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RECURSIVE ESTIMATION ALGORITHMS FOR ECONOMIC 

RESEARCH 

BY Wo. CRAIG RIDDELL* 

Recursive estimation algorithms can be used to update estimates to account for new data. Such algorithms 
can also be used to approve the robustness of the model within the sample period. Both single and multiple 
equation systems are examined. 

I. INTRODUCTION 

> «66 
““On-line’’, “recursive’’ and “‘sequential”’ estimation are terms used to describe 

procedures whereby parameter estimates for the current period’ are calculated 

from current data and previous estimates only. These methods of updating estimates 

as additional data arrives have considerable computational advantages over the 

standard practice of re-estimation using the entire (larger) data set. In addition 

to computational savings, storage requirements can be reduced as past data need 

not be retained. This factor is crucial in real-time estimation ; for example, orbital 

determination for spacecraft (see, e.g. [3]). Here, storage limitations of on board 

computers combined with frequently arriving data and the need for estimates 

that fully reflect the most recently collected observations combine to make 

recursive estimation necessary. 

While there may be less motivation for the use of these methods in economic 

and social research, their potential should not be ignored. In addition to providing 

an inexpensive method of updating estimates to account for new data, these 

algorithms can also be useful in appraising the robustness of the model within 

the sample period. There is little extra cost involved in obtaining estimates for 

t = T*, T* + 1,... T over that for t = T alone. The results may point to a need 

for re-specification of the (assumed fixed parameter) model or adoption of a 

time-varying parameter model. This type of “stability analysis’’ has been used, 

for example, by Fair ([12], Ch. 12) who re-estimates each equation of his model 

for samples of 33 to 50 observations inclusive and by Goldfeld [14] who re-estimates 

a quarterly model at annual intervals.” 

Section II of the paper provides a survey of algorithms for single equation 

models. Extensions to multiple equation systems are considered in Section ITI. 

II. SINGLE EQUATION MODELS 

While Carl Gauss [13] gave the formulae applicable to least squares when an 

additional observation is received, recursive algorithms date from the papers of 

Sherman and Morrison [24], [25], Plackett [22], and Bartlett [5]. These authors 

derived matrix identities useful in calculating the inverse of a matrix B from the 

' While the discussion relates to time series data, all results are applicable to cross-section data. 
2 As will be seen, recursive algorithms are not yet available.for the error specifications employed 

by these authors. 
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inverse of A when B results from a specified change in A. These results are collec- 

tively known as the “matrix inversion lemma’’ (Sage and Melsa [23], Appendix 

A). One such result is 

Ml. BU’ =(A + UZV’)"' =A! — A“'U(E-! + ‘V'A-'U)"' VAT! 

where A and © are square, U and V are rectangular and the necessary inverses 

are assumed to exist. Computational savings result when the order of (£[~' + 

V'A~'U) is considerably less than that of B. For example, the special case 

A-'‘uv'A~! 
M2. B-'=(A + uw)! = A~' —- ——_—_— 

( 1+vA-‘u 

where u and v are column vectors requires only the inversion of a scalar. 

(a) The Classical Linear Model 

Consider the familiar model 

WT) = X78 + u(T) (1) 

where 

y(T) — (y,,.---)r); 

Xr = (x,,-.--X7); a T by K matrix. 

a T by 1 vector 

Then under the assumptions 

Al. E[u(T)] =0 

A2. Cov [u(T)] = 071, 

A3. X, is anon-stochastic matrix of rank K 

the BLUE is 

(2) B(T) = (X'pX 7)" !X5y(T). 

At time (T + 1) the additional observations (y;,,,x74,) are received. Applying 

M2 gives the updated covariance matrix of the estimates 

(3) (X741:X1r41)"' = (X7X;7 + Xr41X741) * 

(X7X7)~ 'XT+ X74 (X7X7)~ ' 

d 
= (X7X7)"' - 

where 

(4) de 1 + xp, (X7X7) X44. 

