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PART O. INTRODUCTION

Several purposes are served by this paper. First, it describes the technical
underpinnings of a comprehensive system of single- and multiequation eCOno-
metric estimators--including the general k-c1ass, three stage least squares (3SLS),
instrumental variables (IV), limited and full information efficient instrumental
variabies(LIVE)and (FIVE), and as a byproduct of the latter,linearfull-information
maximum likelihood (FIML). t Design specifications for such estimators are,
ofcourse, not new; but the presentation given here is comprehensive and consistent,
and introduces computational techniques of numerical analysis that will indeed
be new and interesting to many econometricians.

• The aulhor wishes to express gratitude to the following people for their aid, comments, dis-
cussion, and thoughts: Gregory Chow, John Dennis, Mark Eisner, Gene Golub, Jerry Hausman,
Paul Holland. Dale Jorgenson, Edwin Kuh. Virginia Klema. Akxander Sarris. This research was
supported under NSF Grant GJ-1154X3 to the NBER.

11be k-class and IV estimators are given in both linear and nonlinear forms. This paper only
presents linear eslimation for 3SLS and FIML See Jorgenson and Laffont (elsewhere in this issue)
on nonlinear 3SLS. The basis for the nonlinear FIML facility will be Gregory Chow's worlc (1972, 1973).
Hausman (elsewhere in this iss'le) shows the relationship of iterated FIVE to linear FIML.
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The estimation techniques described here are currently being implemented 

as a software system called GREMLIN (Generalized Research Environment and 

Modeling Language for the Integrated Network); this work is being done at the 

NBER Computer Research Center for Economics and Management Science. 

Hence, a second purpose of this paper is to give users of GREMLIN more detailed 

computational specifications than can be provided by the usual software docu- 

mentation. In this regard it should be emphasized that the system is still being 

programmed and may differ in some details from the specifications given here; 

but this paper describes the basic design of the final product. 

Third, this paper may introduce to econometricians several useful com- 

putational techniques of modern numerical analysis—in particular, the QR 

decomposition of a matrix (effected stably and efficiently by the Householder 

transformation) and the singular value decomposition of a matrix. These concepts 

and their properties, which are discussed in some detail here, will hardly be new 

to those familiar with the literature of numerical analysis ; but they will be new to 

most econometricians, who until recently have not taken advantage of much 

relevant work done in that field. Both of these matrix decompositions produce 

efficient and stable computational schemes—efficient in the sense that the operation 

counts of many large econometric calculations can be reduced; and stable in the 

sense that the calculations are significantly less sensitive to the ill-conditioned 

(nearly singular) data matrices that are frequently encountered in econometric 

practice. In the work that follows, both the @R decomposition and the singular 

value decomposition are employed in widely differing situations, attesting to 

their power in practical computational contexts. It is also to be conjectured 

that the simplification of complex matrix expressions that frequently accompanies 

the application of these decompositions will show them to be powerful analytic 

tools. 

0.1. SCOPE OF THIS PAPER 

In Section 0.2, motivation will be offered for the development of the system 

described here. Then Part 1 treats the theory and calculations of the general 

k-class estimator. This discussion begins with preliminary lemmas on the QR 

decomposition and its application to ordinary least squares computations. This 

decomposition (effected by the Householder transformation) not only simplifies 

caiculations but also yields expressions devoid of moment matrices and the need 

for matrix inverses—both major sources of computational problems to be aveided 

where possible.” The decomposition is then applied to the linear k-class estimator, 

which is in turn adapted for nonlinear (in the parameters) estimation. 

Part 2 treats another important matrix decomposition, the singular value 

decomposition. This concept and its relation to pseudoinverses are developed 

and applied in the context of a general discussion of multicollinearity. Indeed, 

the singular value decomposition presents a means of calculation that remains 

stable even in the presence of perfect multicollinearity, and it also offers a promising 

? It is advantageous to retain normal equations in moment-matrix form for the k -class estimator, 
although the QR decomposition still plays a central role. A linear form is possible, but for k > 1, 
it involves the need for storing matrices of complex numbers and is not readily adaptable for the 
iterative nonlinear estimation techniques of Section 1.5 and Appendix A. 

552 



means of detecting multicollinearity and determining if any estimates can be 
salvaged in spite of it. 

Part 3 deals with the calculations of linear 3SLS;° here again, the QR de- 

composition simplifies the calculations. Part 4 examines estimation subject to 

linear constraints and presents a method employing the QR decomposition that 

may be applied directly to the moment matrices. This means of dealing with 

linear restrictions, which differs from the usual Lagrange technique or the method 

of substitution, is employed to allow efficient iteration for nonlinear estimation. 

Part 5 develops the computational procedures for several instrumental variables 

estimators. A method employing the QR decomposition is presented for the 

standard IV estimator, and its computational advantage is assessed. Further, 

several devices for constructing instruments through the use of principal com- 

ponents and/or preliminary regressions are developed (this draws heavily on 

the work of Kloek and Mennes (1960)). Finally, the resulting IV estimator is 

utilized to implement the Brundy—Jorgenson (1971) estimators LIVE and FIVE.* 

GREMLIN willalso include a general procedure for nonlinear full-information 

maximum likelihood estimates. The basis for the calculations to be employed 

are those developed by Gregory Chow (1972, 1973). 

0.2. BACKGROUND AND PERSPECTIVE 

The last two decades have witnessed extraordinary growth not only in the 

theory of econometrics but also in its practice and its recognition as an essential 

part of virtually every phase of economics. This growth has not ceased, yet as in 

most rapidly growing fields, as many questions have been created as answered. 

The onslaught of econometric creativity has left pockets of “rubble”’ that must be 

tidied up and put into their proper place. A principal portion of this rubble in 

econometric theory is ignorance of the small-sample properties of the single- 

and multiequation estimators that have been accepted to varying degrees over 

the years, based primarily upon large-sample considerations or other assumed 

properties that have little to do with the reality from which economic data derive. 

Similarly, in the area of econometric practice, such examples of rubble are easily 

given; indeed, in considering the degree to which economic theory lacks hard 

empirical verification, one readily realizes that rubble is more the rule than the 

exception. 

While there are many important reasons for our ignorance of smali-sample 

properties and our incomplete empirical knowledge of economic systems, there is 

one ingredient, so far absent, that would help advance the profession in both 

areas—namely, a widely available estimation system that includes all important 

econometric estimators and is consistent, flexible, and efficient. The need for such 

a system motivates this work. 

3 A procedure for nonlinear 3SLS is given by Jorgenson and Laffont elsewhere in this issue. 
* Jerry Hausman, elsewhere in this issue, shows the relation of iterated FIVE to linear full- 

information maximum likelihood. 
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Small-Sample Properties 

The most direct source of ignorance of the small-sample properties of many 

econometric estimators is, of course, the intractable quality of the mathematics 

describing them— a difficulty that often disappears as sample sizes become indefi- 

nitely large. In order to gain the needed small-sample information, work has been 

in two general directions: exact, or nearly exact, results are sought in those few 

cases that admit such analysis ; and Monte Carlo studies. 

Recent theoretical results show that some exact or nearly exact answers 

may be possible. Light on exact small-sample properties has been shed in papers 

by Basmann (1961, 1963), Richardson (1968), Sawa (1969), Marino and Sawa (1971), 

and Kadane (1971); but these results deal with special cases and do not admit of 

obvious generalization to more complex and more realistic cases. Additional 

information has been obtained on nearly exact properties of small-sample esti- 

mators by using approximate results that take second- and even higher-order 

terms into account in “returning” from the asymptotic to the finite world. This 

promising research is exemplified by Anderson (1972), Anderson and Sawa (1970, 

1973a, 1973b), and Nagar (1959). 

In contrast to the theoretical work just mentioned, much effort also has 

been devoted to the small-sample properties and comparative efficiencies of the 

various estimators through Monte Carlo studies. This computation-intensive 

approach is well exemplified in studies by Summers (1965), Cragg (1966, 1967), 

Griliches and Rao (1969), Quandt (1962, 1965), Nagar (1960) and Wagner (1958); 

and the basic results are well summarized in Johnston (1972). 

There is strong agreement in the general conclusion so far derived from both 

the theoretical and the Monte Carlo studies: namely, it all depends—just about 

anything can happen depending upon the circumstances. 

Such an agnostic conclusion sounds, perhaps, more pessimistic than it is in 

fact ; for in it there is at least the indication that in any given set of circumstances 

(at some specified point in the parameter and the data space), it may indeed be 

possible to derive meaningful small-sample conclusions for, and comparisons 

among, the various estimators. Since in the real world, not all circumstances 

are possible, and since informed limitations can be put on both the parameter and 

data space, theoretical analysis of important select regions of the parameter and 

data space may result in a less sterile conclusion than “anything can happen”’. 

This optimistic hope applies both to additional theoretical conclusions and to 

additional Monte Carlo results, for both tools seem most meaningfully applied 

when the model specification is narrowed and particularized. 

One likes to think that the efficacy of theoretical studies has been limited by 

inadequate mathematical tools in combination with a shortage of genius, and that 

someday something will happen to change all that. Unfortunately, such a solution 

is outside our control. On the other hand, some of the main limiting factors for 

Monte Carlo studies can be controlled, namely, 1) the high cost of conducting 

studies of sufficiently varying parameter and sample conditions to gain any real 

overall picture ;> 2) the lack of software estimation systems sufficiently compre- 

5 The initial version of GREMLIN may not fully exploit all computer capabilities required for 
truly efficient repetitive experiments ; however, later versions will be made expressiy with this in mind. 
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hensive to allow an individual investigator to make consistent comparisons of 

many different estimators, and 3) the unavailability of such software to the 

econometrics profession in general. The estimation facility planned here for the 

GREMLIN system will go a long way to relaxing these limitations. 

Model Estimation 

The role of large econometric models in furthering economic research and in 

aiding governmental and managerial policy decisions is perhaps best evidenced 

by the continuing use of many existing models, each highlighting some important 

area of theoretical or practical concern. Notable examples include the models of 

Klein—Goldberger (1955), the Brookings Institution (Duesenberry et al., 1965), 

the Wharton School, and MIT-FRB as well as the Michigan Model. The facility for 

building, estimating, and manipulating these models, however, is not widely 

available for econometric and managerial research. Whereas “regression packages” 

are universally available, systems which can execute all important full-system 

estimators upon large numbers of equations are available to but a few. 

In order, then, to advance knowledge of the small-sample properties of 

econometric estimators and to facilitate applied econometric research in general, 

it seems useful to provide a comprehensive, consistent system of the imporiant 

single- and multiequation estimators. Such a system should be implemented in 

a general research environment that includes facilties for data editing, model 

editing, and full-system simulation. The system should be generally available 

to the profession, should provide the power and flexibility needed to advance 

frontiers in all areas of applied econometric research, and should also provide 

the scope and efficiency needed for meaningful experimentation into the small- 

sample properties of the estimators. 

ParT 1. DousBie-k CLass CALCULATION 

1.0. INTRODUCTION 

This part focuses on the calculations of the double-k class estimators of a 

single equation containing both endogenous and exogenous regressors. This 

general class of estimators includes such well-known estimators as ordinary least 

squares (OLS), two-stage least squares (2SLS) and limited information maximum 

likelihood (LIML). 

First, in Section 1.0, the basic problem is defined, and notation that will 

be employed throughout the.paper is developed. Section 1.1 present; the pre- 

liminary theoretical results that underlie the first-stage calculations given in 

Section 1.2. The basis of these preliminary results is the QR decomposition of a 

matrix, an operation that reduces the solution of the OLS problem to one whose 

calculations are devoid of moment matrices and inverses. The simplifications 

afiorded by this decomposition will be frequently exploited in this paper. An 

outline of the final k-class computational procedure is given in Sections 1.3 and 1.4. 

Section 1.5 deals with estimation of equations that are nonlinear in the parameters, 

and Section 1.6 summarizes the computational steps. 
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Consider the multivariate equation 

(1.1) y=Yy+X Bre 

where y is T x 1, a vector of T observations on the normalized “dependent” 

variable; 

Yis T x G,a matrix of Tobservations on G endogenous variables included 

as regressors ; 

X, is T x K,, a matrix of T observations on K, included exogenous 

variables ; 

éis T x 1,a vector of stochastic disturbance terms; 

yisG x 1,a vector of G unknown parameters to be estimated ; and 

Bis K, x 1,a vector of K, unknown parameters to be estimated. 

