangular 

window will lead to considerable bias and broadening of the peaks. An alternative 

window is a triangular window which gives the spectrum a much smoother 

appearance and is often better at describing the shape of peaks. 

The width of the window is an important parameter in the estimation. The 

wider the window, the smaller is the variance of the resulting estimate; yet, the 

wider the window, the more serious may be the bias of smoothing over non- 

smooth portions of the spectrum. Two measures of width can be used to describe 

the windows, the bandwidth and the range. The bandwidth is the half-power width 

of the window. It is measured in frequency units, i.e., it is a fractional number of 

cycles per period. If, for example, the bandwidth is specified as 0.1, there will be 

five separate “bands” since the frequencies range from 0 to 0.5. For many 

purposes, spectral estimates separated by more than one bandwidth are consi- 

dered to be independent. 

The second measure is the range. This is merely the number of spectral points 

used in each moving average; it gives the separation between which two points are 

known to be completely independent. If the effective sample is 200 observations 

(implying 100 points in the spectrum) and the range is 20, there will be five 
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separate window widths in the estimation. A sensible value for the range is Vm, 

where m is the number of observations. 

Near the endpoints of the spectrum, the smoothing procedures must be 

modified. One choice is to decrease the range so that the window does not overlap 

the endpoints. Because the variance increases as the window becomes natrower, 

the variance increases markedly at very low or very high frequencies and one must 

be very cautious in interpreting low frequency peaks or troughs. 

An alternative endpoint procedure is to keep the range constant but take 

advantage of the symmetry properties of the spectrum. The smoothing windows 

will “wrap” around the endpoints of the spectrum since the spectrum at +6 is just 

the same as at —@. This method will give smaller variances but bigger biases than 

the first method. 

The spectral estimator resulting from smoothing the periodogram is approxi- 

mately proportional to another chi squared random variable, this time with more 

degrees of freedom. The equivalent degrees of freedom are equal to 

(20) E.D.F.=B-m 

where B is the bandwidth. This allows computation of a confidence interval for the 

spectrum. On the spectral plot, a 95 percent confidence interval can be con- 

structed for each frequency separately. 

Estimates of the cross spectrum are accomplished in exactly the same 

manner. The finite Fourier transform of one series is multiplied by the complex 

conjugate of the Fourier transform of the other to form the cross periodogram. 

The real and complex parts of this are then smoothed individually, just as for the 

periodogram. The sampling distributions for the various measures derived from 

the cross spectrum also depend only on the equivalent degrees of freedom of the 

estimate. With the coherence plot, the critical point for a 5 percent test of the 

hypothesis of zero coherence can be calculated. Approximate 50 percent confi- 

dence intervals for the gain can be plotted with the output. These depend on the 

sample coherence; where the coherence is small, the confidence interval is large. 

When using a wide window, peaks tend to be spread out. For many series we 

know a priori where these peaks will be, either because the series is typical in 

having strong low frequencies or because it has important seasonality. In these 

cases ““prewhitening” is often recommended. This amounts to dividing the raw 

periodogram by the expected or typical shape, smoothing this “‘prewhitened” 

periodogram which no longer has the large peaks, and then “recoloring” by 

multiplying by the typical spectral shape. A seasonal and non-seasonal version of 

the prewhitening filter might be important. Prewhitening can be done in connec- 

tion with either spectrum or cross spectrum estimation. 

A second characteristic which is likely to make the smoothing procedure 

badly biased in cross spectral estimation is misalignment of the series. When one 

series lags another by several periods, there is a peak in the cross covariance 

function which is not at zero. This leads to a regular oscillation in the amplitude of 

the cross periodogram. Smoothing this will obscure this particular bit of informa- 

tion as well as distorting other results. The recommended procedure is to first 

divide the cross periodogram by an aligning series, smooth the cross periodogram, 

and then remultiply it by the aligning series. To construct the alignment series one 
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first computes the inverse Fourier transform of the cross periodogram which is 

exactly the cross covariance function. This could have been computed from the 

data directly, but such a method is apparently inferior to the computation of 

Fourier and inverse Fourier transforms. Searching the cross covariance function 

for the maximum yields the information needed to construct the alignment series. 

If this procedure were applied to the estimate of the spectrum or a cross spectrum 

which was already aligned, the maximum covariance would be the zeroth estimate 

and thus the alignment series would be unity and would have no effect. 

The Fourier transform algorithm used in these computations is the Cooley- 

Tukey fast Fourier trahsform. In its basic form it expects a series with 2” elements 

and thus each series is padded out to this length with zeros (the mean). The 

number of spectral points estimated is therefore 2""' which are evenly spaced 

between the frequencies 0 and 1/2 cycle per basic time unit of the data. 

Frequently it is desirable to estimate the spectrum at particular points or not to 

pad with zeros. In this case, it is possible to pick an integer so that the series is 

padded to N = 2°r. Choosing r = 3, for example, would insure factors of 12 which 

would be required in order to have exact seasonal points with monthly data. This 

variation can make substantial difference in the results when there is strong 

seasonality. 