Using (3) the OLS recursive algorithm can be obtained: 

(5) A(T + 1) = PT) + kro lyre — X74 1K) 

where 

eS OP es (6) LE, TX 7) T+ 

d 
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The updating formula is in “differential correction” form, the correction term 

being proportional to the prediction error. The vector of proportionality k,, , is 

often termed the “smoothing vector” in the engineering and control literature. 

The residual sum of squares can be updated (Duncan and Jones [11]): 

i 2 

(7) S(T +1) = (7) + UT eu 

The OLS recursive estimation procedure is summarized below. At the beginning 

of each step, the following are available in storage: 

A(T) (7K: BD 

(K by 1) (K by K) (Scalar). 

Upon receipt of x;,, (1 by K) and y,;,, (scalar), d is calculated from (4), (X;,, x 

Xr4,)"' from (3), AT + 1) from (5), and S(T + 1) from (7). If the additional 

assumption of normally distributed errors is made, both t and F statistics can 

be calculated at each stage. The coefficient of multiple determination can be 

obtained by retaining the scalars y,y,(T) and jy; in storage and using 

' T ‘ 
(8) Va¥q(T + 1) = yyy,(T) + [a or., = yr) 

r 
5 a  uT 
Vr pM) 

y,(T) = KT) — ez 

and e is a(T by 1) vector of unit elements. Then 

S(T +1 (9) es 2l- Amat 
y¥,¥,(T + 1) 

The formulae for an additional group of observations (say n) are derived in 

a similar manner. Using the notation 

T X 

wren OL X= [| 

then 

(10) A(T + n) = BT) + Krs,Lyn) — X,A(T)) 

(11) Kran = (X7Xq) XI, + X(X7Xq) 1X). 

The obvious disadvantage of this procedure is the need for inversion of a matrix 

of order n at each stage. Generally it will be simpler to add observations one at a 

time even when a listing of all the revised estimates is not desired. 

The OLS recursive algorithms presented above assume that the normal 

equations 

X'Xf = X'y 
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are solved by forming the inverse of X'X. This matrix, however, may be ill- 

conditioned and therefore overly influenced by roundoff errors. Alternative 

methods recommended by numerical analysts utilize decompositions of either X 

or X’X. Detaiis of these, together with updating procedures are available in 

Golub [15] and Chambers [10). 

In some circumstances, A3 is not valid and is therefore relaxed to A3’. X ; is 

a non-stochastic matrix of rank p < K. Under this more general assumption, the 

least squares estimate is 

(12) A(T) = XT) 

where A* denotes the (unique) Moore—Penrose inverse of A. That is, 

AA*A=A 

A* AA* = A* 

A*Aand AA* are symmetric. 

The updating formulae are obtained by using the following theorem (Greville 

[16]): 

X 
Xrai= | a | 

Xr+1 

Let 

Then 

M3. X74, = [I — kro ixre XT. kr41) 

where 

(Ig — Xt Xp)x741 

Xrai(l x = XeXe)Xr41 

XtXFT'xXr+1 
i3b k = —- th ise. 
an spe CN +7 PN nh 

(13a) Kras = if (I, — XtXq)x'r4, #0 

Combining (12) and M3 gives the familiar formula (5) where k;, , is now defined 

by either (13a) of (13b). When p = K, (13b) reduces to (6). 

Two extensions of the OLS updating procedure deserve mention. Jones [18] 

provides the appropriate formulae when only a subset of the regression coefficients 

are of interest. Albert and Sittler [2] obtain the recursive algorithm for estimation 

subject to a set of linear constraints. 