In addition to these, define 

X, to be T x K,, a matrix of T observations on K, additional exogenous 

variables (the excluded exogenous variables); 

and define 

X =[X, X,],a T x K matrix with K = K, + K. 

The double-k class estimator of y and £ is a function of the data y, Y, X, and 

two parameters k, and k, that are determined in ways to be discussed later on. 

The basic form of the double-k class estimator (though not the form in which we 

shall calculate it) is 

(1.2)° | A Pa er k(Y'Y).x ly lal ©} eee, 

B, I we oe eR Xiy 

Were it not for the inclusion of the matrices (Y’Y), y and (Y‘y), y, (1.2) would 

simply be a (G + K,) square system of linear equations based on the moment 

matrices of y, Y, and X,. (Y’Y),,, however, depicts the inner product of those 

components of Y with themselves insofar as they are orthogonal to the space 

spanned by the columns of X. Quite simply, (Y’Y),, is the matrix of residual 

second moments resulting from regressing Y on X, and (Y’y),, is analogously 

defined.’ Thus, in calculating (1.2), the equivalent of a “first-stage” regression of 

Yon X is required to determine (Y’Y), y and (Y’y), y. 

© The notation (Y’Y),, and (Y’y),,, which is explained immediately below, is Ruble’s (1968), 
and will prove useful at a later stage. 

7 In projective terminology, any T vector Y can be decomposed into its orthogonal projection 
lying in the space spanned by the K columns of X, denoted Y), (Y parallel with the space spanned by X), 
and its orthogonal projector, denoted Y,,, so that Y = Yy, + Y,,. Since Y’),Y,y = 0, then Y’Y = 
(Y'Y))x + (Y’Y),y, the standard decomposition of the second moment of Yinto the “explained” and 
“unexplained (residual)” components. 
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It is a standard result of regression analysis that, when X is of full rank.(i.e., 

p(X) = K), 

(Y’Y)., = Y'Y — Y’X(X’X)"'X’Y, and 

(Y'y)ix = Y'y — Y'X(X'X) 'X’y. 

These calculations will not, however, be directly required. Indeed all of the sub- 

matrices in (1.2) may be obtained from-a single QR decomposition of an appro- 

priately expanded data matrix. This procedure has the following advantages : 

(1.3) 

1. It reduces significantly the sizes of the matrices for subsequent operations. 

2. The Householder transformations that produce the QR decomposition 

are somewhat faster than ordinary regression calculations and are very 

stable.® 

3. The calculation of (Y’Y),, and (Y’y),, can take place even when X is 

singular.° 

4. The relevant matrices for determining the LIML value of k are given almost 

gratis. 

We turn now, in Section 1.1, to some preliminary theoretical results that form 

the basis of the calculation procedure given in the Section 1.2. 

1.1. PRELIMINARY RESULTS 

The principal results for the method of calculation given here depend upon 

the QR decomposition of a matrix A, namely 

Lemma 1.la 

For every m x n matrix A (m > n) there exists an m x m orthogonal matrix 

O such that es ry 

where R isn x nand upper triangular and 0 is (m — n) x n. 

Lemma |1.la may be restated in another form that gives name to the QR 

decomposition. Let 0 = H with Q’ n x m. Then since 0’'0 A = A = OR, and 

conversely (since Q may always be augmented with orthogonal basis for the null 

space of A), we have 

Lemma 1.1b 

Every m x n matrix A (m > n) can be decomposed as 

A=QR 

8 On the Householder transformation see Golub (1969), Businger and Golub (1965), anc Hanson 
and Lawson (1969). 

° A true advantage during “‘first-stage” regressions where statistical tests of hypotheses are not 
being made, and hence no major problem arises from multicollinearity. 
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where Q is m x n (the same size as A) and Q’Q = I, and R is n x n and upper 

triangular. 

Clearly the rank of R equals that of A, and hence R is a nonsingular triangular 

matrix if A has full rank. This makes inverting R particularly simple. 

Such a decomposition may be effected either by a sequence of Householder 

transformations or by using classical or modified Gram—Schmidt orthogonaliza- 

tion. The modified Gram-Schmidt dominates classical Gram-Schmidt when 

Ais ill-conditioned (nearly singular), as so frequently occurs in economic problems. 

The Householder transformations appear to be a speedy compromise, as shown 

in Businger and Golub (1965). 

Simple regression is easily accomplished using the QR decomposition. Indeed 

Lemma 1.2 

In the linear equation y = Xf +e, the OLS estimator of B is b = R~'Q'y, 

where X = QR. Further V(b) = o?R™'R’™'. 

Proof 

This follows from simply substituting for X in 

b =(¥'X)"'X'y = (RQ'OR)'R'Q'y 

= (R'R)'R'Q'y 

= R-'R™'R'Q'y = R“'Qy 

where the orthogonality of Q is used. Further, V(b) = o7(X'X)~' = o?R™'R’™!. 

Q.ED. 

Due to the upper triangularity of R, an equation system of the form Rb = Q’y 

is quickly solved by backsolving, and the need for a formal inversion routine is 

avoided. Further, moment matrices of the form X’X are not required and the 

additional precision often necessitated by such accumulated sums of squares 

can be dispensed with.’® 

Somewhat more generally we have 

Lemma 1.3 

Let X and Y be two sets of variates of size K and M, respectively (T observa- 

tions each). Then, from the QR decomposition of 

Ri; Ry2 
Z=(XY)= (0,02)| OR | 

22 

‘° Unfortunately, this especially nice property of the QR decomposition in the context of OLS 
cannoi always be exploited in more complicated estimators, particularly a method for linear equations 
that can also be used iteratively for solutions of nonlinear equations (Section 1.5). 
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(a) the moment matrix of residuals of Yregressed on X is 

(Y’Y).x = R2R22 

and (b) the moment matrix of predicted values is 

(Y’Y)\x = Ri2Rj2. 

Proof 

[x'x X’'y 

3 Lyx Y’Y 

ie | 11 0 r pal za oy RiiRy2 | 

Ri2 Rd 0 R22 R42Ri, Ri 2Ri2 + R22R22 

Now (Y’Y),x = Y’Y — Y’X(X'X)~ 'X’Y;; and by substitution of the appropriate 

moments from above 

ZZ | = R'0'0R = R'R 

YY - Y’X(X'X)"'X’'Y ™ R2Ri2 > R22R22 is Ry2Ri(RiiRis) Riv Ri2 

= R42Ri2 + R22R22 — Ri2Ri2 

- R22R22. 

Thus (a) is shown. 

Now (b) follows immediately from the fact that 

ab = (Y’Y)ix + (YY) x. 

Hence 

(Y’Y)yx = YY — (YY). xy = Riy2Ri2 + Ro2R22 — R22R22 

= Ri2Ri2. 

Q.E.D. 

Lemma 1.3a 

In the event that (Y’Y), is required but (Y’Y), y is not, the QR decomposition 

of Lemma 1.3 need progress only through its first K steps (a fact we call Lemma 

1.3a) since the sequence of Householder transformations works one row at a time, 

and additional changes do not affect the rows above the row being worked on. 

K R 
After K Steps, therefore, R will be of the form | . rf where S is some 

rectangular (not upper triangular) matrix. In subsequent steps S will change but 

R,, will not, and hence R, 2 is available after the K-th step for calculating (Y’Y)) x 

= Ri2Ri2. 
R‘2R,2 can be calculated even if X is not of full rank. Its meaning will be 

correct, i.e., the sum of squares and cross products of the predicted values of 
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Yregressed on X, a unique value in spite of the fact that there may be an infinity 

of representations of these predicted values in terms of linear combinations of X. 

The results of Lemma 1.3 are readily extended for the case of linear regression 

in 

Lemma 1.4 

In the least squares block regression of Y (T x M) on X (T x K), ie. Y= 
Xb + e where bis K x M andeis T x M, we have 

(a) b = Rj}R,>2 (notation from Lemma 1.3) 

(b) e = Q,R22 

and in the case where M = 1, 

(c) V(b) = 0? Ry Ri;' 

1 
(d) s* = To KR: 

Proof 

Following the notation developed in Lemma :.3, from the QR decomposition 

of Z 

X = OiRi, 

Y = Q,R,2 + Q2R2>. 

Hence 

b = (X'X) 'X’Y = R;/Q1Y (bis K x M) 

= Ry'Q4(QiRi2 + Q2R22) 

= R +R. since 010; == I and 0,02 c= 0. 

Now 

e = Y — Xb = (Q,Ry2 + Q2R22) — (Qi Rii)(Rit R12) 

= Q2R>2. 

Rather generally e’e = R5,R,, (result (a) of Lemma 1.3), an M x M matrix, 

and for M = 1 

e’e = R35. 

Hence 

(c) is already shown in Lemma 1.2. Q.E.D. 



1.2. THe k-CLass (DouBLE-k CLass) DECOMPOSITION 

The preceding results are now applied to the determination of the double-k 

class moment matrices in equation (1.2). Returning to the notation of Section 1.0, 

form the augmented matrix 

Z = [X,X2Yy] 

a T x (G + K + 1) matrix where X,, Y, and y are from the linear equation (1.1), 

and X, contains T observations on K, additional predetermined variables. 

If X = [X,X,] contains all the predetermined variables in a full system of equa- 

tions (of which (1.1) is a single equation to be estimated), we are dealing with a 

proper k-class estimator. If X contains X,, and if X, is a subset of the remaining 

predetermined variables, we are dealing with a truncated k-class estimator. But, 

rather generally, there is no reason X , cannot contain any additional instrumental 

variables (asymptotically uncorrelated with ¢, correlated with X ,). 

Decomposing Z into a QR give, 
a 
Me Qa Ri Bicl 

R22 R23 Rr 

R33 Raa 

id Ras | 

where the Q’s are the same sizes as the corresponding partitions of Z, i.e., 

[ie kee Cee. ee 

Z=[X, X> Y y) 

Q=(0, Q, Q; Q4), 

and the R’s are sized as 

(1.4) Z = [X,X2Yy] = OR = [0,020;304) 

.. s = l 

Riv Riz Ris Ria] Ki 

R22 R23 Ry K, 

R33 R34 G 

0 Rag | 1 

Each of the diagonal blocks is square and upper triangular. 

Write the basic moments of Z in terms of R as follows: 

K, K; G 1 

ie. oMiNe FN) Xi) K, 

XX, XX, XY Xry| Kz 
(1.5) Z'Z= 

Wie  ¥Xe. TR Fri G 

LyX yX. yY yyjt 

= 
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, 
Ray 

, 
12Ri4 

(16) =| RisRy, 

Ry4Ri 

ij 

Now partition 

as 

where 

R'Q'0R = R'R 

. “ 
11 0 

12 Rd 

13 Ro3 R53 

ei ge i,,1 

11R42 R41 R43 

12R12 Ri2Ri3 

+ R22R22 + R52R2;3 

: ‘LR 
Ri3R > 

+ RR. + R53R23 
234*22 +> R3,R3;3 

14Ri2 RiaRis 
+ R44R23 

+ R44R22 + R3,4R3; 

Z =(XiX2Yy] 

[X,X2|¥y] = [X|W], 

Ri iRig 

Ri 2Ri4 

+ RR, 

13Ri4 

+ Ro3R2,4 

+ R33R34 

Ri 4Rig 

+ Ro4Ro4 

+ R34R34 
+ RuRes | 

X = [X,X,], is T x K and W = [Yy] is T x (G + 1). 

Lemma 1.3 is applied to [X W] to obtain 

(1.7) (W'W), x 

(1.8) 

( 
(CYy}TYy)ux = ' 

_ [Ris 0 = 

LR 54 Rath o 

[R33R33 

LRs4R33 

562 

Y'Y)ix 

y'Y),x’ 

R34 

Rag 

R33R34 | 

R34R34 + RagRas 

( hee 

(y’y)ix 



The relevant submatrices from (1.6) and (1.8) are paired with those in (1.5) 

and (1.7) to obtain 

Raw Moment 

Matrix R Decomposition Size 

XiX, = RyRy K, x K, 

YX, = Rj3R,, M x K, 

(YY), = 33R33 MxM 

(1.9) Y’'Y = Rj3R,3+Ri3R.3+R33R33 MxM 

(Yyix = 33R34 M x 1 

Y’'y = Rj3Rig + Ro3Rrg + R33R3q MX 1 

Xiy = Ri Ru K, x1 

These can be substituted into (1.2) to give the double-k class estimator only in 

terms of the R;; (all of the large Q matrices are unnecessary at this stage): 

(1.10) bal “ ‘ota + R23R23 + (1 — k,)R33Rs;3 ap 

Bains Ri, Ri3 RyRy 

peat + Ry3Ro4 + (1 — k)R33R3¢ | 

RyiRi4 | 

The system of linear equations (1.10), which is summarized as 

(1.11) c=M~‘'d or Mc=d, 

can be solved by a general linear equation-solving routine like MINFIT or by 

some similar routine that is more directly suited to dealing with a real symmetric 

system of equations. (MINFIT and other such procedures will be discussed more 

fully in Section 2.) 