5. THE Use OF SPECTRA IN SPECIFYING MODELS 

This paper has shown that the time domain and the frequency domain are just 

two different ways of looking at the same models. The estimation procedures are, 

however, dramatically different, and it is here that the two techniques can 

fruitfully be combined. In order to estimate an ARMA or a distributed lag model, 

using time domain methods, one must first specify (or “identify” as the statisti- 

cians say) the form of the model. The process of specification usually involves a 

series of trial forms and statistical tests coupled with a liberal amount of good 

judgment. The judgment is particularly important since the tests become of 

questionable validity when applied in sequence. 

On the other hand, the spectral methods do not require the specification of 

the model. The estimation procedure is independent of the form of the model. 

This is clearly an advantage since the first difficult step can be avoided; however, it 

is also a disadvantage, since in general, a very large number of parameters must be 

estimated and will have relatively wide confidence intervals. 

The situation is exactly comparable with the choice of parametric or non- 

parametric statistical methods. If the parameterization is correct, the parametric 

procedure is far more efficient than the non-parametric procedure. However, if 

the parameterization is incorrect, only the non-parametric method will give a 

valid result. The user of non-parametric statistics gives up some efficiency for 

insurance against a wrong parameterization. 

This discussion suggests a two step procedure for the analysis of stochastic 

processes. Use the spectral methods to aid in the specification of time domain 

models, and then use standard time domain methods to estimate them, thereby 

avoiding the trial and error search for an appropriate model. This is an approach 

which has been used by engineers for many years but has not had wide acceptance 
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by economists. It will be illustrated by an economic model of housing expenditures 

in the U.S. 

In Figure 4, quarterly housing expenditures and mortgage rates are plotted 

from 1950 through 1974. The two series are apparently non-stationary and 

growing exponentially. They appear to be negatively correlated as expected since 

higher interest rates generally discourage housing. With careful attention to the 

timing, it may be possible to see that declines in housing follow any interest rate 

increase with a lag. Questions of particular interest in this analysis might be (1) the 

timing of interest rate effects on housing and (2) whether the housing market 

overshoots so that the lag weights change sign for long lags. This is presumably the 

behavior of other types of investment as implied by the accelerator and neoclassi- 

cal models of investment. 

To calculate the cross spectrum of housing with interest rates, both series are 

expressed as the first difference of the logarithms, that is, the quarterly growth 

rates. The gain and the phase as well as the summary statistics from the one line 

TROLL command requesting this output are shown in Figure 5. The triangular 

smoothing window is used with the “wrap around” endpoint option and the 

bandwidth is set (by default) at 0.079. Notice that the rate is multiplied by minus 

one so that the phase will be centered at 0 rather than 0.5, since interest rates and 

housing starts are negatively related. 

12.0 80 

10.0 60 fh 
5 rate 

8.0 40 4 

a housing housing 
4 expenditures - 

q f\— 6.0 20 
% i Oe 

r rp —— mortgage interest rates 

40 0 . . . 
1 ee. l 1 1 1 | 1 1 l 

1946 1950 1954 1958 1962 1966 1970 1974 1978 

Figure4 Housing data 

Time bounds: 1946 Ist to 1974 4th. Data names: Rate Hous. 

The task of choosing a time domain specification for a distributed lag model is 

now to compare the theoretical Bode plots in Figure 3 with the observed gain and 

phase in Figure 5. It is clear that none of the theoretical plots are close approxima- 

tions of the estimated gain and phase, but this is to be expected. Some features are, 

however, recognizable. The gain begins quite small and then rises to a peak at a 
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Figure5 Gain and phase between housing and interest rates 

period of about 10 quarters where the interest rate elasticity is almost 2. The 

second most important peak is at approximately 2 quarters per cycle. These look 

roughly like the four quarter first difference except that the second peak is at too 

high a frequency and is too small. The phase looks much like a one quarter delay 

for the first half of the spectrum but then deviates from this in the second half. 
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To synthesize a close approximation to Figure 5, one must remember the 

rules for combining lag distributions. If two lag distributions are multiplied 

together, the gains are multiplied and the phases are added. Multiplying a 

geometric distribution times a four quarter first difference will increase the gain of 

the first peak relative to the second. If a three quarter difference is used, then the 

second peak will occur at 0.5 which is closer to the observed maximum, especially 

recalling that the confidence intervals at the endpoints are very large. Finally, the 

gain at low frequencies is not exactly zero, so probably the coefficients on the third 

differences should be allowed to differ. In summary, a model with one lagged 

dependent variable and a current and three period lagged independent variable 

appears capable of producing approximately the observed gain pattern. 

If this model is used, the phase pattern would be the sum of a negative 

contr“bution, due to the lagged dependent variable, and a positive component, 

due to the three period lag. Altogether, this is unlikely to produce the appropriate 

decline in the phase with frequency which is observed. An additional delay will not 

alter the gain since it has gain of unity, but will add a linearly declining phase to the 

others. This line of reasoning leads to consideration of the time domain model: 

(21) (1—woL)H =(w,+w2L*)(L)R 

where H and R are the first differences of the logs of housing and interest rates. 