(b) The Generalized Linear Model 

In many circumstances, A2 is considered unduly restrictive and is replaced 

by 
A2’. Cov [u(T)] = o?V; 

where V; is a known positive definite matrix. V, is assumed below to be of full 

rank. The BLUE is the Aitken estimator 

(14) A(T) = (XV 5'X 7)" 'XpVz'yT). 
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The general recursive form of (14) has not been derived ; however, various authors 

have obtained recursive algorithms by suitably restricting the covariance matrix 

V,. Albert and Sittler [2] consider the case of heteroskedastic errors (ie. Vz = 

dg(o?,...07)) and Blum [7], [8] derives the algorithm appropriate when the 

error term obeys a pth order autoregressive process. Since it is desirable to have 

an algorithm useful for any choice of the covariance matrix, this is obtained 

below. Various special cases can then be examined. 

Since V; is positive definite, we can obtain a non-singular matrix H; such 

that 

(15) H,V,H; = I; 

where H, is lower triangular and can be generated recursively with respect to 

the index T. That is, 

6 "ae al 

Now (14) can be written as 

(17) A(T) = (GGy)~'G;2(T) 

where 

G,=H;,X;, 

2(t) = H;(T). 

Ori dirs teeacl ava bis ra iXrt+hxpei} Lore 

3 2(T) _ | oT) 

aE TES wep - ae o ‘rape 

The covariance matrix of the estimates is updated by applying M2 

(GrGr)"'8'r41817+1(GrG~)"' 

1 + g74s(G7Gr) "e741 

and the generalized least squares recursive algorithm is 

(19) (Gr41:Grs1)' = (G;G;)"' a 

P (GrGz)" g74,[2r+1 — 81+1A(T)] 
(20) (T + 1) = f(T) + a , 

P p 1 + g74(G7Gr) ‘g7+; 

While implementation of (19) and (20) is computationally efficient relative to 

re-estimation, storage requirements are greater than for OLS as calculation of 

r+, and z;,, requires past data. For the case of heteroskedastic errors this 

difficulty does not arise as h;, , is the null vector and h = 1/o,, ,. Thus 

(G;Gy)" 'X74i1Dr+1 ye x7+,:A(T)] 

OF41 + Xr4(G7Gz) x74 
(21) A(T + 1) = f(T) + 
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Md 

when the error term obeys a pth order autoregressive process, the last p observa- 

tions are required in storage. For illustrative purposes, the case p = 1 is considered 

below. Writing u, = au,_, + &, in matrix form gives u(T) = R,e(T), where 

(1 bie a2)'/2 

—€ 

Therefore 

Z74+1 = Yr+i1 — “Yr 

are used in (19) and (20). 

The procedure for moving average errors is derived in a similar fashion. 

However, computational requirements will usually be greater than those for 

auto-regressive errors. This follows from the fact that the lower triangular portion 

of H; will, in general, not contain zero elements. Thus X; and »(T) may be 

required in storage in order to calculate g;,, and z;,,. This burden can be 

reduced considerably for those cases in which a simple pattern links the vectors 

hy and h;, ,. In these circumstances, h;, , X ; can be obtained from h;X, which 

has already been calculated. 

For a large number of economic applications, the covariance matrix V; is 

not known and must therefore be estimated. Recursive estimation procedures are 

not yet available for these cases. 

III. MULTIPLE EQUATION MODELS 

In this section, the feasibility of recursively estimating parameters of a system 

of equations is examined. For previous literature, see Odell and Lewis [21] who 

consider a specification encountered infrequently in economics. Two familiar 

specifications are examined here. 

(a) “Seemingly Unrelated’’ Regressions 

Consider the m equation system 

(22) Y=XB+U 

where Y is mT by 1, X = dg(X,,...X,,) is mT by K. 
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_ we ay AY - -e . 

Ay 

it is assumed that 

E(U) =0 

Cov(U) = Z@I, 

X is a non-stochastic matrix of rank K. Denoting the augmented data at time 

(T + 1) by 

Ly te 

where y is m by 1, x is m by K, block diagonal, then the updating formulae can 

be obtained as: 

(23) (Gp 4,Gr41)7' = (GyGy)"' — (GyGz)~'x'D~'(GG_)~! 

and 

(24) A(T + 1) = P(T) + (GpGz)"'x'D~"[y — xP(T)] 

where 

G, =(L' @1,)X 

L<XL = I, 

and 

D= + x(G;G,)"'x’. 