It is to be noted that both R and M require storage only of the upper triangle— 

R because it is upper triangular and M because it is symmetric. 

1.3. THE VALUES OF k AND Two SPECIAL Cases (2SLS AND LIML) 

Calculation of M in (1.11) requires knowledge of k, and k,. In the k-class 

estimator, as distinguished from the double-k class, k, = k,. Various well-known 

estimators result from special values of k. Indeed, in the cases of k = k, = k, the 
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following estimators result: 

Value of k Estimator 

k=0 Ordinary least squares"! 

k= 1 Two-stage least squares 

k=y Limited information maximum likelihood 

(the determination of will be discussed 

below) 

K-—K,-G-1 
k=1+ : Nagar’s'? Unbiased to order T~'. 

T 

In GREMLIN, the value of K is to be specified by the user and he may specify 

different values for k, and k,. It is envisioned, therefore, that the entire k-class 

package can be invoked by a singlé narie; or any of the specific values given 

above can be invoked by a special name, such as 2SLS, LIML, OBK, which 

automatically causes the appropriate k to be used in the calculations. 

Two special cases of k—2SLS (k = 1) and LIML (k = y)} deserve special 

attention because they have specific computational implications. 

2SLS (k = 1) 

This case deserves special attention for two reasons. First, as is clear from 

(1.10), with k = 1 the terms (1 — k)R33R3; and (1 — k)R3,R3,4 do not appear and 

therefore need not be calculated. Second, as is also clear from (1.10), with k = 1, 

the only submatrices of R that are needed are R,,, R,3, Rig, R23, and R,,—all 

from only the first two block rows. Applying Lemma 1.3a, therefore, it is required 

that the QR decomposition of Z proceed for only K = K, + K, steps to obtain 

the needed submatrices. In general K + G steps will be required. 

Both points can be exploited to make computation of this special case less 

burdensome. 

LIML (k = p) 

The LIML estimator is calculated as a k-class estimator with k equal to the 

minimum eigenvalue of the eigensystem 

(1.12) |H, — pH| = 0, 

where 

H, = Y'Y —Y’X,(X,X,) 'X1Y =(¥'Y)ix, 

and 

H = Y'Y — Y'X(X’X)"'X’Y =(Y'Y), x. 

1! This is an unnecessarily cumbersome means of calculating OLS, but it offers a good means of 
checking the program by comparison with the OLS estimator in TROLL (Eisner and Pindyck, 1973; 
National Bureau of Economic Research, 1974). 

12 Where X is T x K, X, is T x K,, Yis T x G. 

564 



On 

From (1.7) and (1.8) it follows that 

(1.13) H =(Y’Y), x = R33R33, 

and from (1.5) and (1.6) it follows that 

H, =(Y'Y),x, = Y'Y — Y'X,(X}X,)"'X1Y 

(1.14) = R3Ri3 + R23R23 + R33R33 — Ri3Ri1(R11:R1,) Ri R13 

= R23R23 + R33R33.- 

The determinantal equation (1.12) thus becomes 

(1.15) IR33R23 — (u — 1)R33R33| = 0 or 

(R33R33)- 'R23R23 —(u— 1)l| =0. 

The LIML y, then, can be calculated as either of the following: 

(1.16) (a) The minimum eigenvalue, o,,,, Of (R33R33) 'R23R23, in which 

case Ll = Opin + 1. 

(b) The maximum eigenvalue, g,,,,, Of (R23R23)” 'R33R.3, 

in which case p = 1/o,,,, + 1. 

Depending upon the eigenvalue finder, method (a) would have an advantage, 

since R33 is upper triangular and its inverse is more readily found to produce 

(R33R33) ' = R33 R33". 
R33 is required for the LIML computations, and hence the QR decomposition 

of Z must proceed through the first K + G operations. R,,, however, need not 

be directly computed—although, since it is 1 x 1, no substantial saving is 

accomplished here.'* 

Special facility for determining the minimal or maximai eigenvalue of (1.16) 

will therefore be required when the LIML option has been selecte2 by the user, 

but no other special considerations arise in this case. 

General k-Class 

The user should be able to specify any value of k or k, and k,. Equation (1.10) 

shows that R;, is required for all k-class estimators except 2SLS (k = 1). Hence 

it is necessary to effect the QR decomposition of Z through its first G + K steps. It 

is never necessary to go through ali G + K + 1 steps. 

1.4. THE k-CLass CALCULATIONS 

The preceding calculations result in the square, symmetric linear system (1.11), 

repeated here, 

(1.17) Mc=d 

from which c, the k-class estimator, can be determined. 

'? The calculations for LIML given here have an advantage over those suggested by Dent and 
Golub (1973) in that they avoid the need to store the large Q matrix. 
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There should be at least two means of solving this linear system, and the user 

should have the option of picking the one he wants. The first is a routine like 

MINFIT (briefly explained below) that can calculate the singular values of M. 

Such a routine would be highly useful in analysis of problems due to multicol- 

linearity, albeit at the cost of added computation time. 

Second, there should be facility to solve (1.17) using a computationally 

efficient and speedy procedure such as the Cholesky decomposition, described 

below. The increased speed will be of great value in Monte Carlo studies and 

repetitive sampling experiments where the added information afforded by the 

singular values is not as important. 

MINFIT 

Both the nature of a matrix’s singular values and the routine MINFIT will 

be described in Part 2. Here it need only be noted that MINFIT produces a 

diagonal matrix £ of singular values and an orthogonal matrix V such that the 

real symmetric matrix M in (1.17) can be decomposed as 

(1.18) M = VV". 

c is then calculated as M*d = VE*V'd, where M* and &* are the pseudo- 

inverses of M and <&? respectively. (Pseudoinverses will also be discussed in 

Section 2.) 

The residual vector 

(1.19) e=y— Yh, — Xib, 

is best formed by using the c = q calculated above directly with the raw 
k 

data y, Y, and X, as in (1.19). 

The estimator of o?, namely 

1.20 ees. 
a giite Ae eee 

is to be calculated in exactly this way. 

Finally, the estimated variance-covariance matrix of c is simply 

(1.21) s*M~! = s?V=-'V’. 

Because most applications require only the diagonal elements of (1.21) to 

be produced, it seems reasonable to calculate only these values in the absence of 

additional optional specification by the user. If V = (v;,) and X = diag(o,... 
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OG+x), i,j = 1...G + K, the k-th diagonal element of M~' is simply 

1.22 Bo 5 2 ( : ) m = y Uyj °° —- 
j=1 ©; 

Cholesky Decomposition 

It is always possible to decompose a real, symmetric, positive-definite matrix, ‘* 

such as M, into 

(1.23) M=D’'D 

where D is upper triangular. With this decomposition, (1.17) is solved as two 

backsolves 

D'if=d and Dce=f, 

stable calculations that avoid matrix inversion. 

The calculations for s?, e are as in (1.19) and (1.20), but M~' must now be 

calculated as 

(1.24) M-!=D~'p'-', 

which requires a routine for inverting an upper triangular matrix. 

Note the relation between the Cholesky and QR decompositions relative 

to a positive-definite matrix of the form X’X. There is an infinity of upper triangular 

Cholesky matrices D such that X'X = D’D; but only one of these, namely D = R, 

is also associated with an orthogonal Q such that X'X = R’R and X = QR. 

1.5. NONLINEAR ESTIMATION 

The procedure applied here to the estimation of an equation that is non- 

linear in its parameters is a generalization of the preceding calculations, since it is 

akin to iteration on a linearized version of the given equation.'* 

Consider a general nonlinear equation 

(1.25) —f{(Z,5) =e 

where f is a random vector of size T, 

—f'(Z,,9) 

-f= 

—f"Zr, 9) 

and where Z = [X,, Y]; 
Z, is the t-th row of Z; 

X, isa T x K, matrix of exogenous variables (identified as such) ; 

Y isa T x G matrix of endogenous variables (identified as such); 

14 See, for example, Golub (1969), who also describes several computational procedures for 
effecting the decomposition. 

1S A more detailed explanation of the notation employed here and the calculations involved is 
given in Appendix A. 
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X, isa T x K, matrix of additional exogenous variables (identified 

as such); 

5 = (6, ...dy)' isa vector of M unknown parameters to be estimated ; 

and 

€ isa T x 1 vector of stochastic disturbances. 

Linearizing (1.25) by expanding about 45, (and submerging the inessential 

argument Z) gives 

(1.26) € = —f(5) = —f(5o) — faldo)(5 — 5o), 

where 

* fi--Im 

ee S Coe £8 

the Jacobian of f with respect to 6, and called the matrix of coterms. 

In general some of the columns of f; are functions of the endogenous Y’s (as 

well, perhaps, as of the X’s), and some are functions of the exogenous X’s alone. 

Group the first set of coterms together in @;, a T x M, matrix of endogenous 

coterms ; and group the second set together in y;, a T x M, matrix of exogenous 

coterms. Hence: 

(1.28) fs = [Psxe). 

The vector 6 will be commensurately reordered and so partitioned as 

-[] 

Equation (1.26) can be written in a form analogous to (1.1) as 

(1.29) I5o)5o = f(6o) = f(5o)d + €. 

In a manner described in detail in Appendix A, (1.29) leads to a Newton—Raphson 

iteration of the form 

(1.30) 64, =6,-([6 + fife — ki(fsfoixd | USS — kei Dix,] 

where X, is a matrix of preliminary regressors and G is a matrix formed of second- 

partials of f as 

(1.31) G = (g,,) = =F if" 

where F¥' is the G x G matrix 

pee jg 
rw) =| saa | gk =1...G6, 

and 

f' =W f= X (X{X )"'Xif. 
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The elements g,, can also be computed as 

(1.32) Sex = Saif = Sul, 

but G is probably best calculated as [F'f". 

Since f; = [$575], equation (1.30) becomes 

(1.33) ert &. le + Psbs — kKiPshsix, Poke Ky 

si Ye X5P 5 Xors 

= rans 

Het 

What matrix of preliminary regressors X, should be used in (1.33)? In an 

analogy to the linearized equation (1.29), the included exogenous variates are 7, 

while the excluded variates are X,. This would argue for the use of 

The advantage of (1.34) is that the matrices needed in (1.32), except G, can be 

computed exactly, as in the linear case, through the QR decomposition of Z = 

[%sX 25]. The relevant blocks of this decomposition may be combined as in 

(1.10). The disadvantage is that the projection into the X, space afforded by this 

decomposition in obtaining (5,), x, and (¢5f),,, must be recomputed at each 

iteration since the coterms x; will change with each iteration. 

An alternative technique would be to use 

(1.35) X, =X =[X,X)]. 

X is unchanging; and as has been demonstrated by Amemiya (1973), the resulting 

estimator retains consistency—although the comparative small-sample properties 

of different instruments remain an open question. 

The use of (1.35) does not, however, allow full exploitation of the decomposition 

leading to (1.10), since X, and not x; is employed. Rather (@5@;), y and (@5/), x 

would be determined from a QR decomposition of Z = [X,X.@,/], with the 

first K steps computed only once at the first iteration and stored for repeated use in 

subsequent iterations. The remaining moments with 7, in (1.33) must be recom- 

puted at each iteration. 

1.6. SUMMARY OF COMPUTATIONAL STEPS 

Linear Estimation 

. Form Z = [X,X>Yy]. 

. Determine k,, k, or type of class. 

. Form QR decomposition of Z: 

(a) K steps only for 2SLS (k = 1);. 

(b) K + G steps otherwise. 

4. Determine yp as in (1.16) if k is LIML. 

. Form (1.10) and solve for c. 

wn 

a 
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6. Determine 

(a) e as from (1.19); 

(b) s? as from (1.20); 

(c) relevant elements of M~' as from (1.21) or (1.24). 

7. Output, minimally, c, s?, M~' (relevant elements), some housekeeping 

information on roles of variates. 

Nonlinear Estimation 

. Form f,(69) and determine [575]. 

. Form [73X23 f] = Z. 

. Determine k, , k, or type of class. 