This mode! can be estimated directly with ordinary least squares.* The result 

is given in Table 1, along with the gain and phase plots which correspond to this set 

of parameters. The pictures are rather close to the calculated spectra and the time 

domain regression statistics are generally good with significant t-statistics. The 

change of sign in the regression coefficients which was anticipated for the lagged 

independent variable does occur and, as expected, the lagged coefficient is not as 

large as the current one. 

To examine whether this identification procedure led to a particularly good 

model, both simpler and more complicated versions were estimated. Two naive 

ways to generate lag distributions are to successively increase the number of 

lagged independent or lagged dependent variables. Three models are shown in 

Table 1 with their associated gain and phase plots. One has the current and three 

quarters lag on interest rates with one lagged dependent variable, a second has 

three lagged dependent variables but only the current independent variable, and 

the third is the most general model with three lagged dependent variables and the 

current and four quarters of lagged independent variables. Notice that the first 

and second of these alternative models fail to reproduce the second peak of the 

gain function. The third model does show roughly the right shape, but it does so by 

using 9 parameters rather than the 4 required by the spectrally specified model. 

Furthermore, F tests for the restrictions implied by the spectral model are 

invariably less than one (even testing against alternative 1 when R_, is included) 

and thus the restrictions are easily accepted. 

In conclusion, the specification suggested by spectral analysis is a good 

specification which might have eventually been reached by time domain tech- 

niques after much trial and error. Of many models tried, it has almost the highest 

* Least squares will be consistent only if the dynamic specification has eliminated serial correla- 
tion in the disturbance. A test of the hypothesis of white noise was accepted. 
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corrected R* and F tests supported the restrictions it imposed. The economic 

result is that there appears to be a one quarter delay before interest rates influerice 

housing, thereafter there is a geometrically declining effect. Eventually (one year 

later) there is a change in the direction of housing response as the market has 

presumably caught up to the desired capital stock. This is easily seen in the time 

domain but is also apparent in the frequency domain since the gain is small for low 

frequencies. 

This example lends credibility to the proposition that the use of both time and 

frequency domain techniques may enrich each and, in particular, that frequency 

domain methods may be very helpful in model specification. 

received April 1974 NBER and University of California, San Diego 

revised May 1975 

APPENDIX 

Lemma A.1: If x is a stochastic process generated by the model 

A(L)x, = B(L)e, 

where €, is a series of independent identically distributed random variables with 

variance a, and A(L) has all roots outside the unit circle, then the spectrum of x 

is given by 

f.(0) = 07|B(z)/?/|A(z)/? 

(—27i@) where z =e 

Proof: Consider the moving average process 

q 
x,= D dye,-; 

j=0 

where the ¢ are all independent. Then 

q q 
y(s) = Ex,4,X; =F bP b€14+5-; > by &,- k 

j=0 k=0 

where the expectation on the right only has non-zero values where —k = s —j and 

0=k =q. Therefore for g=s=0 

oe 
y(s)=o" ¥ bb. 

j=s 

and is 0 otherwise. The spectrum of x is defined using equation (5) and the 

symmetry of y by 

s=-cO = 
f(@)= y y(s)z*= y y(s)(z* +z ~*)+ (0) 

= s=1 

a s . —S\ 2 4 2 
=o" 2 D bbj_.(z°+z*)+a° > bj 

s=lj=s j=0 
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which can be written 

q {2 
Y jz’ 
j=0 

f(0)=07 ¥ bz! & hz * =o? 
k=0 j=0 

There is nothing in this proof which requires that q be finite. Since every stable 

ARMA process has a (possibly infinite dimensional) moving average representa- 

tion, the result is true for any ARMA process. 

Lemma A.2: If y is generated by a distributed lag model 

y=w(L)x+e 

where x and « are uncorrelated covariance stationary processes, then 

fary() = w(z~") f,(0) 

and 

,(0)=|w(z)Pf.(0) +f. (8) 

where z =e? 

Proof: Without loss of generality take both x and y to have mean zero 

Vey (8) = Exi+sy1 

eh EY WjX1—jXt+s +EX,,5€; 
i 

Yxy(s) =z wyy(s +j) 

fy(0)= LY vey(s)z*=LY wy(st+j)z°z7 

=¥ wz f,(6) 

fy(@) = w(z~") f,(8). 

And 

¥,(s) = Ey, .sy, 

= E(X wXe4s—j + E145) WeXr—k + &1) 

W()=L2 WW Yx(S —j +k) + y-(s) 

f(9)=2 Yy(s)z* 

=2EE wimuye(s—j+k)2 92 “2! +¥ Ye(s)z° 

= wz’ Y wz “f,(0) +f. (0) 

f,(0) =|w(z)/?f.(0) + f.(8). 
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