The algorithm is computationally attractive, although it does involve inversion 

of the matrix D at each stage. For most applications, however, the contemporaneous 

covariance matrix = is not known and is estimated by applying OLS to each 

equation seriatum and using the OLS residuals to form 

* . 1 
2= padT) i{T)). 

While the diagonal elements of £ can be updated using (7), computation of the 

off-diagonal elements requires all past data. This limits the applicability of (24). 

(b) Two Stage Least Squares (TSLS) 

The first of m structural equations is written as 

(25) yilT) = Y,(T)By + XAT), + u,(T) 

and the entire system as 

(26) Y(T) = Y(T)B* + X(T)C* + U(T) 

where Y,, X,, Y, X have m,, G,, m, G rows respectively. The discussion of the 

TSLS estimator is often cast in intuitively appealing terms by considering the 

first stage as that of “purging” the included endogenous variables Y,(T) of their 

stochastic component, the second stage consisting of OLS estimation with the 
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adjusted data. In this terminology, the derivation of the TSLS recursive algorithm 

is complicated by the fact that not only do the new observations on the included 

endogenous variables require “‘purging”’ but also all of the previous observations 

must be “repurged”’ to take account of new data. 

The following notation will be employed: 

= Y¥,(T + 1) = (*), xer +1)= (*). xr +1)= (*") y V1 x xy 

The TSLS estimator at (T + 1) is given by 

BAT + 1) 

9,(T + 1) 

y\(T + y=| 

(27) 5,(T +1)= = Dr} Fri 

where 

X1Y, + Xi XX. + XX 

r es + yyx)(X'X + x’x)7 '(X'y,(T) + os 

sasay Xi y(T) + xy 

D ae + yx)(X'X + xx)” “xy, +x'y;) Y,X,+ doy 
T+1 => 

Using M2 it can be shown that 

w'w 
(28) Dray = Dy + 22 - 

(29) Frey = Fr + zy -— + 

where 

Zz = (y1,;) 

w = (e,0) 

e= y, — (XX) 'X’Y, 

e, = y — x(X'X)"'X'y,(T) 

d= 1 + x(X'X)"'x’ 

Again using the matrix inversion lemma M2, we obtain from (28) 

(D, + 2'z)~'ww(Dy + z’z)"! 

d — w(D; + 2'z)"'w’ 
Dri, = (Dr + 2'2z)"* + 

=} 

(30) = D;!-22 ((d — k)z'z — nw'w + jw’z + jz'w)D;' 

where the following scalars are defined : 

n=1+ zD;'z’ 

k = wD7'w’ 

j=wD;'z' 

a = n(d — k) + j?. 
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Combining (29) and (30) and noting that 

ea- w6,(T) =y- 26,(T) 

gives the algorithm for updating the TSLS estimator: 

(31) 5(T + 1) = 8,(T) + Dz (a,z + aw) [y — 26,(T)] 

where 

d—k+j j-—n 
“4, = — % t= 

a a 

The TSLS estimator can therefore be revised without any need for matrix 

inversion or storage of past data. The scalar d is used to update estimates in each 

equation. The other scalars are easily calculated from the vectors D;'z’ and 

D; '‘w’. Calculation of the 'atter vector is simplified by noting that only m, elements 

are non-zero. In addition to D>’, the matrix (X’X)~ 'X’Y, , which was calculated 

in obtaining D7 ', is required in storage. 

IV. CONCLUSIONS 

In addition to providing a survey of recursive estimation algorithms which 

are likely to be of interest to economists, this paper gives a general algorithm 

useful for revising Aitken estimates as new data arrives. Formulae for updating 

estimators in two leading multiple equation models were also obtained. 

Queen’s University, 

Kingston, Canada 
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