. Form QR decomposition of Z: 

(a) M, + K, steps only for k = 1 (2SLS); 

(b) M steps otherwise. 

. Determine yp as in (1.16) if LIML. 

. Form G and relevant matrices as in (1.10) for (1.31); solve for c. 

. Iterate to convergence. 

. Form final estimates and output as for linear case. 

-wndre 

onnwmn 

ParT 2. SINGULAR VALUE DECOMPOSITION, PSEUDOINVERSES, 

AND MULTICOLLINEARITY 

2.0. INTRODUCTION 

This part focuses on a specific matrix decomposition, the singular value 

decomposition (SVD), that relates directly to the solution of the general least 

squares problem, including the case where X has less than full rank. The SVD 

is discussed in Section 2.1. The relation of the SVD to pseudoinverses is examined 

in Section 2.2. The two are brought together in Section 2.3 to provide a general 

solution to the least squares problem both when X is rank deficient and when 

X has full rank (the conventional OLS estimator). Section 2.4 explores the relevance 

of a procedure that can deal with the problem of multicollinearity even in the 

presence of rank deficiency. It is shown that the information given by the SVD 

may provide useful diagnostics for the presence and whereabouts of multicol- 

linearity. Finaily, a computational procedure that effects the SVD in the solution 

of the least squares problem is described. This procedure is called MINFIT. 

2.1. THE SINGULAR VALUE DEcomposiTION'° 

Lemma 2.1 

Any m x n matrix A can be decomposed as 

(2.1) A = UXV’ 

where U and Vare orthogonal matrices of sizes to be discussed below, and & is a 

diagonal matrix not necessarily square, whose nonzero diagonal elements are 

always positive and are called the singular values of A. 

1© See further Golub (1969, 1970) and Hanson and Lawson (1969). 
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See Lanczus (1961) or Osborne (1961) for a proof of Lemma 2.1. 

U, Z, and Vcan be sized in several different ways, each of which has appropriate 

applications. A is m x n,m > n, and equation (2.1) can take the following forms: 

mxn mxn nxn nxn 

(2.1a) A = U z V’ 

mxnmxm mxn nxn 

(2.ib) Az JU >» mek 

In addition, if A has rank r < n, then equation (2.1) can take the form 

RPA RAST TAF Ae 

(2.1¢) A = U xz Vv’. 

In each case U’'U = V’'V = I,. The nonzero elements of £ are always positive 

and lie only on the first diagonal. In (2.1c) £ is always square and has full rank with 

all its diagonal elements being strictly positive. 

It is clear that 

(2.2) A'A = V=?V' 

and 

AA’ = UZ?U". 

Hence Vand U are orthogonal matrices that diagonalize A’A and AA’, respectively. 

It follows that the diagonal elements of © are the positive square roots of the 

eigenvalues of A’A and AA’, and V and U are the matrices of eigenvectors of 

A'A and AA’, respectively.’ U and Vare necessarily of full rank. The rank of £, 

however, is equal to r, that of A; and = has r nonzero positive elements along 

its diagonal and zeros elsewhere. 

2.2. PSEUDOINVERSES 

An immediate application of the SVD is in calculating the pseudoinverse**® 

of the matrix A. The pseudoinverse of any m x n matrix A is the unique n x m 

matrix A* satisfying all of the following: 

(2.3a) (AA*) = AA* 

(2.3b) (A*A) =A*A 

(2.3c) AA*A=A 

(2.3d) -A*AA* =A". 

For proof of the uniqueness of A*, see Greville (1959) or Rao (1965, p. 25). 

It is readily verified that the pseudoinverse A* can be derived from the SVD of 

17 See, for example, Graybill (1969), Theorem 3.4.4. 
18 The term pseudoinverse is not universal. Rao (i965) refers to A* as the Moore Inverse, and 

Graybill (1969) and Theil (1971) call it the generalized inverse. This latter term, however, is more 
commonly reserved for any n x m matrix A~ such that for any vector Y for which AX = Y is a con- 
sistent equation, X = A~ Yis a solution (Rao, 1965, p. 24). ln generai there is an infinity of such A~, 
of which A* is a unique special case. 
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A = UV’ as 

(2.4) A* =V=*U' 

where = * is the pseudoinverse of 2. As again may be readily verified, £* is deter- 

mined from 2 simply by replacing the nonzero diagonal elements of 2 by their 

reciprocals, leaving all other zeros, including any on the diagonal, unchanged. 

2.3. SVD AND LEAST SQUARES 

This section begins with a review of the role of the pseudoinverse in the 

solution of the general least squares problem ;’° this establishes the relevance of 

the SVD to the least squares problem, since the SVD is a means of calculating the 

pseudoinverse. The analysis is then extended to the case where the data matrix of 

“independent” variates X is of less than full rank. 

X Has Full Rank 4 

In the linear model y = Xb + e, the normal equations that characterize 

e’e, the minimum sum of squared errors, are 

(2.5) X'Xb = X’y. 

When the T x K matrix X has full rank, ie. p(X) = K < T, the unique least 

squares solution is 

(2.6) b* = (X’X)" 'X’'y. 

Application of the SVD to X gives 

es van Sr ee ae ee « 

(2.7) X = U x Vy’ 

where U'U = V'V = I, and & is diagonal and nonsingular. Hence (2.6) reduces to 

(2.8) b = (VIU'ULEV’)'VX'U'y 

= VE~'U’y = X*y 

where (2.4) is used and it is recognized that £* = £~' when & is nonsingular. 

Equation (2.8) shows that knowledge of X~* allows solution of the least 

squares problem without the costly and often unstable calculations of the moment 

matrix X’X and its inverse (X’X)~'. These calculations are required in the con- 

ventional formation of (2.6}—at least if X has full rank. 

X Has Less Than Full Rank 

The solution in (2.8) is general, for pseudoinverses exist even when the data 

matrix X has less than full rank. 

‘9 These basic calculations are not new, and Theil’s new textbook (1971) makes them generally 
available. Another good exposition of the pseudoinverse in the least squares context is found in Peters 
and Wilkinson (1970). 
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Suppose now that p(X) = r < K. The normal equations (2.5) remain valid, 

but now they determine a K — r dimensional space S of solutions for b, all giving 

the same minimized squared error length e’e. It will now be shown that the specific 

solution in (2.8) for the full-rank case b* = X*y remains a solution in the rank- 

deficient case b* € S, and has the additional property that among all b € S, b* has 
minimum length. 

X has p(X) = r < K. Application of the SVD to X in the form of (2.1c) gives 

TxrrxrrexkK 

(2.9) X= U z iid 

where U’'U = V’V = 1; and & is a square, diagonal, nonsingular matrix of size 

r. The normal equations (2.5) therefore become VIU’ULV’b = VIU’y or, 

(2.10) V'b= =z 'U'y. 

Premultiplying by V gives the equivalent normal equations 

(2.11) VV'b = VI" 'U'y= X*y. 

Now two lemmas show: 

Theorem 2.1 

b* = X*y is the unique vector of minimal length satisfying the normal 

equations (2.11) and, hence, minimizing the sum of squared residuals e = y — Xb, 

where p(X) = r < K. 

Proof 

Lemma 2.2 

b* = X*y satisfies (2.11). 

Proof 

VV'b* = VV'X*y 

= VV'VX*U'y = VE*U’y = X*y. 

Lemma 2.3 

Let b° be any solution to VV’b = X* y, and define d by b° = b* + d. Then 

VV'd = 0 and d’b* = 0. 

Proof 

VV'd = VV'(b° — b*) = X*y — X*y =0. Hence, b* = VV'b*, and d’b* = 

d'VV'b* = 0. 

Thus, to complete the proof to Theorem 2.1: 

bb® = b*’b* + 2b*'d + d'd 

= b*’b* + d'd, 
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and hence ||b*|| < ||b°||. The uniqueness of b* follows from the uniqueness of the 

SVD and the pseudoinverse. 

2.4. MULTICOLLINEARITY AND MINFIT 

The preceding has shown that within the context of the linear regression model 

y = xB + «, the solution of the least squares problem can always be made unique 

(if not economically interpretable), even when X has less than full rank, by ex- 

tending the problem to that of finding the b* of minimum length that also mini- 

mizes the sum of squared residuals. If X has full rank, this expanded problem 

produces the least squares estimator (2.6) that is familiar to econometricians. Thus, 

the use of pseudoinverses is a means of calculating least squares solutions (and 

predictions) even in the face of perfectly collinear data. 

MINFIT is a computer routine that performs these calculations with com- 

putational stability. At the same time, MINFIT holds out the promise of being 

able to create diagnostics for the-presence of multicollinearity. We will return to 

a description of MINFIT below, but before we do so, a word or two on collinear 

data seems in order. 

Multicollinearity 

As a general rule, estimation in the presence of perfectly collinear data is 

problematic for the econometrician. An exception is Marschak’s (1953) now 

famous “prediction only” case, but this case is not of practical significance (except 

as noted below). In the prediction-only case, the collinear conditions upon which 

the estimation is based are expected to continue into the prediction period. 

Clearly such a case is, as a mechanical matter, handled effectively by simply 

dropping one of the collinear variates.”° 

However, one special instance of Marschak’s case does occur as a practical 

matter : the calculation of multistage least squares estimators. In 2SLS, for example, 

the prediction of the ’s is the sole object of the first-stage calculations; this is the 

special case where the observation period (upon which the estimates are based) 

and the prediction period are identical. It is of practical advantage, therefore, 

to have first-stage computational devices that proceed stably even when the first- 

stage regressors are linearly dependent (as they may happen to be—either through 

poor planning or because of their large numbers in models with many equations). 

Such a procedure will produce correct second-stage estimates even in those cases 

where standard regression packages (which require inverting X’X) would “*blow 

up”. 

The real interest in a routine like MINFIT, however, occurs not when X 

is singular (of less than full rank), but when X is nearly singular (ill-conditioned). 

In this case, which is of extreme practical importance to the econometrician, 

standard programs, requiring the computation of (X’X)~ ', become computation- 

ally unstable. Clearly a routine that produces stable calculations when X’X is 

2° This solution first requires that the offending variates be identified if calculations are to proceed 
in the conventional manner of (2.6). This requirement, and indeed the need altogether to drop offending 
variates, is avoided by a computational routine like MINFIT that works even in the presence of pure 
multicollinearity. 
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singular will have no computational trouble when X’X is nearly singular. Equally 

clearly, however, such a routine does not solve the basic problem of near col- 

linearity—the inability to separate structurally distinct but statistically confounded 

effects. It merely prevents this logical estimation problem from being compounded 

by an additional mechanical problem of unstable calculations. 

There is, however, an obvious danger in using a method of calculation that 

always produces “‘unique” estimates, since perfect collinearity could make them 

economically meaningless. Integral to such a procedure, then, there should also 

be a means of diagnosing multicollinearity and alerting the user to its presence. 

The singular values computed by MINFIT as part of its basic calculations may 

well serve this purpose. 

The Computations of MINFIT 

MINFIT is acomputational program?’ that solves the general (p(X) = r < K) 

least squares problem of Theorem 2.1. It determines the b* of minimum length 

that minimizes e’e, namely b* = X* y. The basis of its computations is the deter- 
mination of the pseudoinverse X* through the SVD of X, that is X* = VE*U’ 

as in (2.4). The basic output of MINFIT includes b* = X* y, V, U and the singular 

values of X—the positive diagonal elements of ©. It is these latter elements that 

help in diagnosing multicollinearity. 

Conditioning of Matrices and Singular Values 

The condition number?? of an n x m matrix A, denoted x(A), is defined 

to be the ratio of its maximum to minimum nonzero singular values, ¢,,.,/Omin- 

In the SVD of A = UZV’, p(A) = p(X). Hence, as A becomes “nearly singular” 

its minimum singular value approaches zero and x(A) becomes large. It is also 

clear that x(A) = x(AA) for any scalar A, and hence the condition number (unlike 

the determinant) is a measure of near singularity or ill-conditioning that is in- 

variant to the scale of the given matrix. 

Since MINFIT, on its way to computing b* = X*y, also calculates the 

singular values of X, the user can be informed of x(X) and can thereby be alerted 

to the presence of multicollinearity. 

SVD and the Decomposition of the Estimated Variance 

The singular values and the SVD have great promise in diagnosing the source 

of multicollinearity and in assessing the extent of the troubles it may cause. As is 

well known, collinear data can cause some or all regression coefficients to be 

known only with very poor precision. However, not all the regression coefficients 

need be rendered useless by ill-conditioned data, and the extent to which this is 

true can be examined through a decomposition of ihe estimated variance into 

components associated with each singular value of X. 

21 MINFIT was developed by Gene Golub, Computer Sciences Department, Stanford University, 
and is published in Golub and Reinsch (1970). A version of MINFIT in use at the NBER Computer 
Research Center is published in Becker, Kaden, and Klema (1974). 

22 Also called the spectral condition number. See further Hanson and Lawson (1969). 
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Let b* = X*y be the OLS estimate of £ in the standard linear model y = 

XB + «, in which « is appropriately distributed with zero mean, and V(e) = 071; 

and X, however ill-conditioned, has full rank K. Then 

(2.12) b*—p=Xte 

and, using (2.4), 

(2.13) V(b*) = 07 X* X'* 

=o0*°VxX-7V". 

Let bf be the k-th element of b*, and V = (v;;), i, j = 1...K; hence it follows 

from (2.13) that 

(2.14) var(bt) = 0? YW M>» 
Sse j=1 9%j 

The variance of b is thus seen to be a sum of components of the form vf,/o7 

each associated with one of the singular values o;. Ceteris paribus, the more nearly 

singular (the more ill-conditioned) the X, the smaller the certain o;; and hence, the 

larger the impact of those components on var(bf). However, the ill effects of a 

very small o ;can be mitigated, or even nullified, if the e:sociated vg, in the numerator 

is correspondingly small. Indeed, letting X; denote the i-th column of X, it is 

conjectured that if X ; 18 orthogonal to X, and is nonorthogonal only to columns 

of X which are themselves orthogonal to X,, then v,; = 0. This result, which 

appears true in practice (an example is given below), requires formal proof. If true, 

however, it indicates that near singularity, resulting in very small o; for such X,, 

would have little detrimental influence in determining the precision with which 

B,, can be estimated by least squares. Such a result is in accord with theory, for it is 

well known that in ordinary least squares, the addition of a new variate that is 

orthogonal to all preceding variates will not affect the preceding regression 

estimates. Indeed, then, adding two perfectly correlated variates, each of which 

is orthogonal to all preceding variates, should leave the preceding regression 

estimates, and the precision with which they are known, unchanged even though 

the augmented X matrix is singular. This result is seen in the following example. 

An Example 

Consider the case where T = 6, K = 5 and 

a a ee fees | 

14 -—69 21 52 104 

66 -72 -5 764 1528 

—12 66 —30 4096 8192 

3 8 -—-7 —13276 —26552 

4 -12 + 8421 16842 
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This matrix, due to Bauer (1971), has the property that X, is exactly twice X.,, 

and both X, and X, are orthogonal to X,, X, and X,. The V matrix resulting 
from the SVD of X = UZV’ is 

[ 0.547864D 00 —0.625347D 00 0.555685D 00 | 

—0.835930D 00 —0.383313D 00 0.392800D 00 | 

0.326342D —01 0.679715D 00 0.732750D 00 | 

—0.642653D —15 -—0.216297D —15 0.913326D —14 | | 

| 0.321423D —15 0.108174D —15 —0.456672D —14 ! 

0.148362D —18 —0.543183D —14 | 

0.215618D —19 —0.470435D —14 

The resulting singular values, the diagonal elements of £, are 

o,=0.170701D 03 

o, = 0.605332D 02 

o;=0.760190D 01 

o, = 0.363684D 05 

o, =0.131159D —il. 

A glance at V shows that the v;; corresponding to the cross terms between 

group X, and X, on the one hand and group X,, X, and X, on the other are all 

of the magnitude of 10~ '* or smaller and are well within the effective zero of the 

computational precision. 

Further, one singular value, ¢, is much smaller than the other four, indicating 

(within the zero tolerances of the machine) the rank deficiency of X.7* However, 

o;, small as it is, is several orders of magnitude larger than its corresponding 

vis for i = 1 — 3; and hence the contributions of the v?,/o2 components to cal- 

culations of var(b*), var(b$), and var(b$) in (2.14) will be small. That is, the presence 

of pure multicollinearity will not significantly upset the precision with which the 

coefficients of other variates can be estimated, provided these other variates are 

reasonably isolated from the offending collinear variables through near orthogon- 

ality. 

23 Indeed a; relative to o,. the largest o, is of the order of 10~ '® and, according to bounds given 
by the numerical analysts, is within the zero of the machine. Professor Golub claims that any o, having 
the property that o,/c,,,, < ./&, where ¢ is the machine zero, is evidence of rank deficiency. 
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To demonstrate this point, calculate the relative components of var(bf) by 

means of (2.14): 

5 : 

in “ONS LS 

= 67(0.0010 + 0.0107 + 0.5343 + 0.0 + 0.0017)10~2 

= 07(0.5488 x 1072). 

This shows that the component of var(bf) affected adversely by the collinearity, 

namely v;,/02, is small (0.0017 x 10-7) relative to the total (0.5488 x 1077). 

Indeed, this term has definition only through the finite arithmetic of the machine; 

in theory, it is an undetermined ratio of zeros. In practice there is reason to cast 

out this component in actual calculations of var(bf). 

The preceding is in stark contrast to the calculation of var(bf) or var(b#), 

for these are the variances of coefficients that correspond to variables involved in 

the singularity of X. Indeed, 

(2.16)?* var(b¥) = o? 

= 07(0.0 + 0.0 + 0.0 + 0.0000 + 1.1626 x 107%). 

This variance is obviously huge and completely dominated by the last term and 

its role in causing the singularity of X. 

This example strongly suggests that there are situations in which near (or 

even perfect) collinearity need not prevent meaningful estimations of some 

regression coefficients—and these situations can be diagnosed and analyzed 

with data from the X and V matrices produced by the SVD of X. The situation in 

which such partial salvaging seems possible is when the offending multicollinear 

variates are adequately isolated from the others (perfect isolation being ortho- 

gonality). Clearly the problem of multicollinearity is a continuum: it increases as 

the strictness of the orthogonality is violated and as the X matrix becomes more 

nearly singular—as evidenced by one or more very small singular values. 

There is no hope of salvaging estimates among the offending variates. In 

spite of much current research into the recovery of all estimates even with collinear 

data (research strangely reminiscent of the alchemists), one cannot retrieve that 

which was never there in the first place. The use of the SVD does, however, deserve 

investigation both as a diagnostic tool and as a means of retrieving all that is 

available when multicollinearity is present. 

24 The use of 0.0 and 0.0000 is intended to distinguish a number within the machine’s zero (0.0) 
from a nonzero number with small exponent. The 0.0’s in (2.16) are of the order of 10~ °°, while the 
0.0000 is of the order 107 '°. 
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PART 3. THREE-STAGE LEAST SQUARES 

3.0. INTRODUCTION 

This part presents the basic calculations for linear 3SLS estimates of a full 

system of G linear equations, or of a subsystem of such equations. The procedure 

given here uses the same efficient and stable computational schemes for the first- 

stage calculations as those developed in Part 1. The result is an efficient means of 

calculating linear 3SLS estimates, but unfortunately, this efficiency cannot be 

extended to nonlinear (in the parameters) estimation. The latter requires a different 

approach, as discussed by Jorgenson and Laffont elsewhere in this issue. 

In the single-equation calculations for the k-class estimations of Part 1, 

the variates in the equation were ordered first into the included exogenous variates 

X,, second into the excluded exogenous variates X,, and finally into the included 

endogenous variates Y. This ordering was exploited in the subsequent QR de- 

composition, e.g., in (2.4). When there are several equations, however, the included 

exogenous variates of one equation are the excluded variates of another, and no 

such straightforward ordeving is possible. A more general approach is, therefore, 

indicated if many operations are not to be duplicated. Here, then, a general set 

of calculations will be determined (effectively the first two stages), and a means will 

be determined for selecting appropriate subsets to build up the third-stage cal- 

culations. 

Section 3.1 develops notation and determines the 3SLS estimator to be 

calculated. In Section 3.2 the basic 3SLS calculations are derived. The QR de- 

composition is once again exploited to produce the information from the “‘first 

two stages’. An indexing scheme is determined to build up the final estimates 

from the moments of R. 

Nothing has so far been said about estimation subject to linear constraints. 

This is the subject of Part 4, which treats the effect of linear restraints on 3SLS 

as well as on the K-class. 

3.1. THE Basic 3SLS MODEL 

Consider the system of G equations 

(3.1) Yr+XB+U=0 

where Yis a T x G matrix of G endogenous variables (specified as such); 

X isa T x K matrix of K predetermined variables (specified as such); 

I is a G x G matrix of unknown parameters to be estimated (some of 

which are specified initially to be zero); 

B is a K x G matrix of unknown parameters to be estimated (some of 

which are specified to be zero); and 

U isa T x G matrix of stochastic disturbance terms.?° 

For purposes of calculation it is better to rewrite (3.1) in a way that more 

directly deals with the individual equations. In particular, consider the g-th 

25 It is assumed that U is the result of a G-variate stationary stoachastic process with mean 0 and 
variance-covariance matrix }° . 
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equation in (3.1): 

(3.2) Yj, + XB, + u, =0 

where j, is the g-th column of I, 

, is the g-th column of B, and 

u, is the g-th column of U. 

Since, in general, not all G of the Y’s and not all K of the X’s enter this equation, 

the variates are assumed to be ordered so that all zero coefficients in }, and f, 

come last, i.e., 

owe] mw nel 

where?® j,isG,x1, and f,is K, x 1. 

G,, then, is the number of endogenous variables included in equation g (clearly 

G — G, are excluded), and K, is the number of predetermined variables included 

in equation g. 

Partitioning Yand X in accordance with the above gives 

(3.4) Yj, + xB, + Us = mys) | + ox,X21) | + u, 

= ¥,), + X,6, + u, =9 

where 4 is the T x G matrix of included endogenous variables, 

Y,* is the T x (G — G,) matrix of excluded endogenous variables, 

X, is the T » K, matrix of included exogenous variables, and 

Xj is the T x (K — K,) matrix of excluded exogenous variables. 

Finally, the equation is normalized (since the variance of U is assumed to be 

known only up to a scalar) so that one of the coefficients (usually one of the j,’s) 

equals minus unity. This coefficient and its variate are assumed to be placed first. 

Thus (3.4) becomes; 

oval —"] + X,B,+u,=0 or 

(3.5) %s 

Ye = Yer, + XB, + Ug, 

where Y, = [y,Y,]; 

y, is T x 1, the normalized variate ; 

Y, is T x (G, — 1), the remaining included endogenous variates ; 

X, is T x K,; 

7, is (G, — 1) x 1; and 

B, is K, x 1. 

2° The reason for which 7, is given a bar but 8, is not, will become apparent below. 
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Equation (3.5) is usually summarized as 

(3.6) y, = Z,6, + u, 

where 

Z, = [Y,X,] T x (G, + K, — 1), 

and 

5, = | (G, + K,-1) x 1. 
& 

In this notation (which includes all zero restrictions on the elements of I and B), 

the full system of equations (3.1) can be summarized as 

(3.7) y=Zo+u 

where 

y= y, ' GT x 1 

N Hil N ’ GT x £{K, + G, — 1) 

cae * 

b= 1/5, E(K, + G,-1)x1 

u=|u, Pax s. 
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The 3SLS estimator of 6 in (3.7}—which can be derived as a generalized least 

squares estimator—takes the form?’ 

s''(ZiZy)ix ---8'(ZZe)y\x 

(3.8) Oasis = : ; 

s°'(ZGZ1)yx cee s°(Z GZ iy x| 

where 

. ahs ¥.X.) (3.9) Ae ce [ h*g/\\X hg 

a Ae. 

is the inner product of the columns of Z, and Z, insofar as they lie in the space E 

spanned by the columns of X. (Z;,y,)x is analogously defined.?*® 

When X has full rank, it is well known that 

(3.10) (Z,Z,)\x = Z,X(X'X)"'X'Z, and (Zhy,)yx = 2,X(X'X)'X'y,. 

The s‘/ in (3.8) are the elements of S~' where S is the estimator of the variance- 

covariance matrix &, based on 2SLS. The calculations for S will be discussed 

more fully later. 

It is the elements of (3.8), then, that must be calculated to determine the 

535,5. These calculations are discussed in the next section. 

3.2. THE Basic 3SLS CALCULATIONS 

All blocks in (3.10) can be determined by a single QR decomposition of the ‘ 

matrix Z = [XY]. Notice that X = U,X, and Y = U,[y,Y,], where the symbol 

U indicates set union.2? We would then have 

Ry; Ry2 
(3.11) Z = [XY] = QR = [0,0] § 

where 

o'OQ = Ix+6; 

and the relevant matrix sizes are 

K G K G 

TK 7} c bab a 

T(Q; Q2] GLO Rot 

R,, and R,, are upper triangular. 

?7 This result is available in any standard econometrics text, e.g., Johnston (1972, p. 397). 
28 See footnoie 7 above. 
29 In practice it may be useful to have the machine determine Y and X from specifications for 

individual equations rather than have the user additionally specify them. 
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Application of Lemma 1.3 gives 

(3.12) (X’Y) = 11R12; 

(Y’Y)yx = Ri2Ri2, 

and 

(X'X) = Ri iRi1- 

Hence a basic matrix of size (K + G)* can be constructed 

aa XT 
(3.13) M= | * | 

Y’'X (Y'Y)yx 

Ri,R Ri,R -| “ 11 " 2] = RR, 

Ry2Ri, Ri 2Ri2 

where R, = [R,,R,>], the first block-row of R. Since M is based only on the first 

K rows of R, Lemma 1.3a can be applied to show that only the first K steps of 

the QR decomposition of Z are required—thereby determining R,. Both this fact 

and the fact that M is symmetric and hence requires only its upper triangle to 

be stored, should be exploited. 

Forming the (Z'Z)) x 

Consider (Z;,Z,)) x. All elements of this general block of (3.8) are also elements 

of M, and hence can be derived from M. To do this will require some straight- 

forward indexing. 

Assume that each Y and each X are numbered: 

err ae et ee 

(3.14) Z=(X,...X_, ¥; eA 

(Xx = k-th column of X, Y, = g-th column of Y). 

These numbers will be used to identify those variates included in a specific equation. 

In equation g, for example, the included variates can be summarized as: 

(3.15) Z,=(X, % yb Tx (G,+K, + 1). 

The columns of a can be labeled by their names from Z: 

Tr, +50 x, Teot+i-++"Kgt+G, "Kg+G,t1 

(3.16) \ a? oo oe ae ae » 

where ; 

X,; is the i-th column of X, 

Y,; is the j-th column of Y, 

and the r; above the columns of Z, are the corresponding index names in (3.14). 
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Hence each Z, can be identified by its list of r’s. Take Z, and Z,, 

Z, = {r; (3.17) +0, Tkyti-++"Kyt+Gn "Kn+Gntih 

2,= {s,...Sx, Sx,+1°+->5K,+G, Sx, +G,+1}: 

Now the (1, 1) element of (Z,,Z,),, is simply the (r,,s,) element of M, and, in 

general, the (m,n) element of (Z,Z,), x is the (r,,, 5,) element of M. These blocks 

will be of size (K, + G,) x (K, + G,). 

Similarly, in determining the (Z;,y,), , vectors, which will be (K, + G,) x 1, 

the n-th component will be the (r,,, sx, +¢,+1) element of M. 

Determining the s‘/ 

As each (Z},Z,)\x is formed, it should be stored in its appropriate block of 

(3.8); note of course that if (3.8) is written as Nd35,;, = d, N is symmetric and only 

its upper triangle need be stored. At this stage, d may consist only of 

(Zi yi)yx 

(3.18) d= 

(ZGYa)\\x 

The s‘/ are determined from 2SLS estimates on each equation separately, 

and these can be obtained from the data blocks already computed as a solution to: 

(3.19) (ZZ) xOg2sis = (Zy¢)\\x g=1,...,G 

This is a square symmetric system to be solved through backsolving by some 

computationally speedy procedure such as the Cholesky decomposition. The 

additional output of the more costly MINFIT is not required in this use. 

Having 5, 2515 for g = 1,..., G, the 2SLS residuals can be formed as: 

(3.20) e, = Vg —- ZDe2sis: g = - coe G, 

a T x 1 vector to be stored in 

(3.21) E = [e,...e¢] T x G. 

S is then a G x G matrix determined as 

1 
(3.22) S= EE G x G, 

a matrix whose inverse gives the s/ required in (3.8), 

(3.23) S~! = (s"/). 

Now it is possible to finish forming (3.8) by weighting the blocks of N with the 

appropriate s/ and by forming the sums for each component of d. This latter 

operation will require additional submatrices of the form (Z;y,)x to be picked 

from M in the manner described above. 

Once the final N and d are finished, 563, is solved from the linear system 

(3.24) N5d3sts = d. 
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This will usually be a large system, for N has dimensions 

[Z(G, + K,)] x [2,(G, + K,)). 

As was true for the k-class estimators, the user should have the option of 

solving (3.24) either by a MINFIT-like routine that produces singular values, 

or by a faster routine like the Cholesky decomposition. 

PART 4. LINEAR RESTRICTIONS IN OLS, k-CLaAss, AND 3SLS 

4.0. INTRODUCTION 

On account of the nonlinear facility of the k-class estiniation system described 

in Part 1, linear restrictions within a single equation can be built directly into the 

formulation of the model. For example, in the equation 

(4.1) Y =A + OX, + H2X2, +6 

with the linear restriction 

(4.2) a =1l—a, 

correct constrained estimation will result from estimating the nonlinear equation 

(4.3) Y =A + ar, + (1 — a,)x, + €. 

This procedure has the advantage that it is easy for the user to include the 

restrictions ; further, the procedure is not limited to linear constraints among the 

parameters. The disadvantages are that this procedure is computationally in- 

efficient and is not directly applicable to constraints among coefficients in different 

equations of simultaneous systems. The first disadvantage is, perhaps, minor. 

The second makes it appropriate to consider a facility for estimating 3SLS and 

the like subject to linear constraints. 

Section 4.1 briefly reviews and compares the two most commonly employed 

methods of including linear restriction in OLS—the method of Lagrangean 

constrained maximization and the method of substitution. A third method, 

more useful for the current purpose, is also explained; in this method the con- 
straints are used directly to modify the moment matrix of the normal equations 

being solved. This has the following advantages : 

1. The routines for k-class and 3SLS estimation developed in Parts 1 and 3 

can be readily adapted to estimation subject to linear constraints. 

2. The size of the final system of a that must be solved is reduced 

rather than increased. 

Section 4.2 extends the modified moment-matrix method to introduce linear 

restrictions in k-class estimation, and Section 4.3 further extends it to 3SLS. 
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4.1. LINEAR RESTRICTIONS IN OLS 

Consider the problem of estimating 

(4.4) Y=XpP+e 

where 

XisTxK 

by OLS subject to the r independent linear constraints 

(4.5) Ap =a 

where 

Aisrx K 

p(A) =r < K. 

Method of Lagrange 

An obvious way of treating this problem is to minimize e’e = (Y — Xb) 

(Y — Xb) subject to (4.5), by Lagrange’s method: 

(4.6) Lb, a) = Y'Y — 2'X'Y + b'X'Xb — 2'[a — Ab] 

(4.6a) = = —2X’Y + 2X'Xb + AA =0 

(4.6b) A a oO 
OA 

Equations (4.6a) and (4.6b) give 

(4.7) b = (X’X)"*X'Y + (X'X)” 1 4'[A(X'X)~ 1A" [a — A(X'X) XY] 

. = 6 + (X'X)"!ATA(X'X) 1A} [a — AB} 

where 6 is the OLS estimator 

(4.8) B = (X'X)"'X’Y. 

Substitution of (4.4) into (4.7), with reference to (4.5) gives 

(4.9) b = B + [1 — (X'X)"'A'F-'A\(X'X)' Xe 

where 

F = A(X'X)"'A,, 

and hence 

(4.10) V(b) = E(b — B)(b — By 

= o7[(X'X)~* — (X'X)"'A’F~' A(X’X)~*]. 

Estimation via (4.7) clearly involves a regression of order K and much addi- 

tional computation. The method of substitution reduces the order of the regression 

and thus seems to warrant consideration. 
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Method of Substitution 

Beginning with 

(4.11) Ap = a, 

order the f’s (and also the X’s) so that (4.11) can be partitioned as 

(4.12) tarda] | = A,B, + A,B, =a 
B, 

where 

A,isrxr, p(A,)=r, 

and 

A,isr x (K —r). 

This gives 

(4.13) B, = A; '[a — A23). 

Substitution of (4.13) into (4.4), commensurately partitioned, gives 

(4.14) Y=X,f, + XB, + a 

= X,A;'a+[X, — X,A;'A2]B, + & 

Equation (4.14) becomes 

(4.15) [Y — X,A;'a] = [X, — X,A;"A2]B. + 

V=Wf,+¢8 . 

where 

B, = A; ‘[a — Aa); 

V=Y-X,Ar'a Tx! 

W = X,—X,A;'A, Tx (K-—r). 

Equation (4.15) is directly amenable to OLS, and computationally is a regression 

of order (K — r) with a preliminary decomposition of A. 

The decomposition of A can.be done effectively by a QR decomposition of the 

augmented matrix [A a] r x (K + 1). This results in 

(4.16) Q[A a} = [R,R,R;) 

where 

R, isr x r, upper triangular ; 

R,isr x (K — r); and 

R,isr x 1. 
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Premultiplying (4.11) by Q gives 

(4.17) QAB = Qa . or 

(RR) 9 | = [Rs]. 
3 

Hence 

(4.18) R,B, = R; — R2B, or 

B, = R;‘[R; — Rf). 

Since R is upper triangular, its inverse—or indirectly, its back-solution—is 

easily accomplished. Thus, the procedure for calculating the OLS estimates of 

(4.4) subject to the linear constraints (4.5) is 

1. QR decomposition of [A a] > [R,R,R;]. 

2. Form back-solution to 

R,[c,c2] = [R2R3] 

so that c, = R;'R, and c, = R;'R;. 

3. Form V = Y — X,c, 

W= X, = X1C;. 

4. Apply OLS to V, W. 

The variance-covariance matrix of B can now be derived from 

(4.20) V(b2) = o?(W'W)'. 

Since b, is estimated from (4.18) as 

(4.21) b. = R;'R; — R;'R2b, 

we have 

(4.22) Eb, = c, -—¢, Eb, = c, — c,B, = B,, 

and hence 

(4.23) b, — B, = —c,(b2 — B,). 

Thus 

(4.24) = V(by) = E(b; — By)(b, — By) = c,V(b2)c, = 07c,(W'W)~*c, 

Cov(b,b2) = E(b, — B,)(b, — B2)! = —c, V(b) = —07c,(W'W)*. 

Combining these gives 

,[eW'W)*c, —c,(W'W)"? 

—(W'W)"*c, (W'W)? 

= o*d(W'W)-‘d' 

(4.25) V(b) =o 
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=) 

where 

d =[-c, J]. 

Whereas this method requires a QR decomposition of [A a), a matrix of the 

size r x (K + 1), the additional backsolvings are very fast, and the size of the 

ultimate OLS computations is reduced from K to K — r. 

Modification in Moment-Matrix Form 

The substitution method can be modified for application to the normal equa- 

tions (4.8) based on the unconstrained estimation—rather than being used to 

reduce the system before calculation as in the procedure given in the previous 

section. The advantage of such a modification is that the k-class and 3SLS routines 

developed in Parts 1 and 3 can easily be adapted for estimation subject to linear 

constraints. At the same time, computational advantage of the method of substi- 

tution—namely, reducing the size of the system of equations to be solved—is 
retained. 

Define 

(4.26) R;'R, =f 

—R;'R, =F. 

Then (4.21) becomes 

(4.27) b, =f + Fb. 

Define 

4.28 F = (4.28) H 

so that 

Fb = f 

and (4.14) becomes 

(4.29) Y — X,f =[X,F + X.)B, +e = XFB, +8. 

OLS applied to (4.29) gives 

(4.30) 6, = (F’X'XF)"'F'X'(Y — X,f). 

Equation (4.30) can be calculated by either of the following methods: 

1. OLS of Y — X, fon XF; or 

2. Formation of normal equations X’'Xb = X’Y, adapted by 

(a) forming F'(X’X)F, and 

(b) forming X’X, f (from appropriate columns of X’X) and then 

F(X'Y — XX, f). 

In method 2 constraints can be taken into account t after an unconstrained moment 

matrix has been formed—a procedure that will be useful for k-class estimation 
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and for 3SLS. Specified in slightly greater detail, Method 2 is: Given X’X and X’Y 

(or its R equivalent), 

. form Ab = a from F and f as described above, 

. form F'X'XF = M, 

. form X'Y — X'X,f =c, 

. form F'(X'Y — X'X,f) = F'c, 

. solve 6, from Mb, = F'c, at wn = 

6. calculate b, = f + Fb, where F = FI. 

The variance-covariance matrix of b can be calculated by noting 

(4.31) v(b,) = o?(F'X'XF)~' = 0?(W'W)*! 

for Was in (4.25), and hence 

(4.32) v(b) = o? F(F'X'XF)~'F’. 

4.2. LINEAR RESTRICTIONS IN k-CLAss ESTIMATION 

As shown in Section 1.2, the k-class estimator results in the system of equations 

(4.33) | Pe bees + R23R23 + (1 — ky)R33R33 rowed I 

Bias Ri,Ri3 RiiRi1 

| perme + Ro3R24 + (1 - a 

| Ri :Ris 

which can be shortened as 

(4.34) Mc =d. 

For k = k, = kj it is straightforward to verify that (4.34) is the set of normal 

equations for OLS applied to 

(4.35) H'Y = H'Z6 + H'e 

where 

H = [(1 — k)'?1k*7Q), 

and where Q results from the QK decomposition in (1.4). That is, we have 

M = Z'‘HH'Z and d = Z'HH’Y. 

Hence the k-class estimator 5, can be obtained simply by applying OLS to 

(4.36) ¥=25,+ 

where the tilde denotes the given matrix premultiplied by H’. 

It is clear that estimation of 5, subject to linear constraints can proceed 

exactly as for the case of OLS in the previous section. 

If Ad = a, then form Fé = f and determine 

(4.37) 6, = [F(2'Z)F]"'F'Z(Y — Z,f) 
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which can be calculated in moment form (as described above} as 

(4.38) (F'Z'ZF)6, = F(Z'5 — Z'Z,f) or (F'MF)6, = F(c — M,f) 

where M, = Z’Z,, taken from the relevant columns of M. Clearly, as in (4.32), 

6, = f + Fé, and 

(4.39) v(5,) = o? F(F’'MF)~'F’. 

4.3. LINEAR RESTRICTIONS IN 3SLS 

The 3SLS estimates come from a solution to the linear equations (3.24), 

repeated here, 

(4.40) Néagis = d. 

Additional linear constraints 

Aéd =a 

can be taken into account exactly as for the k-class estimator. Form F and / 

as described above under the method of modification of the moment matrix and 

determine 

(4.41) (F'NF)d, = F'(d — N,f) 

where N, is the columns of N corresponding to 6,. Then 

(4.42) 6, =f + Fé, 

and 

(4.43) v(53s.s) = 0? F(F’'NF)~'F’. 

PART 5. INSTRUMENTAL VARIABLES COMPUTATIONS 

5.0. INTRODUCTION 

The instrumental variables (IV) estimator is among the most general consis- 

tent estimators of linear equations since it subsumes 2SLS, LIML, and 3SLS as 

special cases. The usefulness of IV estimation has been further enhanced by recent 

work of Brundy and Jorgenson and of Hausman. Brundy and Jorgenson (1971, 

1973) introduced two-stage I V-type estimators called LIVE (Limited information 

Instrumental Variables Efficient) and FIVE (Full Information Instrumeatal 

Variables Efficient). LIVE and FIVE have, respectively, the same Cramer—Rao 

best asymptotic efficiency as 2SLS and LIML, on the one hand, and as 3SLS and 

FIML, on the other. This asymptotic efficiency is gained without requiring a 

set of preliminary regressions on all exogenous variables in the systems of 

equations—a requirement in 2£’.S and 3SLS that often cannot be met for large 

systems with few observations. Hausman (1973) showed that the FIVE estimator*® 

when iterated, converges to the FIML estimate (if it converges at all). Thus a sine le 

well-integrated IV package can afford the user a wide choice of single- and multi- 

3° See further Hausman’s paper in this issue. 
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equation estimators that possess both consistency, a basic property of all IV 

estimators, and asymptotic efficiency, a property only of LIVE and FIVE estimators 

(which include 2SLS and 3SLS).*?! 

In Section 5.1 the basic IV estimator is determined. In Section 5.2 methods 

for constructing and computing the more interesting and widely employed 

instruments are discussed. Section 5.3 presents a means of calculating IV estimators, 

and a computationally efficient method employing the QR decomposition is 

proposed. In Section 5.4 the LIVE and FIVE two-stage estimators are dealt with. 

5.1. THE Basic IV EstTiMATOR 

Consider with the linear equation 

(5.1) y= Yy + X,P+e=Zot+e 

where 

yisTx 1 -Z = [X,Y] is T x (K, + G) 

YisTxG 5= [Pisa tox: 
Y 

X,is Tx K, 

eis T x 1. 

A set of G + K, linearly independent insiruments, W, is picked where W is 

T x (K, + G), with p(W) = K, + G. 

In general, the instruments should be correlated with the variates X,, but 

uncorrelated (at least asymptotically) with ¢. Interest centers on picking and 

computing these instruments, a problem to be dealt with at length in the next 

section. Once the instruments have been picked, form 

(5.2) W'y = W'Z6 + W's, 

which implies the IV estimator 

(5.3) by =(W'Z)'W'y or = (W'Z)iy = Wy, 

a square, nonsymmetric system of equations that can be solved directly through 

the use of a general routine like MINFiT (Section 2.4). In Section 5.3, however, 

these basic normal equations for 5,y will be transformed by a QR decomposition 

to produce a system of equations capable of more efficient solution—even counting 

the cost of the QR decomposition. The variance-covariance matrix of d,y is 

readily derived (Johnston, 1972, p. 283): 

(5.4) V(b) = 02(W'Z)" '(W'W)(Z'W)!. 

3! LIVE is a bit of a misnomer, for it is not “limited information” in the sense of LIML or 2SLS 
where specification need be made only for the single equation being estimated. LIVE is really a “full 
information” estimator that ignores cross-equation corrections but essentially requires the full set of 
equations to be specified. 
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5.2. PICKING THE INSTRUMENTS 

If an IV routine is to be truly useful in an interactive system like GREMLIN, 

it should have a capability for nearly automatic generation of widely used classes 

of instruments. This section specifies these instruments and their computation. 

The task is to fill the G + K, columns of W with variates that are (i) cor- 

related with X, but (ii) asymptotically uncorrelated with ¢. Since the columns of 

X , fit these requirements ideally, it is assumed that X , is always used as K, of the 

instruments. Hence it remains only to pick the additional G instruments corres- 
ponding to the G-included endogenous variates Y. W is therefore of the form 

(5.5) W =(X,F] 

where F is T x G, a set of G instruments to be determined. 

As a practical matter, the user has at his immediate disposal a set of variates 

F that satisfies (i) and (ii). A usually includes the following subset: 

1. X,, the predetermined variates included in the given equation. 

2. Xz (or some subset of X,), the set of all other predetermined (cotempor- 

aneously uncorrelated) variates in the system of equations. (X = [X,X>].) 

3. X_,, additional lagged values of the X’s. 

4. D, dummy variables constructed by the user. 

In addition to the basic elements of ¥, a facility should be available by 

which the user can readily augment these variates by various principal components 

of the elements of F or of elements derived from those in ¥. The use of principal 

components in this context has been formalized by Kloeck and Mennes (1960), 

whose work is incorporated here. Being linear combinations of the elements of F, 

these principal components also satisfy conditions (i) and (ii) and hence are legiti- 

mate possibilities. Thus, routines will be required to generate the following: 

5. P,, the principal components (or first principal components) of any subset 

of F. 

6. P,, the principal components (or first principal components) of the residuals 

of the block regression of any subset of ¥ regressed on any other subset 

of F°? 

Denote by # the set F augmented as in (5) and (6). Two methods** of 

determining F can now be usefully distinguished : 

Method I, Substitution: Determine F as any G columns (presumably linearly 

independent) picked from G elements of #% 
Method II, Regression: Determine F as Y, the G-predicted values resulting from 

a regression of Y on any subset of # of order G or greater. 

32 P. allows for instruments corresponding to Kloeck and Mennes (1960) methods 1 and 4, while 
P, allows for their methods 2 and 3. 

33 Clearly Method II is but another means of augmenting the set 3 to include additional instru- 
ments. But it seems useful to separate this case so that its relation to multistage least squares techniques 
can be kept in mind. 
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Options for Method I, Direct Substitution 

In general, the user should be able to choose F as any subset of G elements 

of # He should have options for the following special cases: 

(a) F taken to be any subset of ¥ of order G, not including those elements 

in X,. 

(b) F taken to be the G largest principal components of any subset of F of 

order G or greater. 

1) F = G largest principal components of F. 

2) F =G largest principal components of F excluding X,. 

(c) F taken to be the G largest principal components of the residuals of any 

subset of F (exclusive of X,) regressed on X,; i.e., let P be the matrix 

whose columns are members of F not also included in X,, and then 

form F as the G largest principal components of the residual matrix 

P— XAX\X,J “ay. 

1) P=X;. 

2) P = [X,X_,D], ie. F exclusive of X,. 

(d) As in (b) except that the ordering is not by descending eigenvalues o?, 

but by descending values of o7(1 — r7) where r? is the multiple cor- 

relation coefficient of the k-th variate in F on X,. This ordering can 

be applied to either 1) or 2) in (b).°** 

These options require that the IV routine have access to a principal com- 

ponents finder and an OLS package to find multiple correlation coefficients in (d). 

Options for Method II, Preliminary Regression 

In general, the user should be able to choose any subset of G or more elements 

of F to act as preliminary regressors in determining Y as F. Denote the matrix 

of such regressors by L. 

(a) L = any subset of G or more elements of F 

(b) L = the G + n(n = O) largest principal components of any subset of F 

of order G + n or greater. 

1) L = G + n largest principal components of F. 

2) L = G + n largest principal components of F excluding X,. 

(c) As in Method I(c) except that G + n principal components can be taken. 

(d) As in Method I(d) except that G + n principal components can be taken. 

Calculation of Instruments 

Let B be a T x M matrix whose M columns are composed of the basic set 

of instruments from the set ¥ These variables, supplied by the operator, can serve 

34 The numbering of methods here corresponds to numbering of methods in Kloeck and Mennes 
(1960) as follows: 

Kloeck and Mennes This Paper 

1 I(b) 2) 
2 K(c) 
3 \(d) 
4 I(b) 1) 
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as instruments by themselves, or they can be transformed into other instruments, 

as, for example, by taking various of their principal components. B can be defined 

for a whole system of equations, but for single-equation IV estimation it will be 

particularized for that equation. For a given equation, B will always contain X,, 

the set of included exogenous variables. Hence write 

(5.6) B =[X,B,]. 

As described earlier, B, can contain a subset of X, (the excluded predeter- 

mined variates), a subset of X_, (lagged values of any of the predetermined 

variates), and D, a matrix of appropriate dummy variates. 

The discussions of Methods I and II indicate the need for generating various 

types of principal components of B and its submatrices. In particular, the following 

computational routines are needed: 

PC(k: LIST). This routine produces the k largest principal components of 

the variates given in LIST—all columns of B. The user specifies k subject to 

certain restrictions that should be automatically checked and flagged if violated. 

The restrictions are: 

1) If Method I is used, k = G and LIST must have G = k or more elements. 

2) If Method II is used, k > G and LIST must have k or more elements. 

A default option should be provided that assumes LIST indicates all of B if no 

list is given. Further, a symbol should be available which causes LIST to include 

only the elements of B, (B exclusive of X ,), such as PC(k:B,). 

This routine implements Methods I(b) and II(b). 

PC\i(k: LIST). This routine produces the k iargest principal components of 

the residual matrix of the variables in LIST regressed on X,. In this case no 

variables composing X, should be permitted in LIST, for this will guarantee 

perfect collinearity in the ultimate IV equations. A check for such consistency is 

desirable. ; 

These calculations can be accomplished as follows. Let C be the matrix whose 

columns are in LIST. Applying Lemma 1.3, decompose A = [X,C] by the OR 

routine to obtain 

R,, gy 
A=[ : (0,031| 6 R»» 

The matrix of residuals is Q, R., = U (Lemma 1.4); the k largest principal compo- 

nents of this matrix are sought. If the principal components of U = Q,R,, are 

calculated by forming the eigenvectors of U'U, Q is orthogonal and U’U is simply 

R’,,R,,. However, Q, must be preserved in this instance so that the principal 

components of U can be calculated. If Vis the matrix of eigenvectors of U’U, then 
P = Q,R,,V is sought as the principal components of Q,R;>. 

The same checks on the relation of k to G described above for the two Methods 

should be made. This routine implements Methods I(c) and II(c). 

PC2(k: LIST). This routine, used in conjunction with PC(k: LIST), modifies 

the ordering of that routine and takes the k largest principal components according 

to the new ordering. [n particular this routine does the following: 

1. Forms the principal components of LIST (always exclusive of X ,}—call 

these by the matrix P—along with their corresponding eigenvalues pj}. 
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2. Determines the multiple correlation of the elements of P regressed on X , 

(let the j-th such multiple correlation be denoted r7). 

3. Orders the principal oe. according to the ranking 

(5.7) j= wR - 13). 

The we result from the determination of the principal components in Step 1 

and can be obtained from PC(k: LIST) where k is made the same size as the order 

of LIST. 

The r} are formed as follows. Decompose A = [X ,P] to obtain 

QA a ¥a rt. 

stopping after K, steps since only R,, is required. Now (P’P)),, = R,R,2 by 

Lemma 1.3. Hence the diagonal elements** are (PP) x, = P,P; = ;. Further 

PP, = yu} since these are principal components ; hence 

(5.8) = =| hf | =“ 
P‘P; TF 

or 

(5.9) pir? = PP, = 2,. 

Hence 

(5.10) A; = wil — rj) = wp — wjr7 = wp — 4;. 

PC2(k: LIST) now determines those principal components in P corresponding 

to the k largest values of the A; in (5.10). 

Relation of IV to Multistage Least Squares 

Methods I and II above offer many ways of choosing instruments to form W. 

Those given in Method II involve preliminary regressions to determine the 

instruments, and as is well known, these IV estimators bear a relation to multistage 

(truncated or augmented two-stage) least squares estimators. 

The multistage 2SLS (k = 1) estimator and the corresponding IV estimator 

are identical when (and only when) the list of preliminary regressors includes a 

basis for X,, the set of exogenous variates included in the particular equation 

being estimated (Brundy and Jorgenson, 1973). Only when this is true will the 

multistage least squares estimator be consistent—although the IV estimator is 

consistent regardless of whether the instruments or the preliminary regressors 

contain a basis for X,. 

The method of k-class estimation given in Part | guarantees that the included 

predetermined variates X , are utilized in the first-stage regressions along with the 

matrix X,—which can be any of the other predetermined variates used here as 

instruments. Therefore, the k-class package should have access to the instrument- 

generating routines discussed here. When an X , is employed that does not contain 

35 Since only the diagonal elements of R,R,, are needed, only these inner products need be 
computed from R,>. 
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all the “other predetermined”’ variates in the system of equations, the resulting 

multistage least squares estimator will lack the efficiency of 2SLS, but such 

estimators are popular and their easy access is desirable. 

_Although the truncated 2SLS estimator described above is inefficient, so also, 

rather generally, is IV estimation. But either of these estimators can be used 

separately or together to form a set of consistent—not necessarily efficient— 

estimates of the full system of equations; and these estimates can be employed 

in a multistage IV procedure such as LIVE or FIVE, to produce asymptotically 

efficient estimators. This will be discussed more fully in Section 5.4. 

5.3. THE IV COMPUTATIONAL PROCEDURE 

In the notation of Section 5.1, the task is to calculate the 5,, solving 

(5.11) (W'Z)by = W'y 

where 
W = [X,F] is T x (G x K,) 

Z = [X,Y] is T x (G + K,) 

and F has been determined as a T x G matrix of instruments (Section 5.2). 

The variance-covariance matrix of 5,y is 

(5.12) V(b,y) = 02(W'Z)- (W'W)(Z WwW). 

(5.11) is a square, nonsymmetric system of equations that can be solved with 

MINFIT or a similar routine after the relevant moment matrices W'Z and Wy 

have been formed, and it may be useful to have facility for carrying out these 

direct calculations. However, an alternative procedure is given here that, in terms 

of operations counts, is faster and more efficient. 

The Calculations 

Form the QR decomposition of 

(5.13) A =([X,FYy] 

to get 

| Rea Ree 

, R22 
(5.14) QA = QO[X,FYy] = 

0 
‘ 

where only K, + G steps in the decompositions are taken, and the S’s represent 

the remaining parts of A after the first K, + Grows are formed using Householder 

transformations. The S elements are essentially discarded fsr subsequent cal- 

culations. Q is orthogonal and R,, and R,, are upper triangular. 

Now, 

W'Z = W'O'0Z = (QWY'QZ 
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and 

Ri; Ri2 
M 

(5.15) QW = QO[X,F] =| 0 R,,|= . 

0 

TRi; R,3 | 

R23 M 
0z = O[X,Y]= =| | 

S F 

L 0 s 4 

with 

R R w= [Bo ®] 

a 0 R,. 

and 

TR R M= 11 a 

0 eg 

and d 

[Ri | 

Ry4 m 
Qy = = | 

S f 

S 

m = PRs | 

Roa 

Further, 

: M 
(5.16) W'W = W'0'0W = mon] | = M’M 

W'Z = W'0'0Z = cmon] ™ | = M’M 

m 
W'y = W'O'0y = [M0] "| = M’m. 

By substitution of (5.15) and (5.16) into (5.11), by becomes 

(5.17) by = (W’Z)~!W'y = (M’'M)-'!M’'m = M~'m. 
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V(5,y) in (5.12) becomes 

(5.18) V(d,y) = 02(W'Z)-'W'W(z'W)-! 

= o?(M'M)~'M'M(M’M)~! 

= o?M~'M’~". 

Now 

5.19} g-'- _ ‘ai Bs Fg neta 
. I = = 

: ia = 0 R;3 

and (5.17) becomes 

e b R-3 —R;z1R R; R 

(5.20) iv=["| =| at ~RiiRis aa +] 

c 0 R3> Ro, 

R}}R.4 

Thus, the following computational steps result in the IV estimator: 
1. Form A = [X,F Yy] (order is important). 

2. Take K, + G steps in the QR decomposition of A to get 

K G G | 

beg Ri Ri3 i 

GLO R22 R23 Ro4 

3. Solve R,,c = R34, a rectangular system. 

4. Solve R,,b = R,, — R,;¢, a triangular system. 

5. Obtain e = y — Yc — X,b and form s? = e’e/(T — K,). 

6. Form R;;', Rj; and the M~'M’~'. 

Operation Counts 

The computational scheme just proposed for the IV estimator and its 

variance-covariance matrix has two advantages over direct computation of the 

moment matrices in the normal equations (5.3) and in (5.4): first, the proposed 

scheme employs the computationally stable QR decomposition aiid hence has 

advantages in dealing with collinear data; second, in most cases the proposed 

scheme is computationally more efficient in a direct comparison of operations 

counts. The exception occurs if G » K, (not a likely occurrence), and even here 

the disadvantage occurs in the computation only of 5,y but not of V(d,y). 

Operation counts were made first for computing 4,, directly as in (5.3) and 

then for computing it as in Steps 1 through 4 above. The relative counts were 
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based on the following evaluation of numbers of operations: 

Operation Count 

1. Solution to general square linear 

system (n x n) tn? + nn? 

2. Solution to triangular linear system 

(n x n) 4n? 

3. QR decomposition on m x n matrix 

(proportionately less if cut off early) 2mn? 

4. Inner product of m x nandn x p 

matrices mnp 

5. Inversion n x n matrix $n? 

The method of calculation suggested above has in its favor 4T(K? — G*) + 

2TGK, + $TG* + 47(G + K,) + 4G° + G* + 4K? + K,G counts through the 

calculation of 5,y in (5.17) in comparison with the direct calculation of 5,, through 

(5.3). Only if G > K, will (5.3) prove more efficient. Comparison of the calculation 

of V(5,y) by (5.18) with the direct calculation of (5.4) offers clear additional evidence 

that the QR decomposition has a computational edge in all cases. Indeed, the 

calculation of (5.18) instead of (5.4) has these advantages: the entire W’W matrix 

newly required by (5.12) need not be formed; only one matrix product need be 

taken instead of two; and inversion in (5.18) is of a K, x K, upper triangular 

matrix and a G x G general matrix instead of the (K, + G) x (K, + G) general 

matrix (W’Z)~'.- 

5.4. LIVE AND FIVE 

The advantages of estimation by instrumental variables have been extended 

by the work of Brundy and Jorgenson (1971). Instrumental variables estimators, by 

their very structure, are consistent; but only in special cases do they also possess 

relative efficiency. Through a two-stage instrumental variables procedure, however, 

Brundy and Jorgenson (1971, 1973) have determined two efficient IV estimators, 

LIVE (Limited Information Instrumental Variables Efficient) and FIVE (Full 

Information Instrumental Variables Efficient). Whereas LIVE is called a “limited” 

information estimator, in fact both LIVE and FIVE are based on estimation of 

the full system of G equations. LIVE is “limited information’”’ in the sense that it 

does not take into account any information on across-equation covariation. 

As a result, LIVE has the same asymptotic efficiency (Cramer—Rao lower bound) 

as LIML and 2SLS; while FIVE, which does employ information on across- 

equation covariation, has the same asymptotic efficiency as FIML. Indeed 

Hausman (1974) has shown that FIVE iterates to FIML. 

In what follows, the calculations leading to LIVE and FIVE are examined 

in turn. The set of G equations to be estimated is 

(5.21) ye = Y,y, + X,B, + & g=1...G 

= 2,6, + &, 

= [X,Y] |’ | + & 

Ve 
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where y, is T x 1, a vector of T observations on the normalized endogenous 

variable of equation g; 

Y, is T x G,, G, endogenous variables included in equation g; 

X, is T x K,, K, predetermined variables included in equation g; 

7, is G, x 1, a vector of G, nonzero parameters to be determined ; 

B, is K, x 1, a vector of K, nonzero parameters to be determined ; and 

é, is T x 1, a vector of disturbance ‘terms. 

Further, define 

(5.22) _. Veale. 

1 
z,, = plim—U’'U. ee = Pam —. 

The First-Stage Estimates 

Both LIVE and FEVE are two-stage estimators and assume that consistent 

(perhaps inefficient) estimates of the B, and », g = 1...G have been obtained in 

the first stage. In GREMLIN the user should be able to specify that any available 

consistent single-equation ‘technique be used on any equation in the first stage. 

The k-class estimators or any IV estimator discussed above is a legitimate esti- 

mator for this purpose. The role of the LIVE and FIVE routine in the first stage 

is principally bookkeeping: specifying each equation in the system; generating 

data for the first-stage estimator for each equation; calling the relevant single- 

equation estimation package to carry out the estimation ; and, finally, summarizing 

the first-stage results for use by the second-stage LIVE or- FIVE estimator. This 

routine, therefore, draws upon all completed packages discussed above. The user 

should also be able simply to enter first-stage consistent estimators obtained 

from any other source. 

Let Y= U.Y,, and X = U eX,» where U denotes set union; and rewrite gs? 
the system (5.21) as 

(5.23) Yr + Xp+U=0 

where IT is a G x G square, nonsingular matrix whose g-th column contains (a) 

the associated elements of y, for each slot corresponding to a column of 

Y,, (b) the value — 1 corresponding to y,, and (c) the value 0 elsewhere. 

B is a K x G rectangular matrix whose g-th column is composed of the 

associated element of £, for each slot corresponding to a column of 

X,, and zeros elsewhere. 

U is as in (5.22). 

The stage-one estimation (assumed already accomplished) results in estimated 

vectors ), and B., g = 1...G which together compose consistent estimates of 

I and , denoted by f and 6. 
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Determining the Second-Stage Instruments 

The reduced form of (5.23) is 

(5.24) Y = XBI-' —- UT™ 

= XT1+ V 

ll = —-Br™' V=-Ur™', 

and the corresponding consistent estimator of I (with zero restrictions) is 

(5.25) fia —8f-'. 

The predicted values of Y from this estimated reduced form are simply 

(5.26) f= xf. 

These linear functions of the predetermined variables serve as the instruments in 

the second stage of LIVE and FIVE. 

The predicted values ¥ can be computed in either of two equivalent ways. 

First, as implied by (5.26), Y can be computed directly by determining f and B, 

inverting f, and computing —Bf'~'. Second once each of the G equations in the 

system has been consistently estimated in the first stage, the system can be subjected 

to static simulation to determine the Y’s. A simulation facility such as that in 

TROLL (National Bureau of Economic Research, 1974) makes this second alterna- 

tive attractive. 

LIVE 

For each equation g (g = 1... G) 

B 
(5.27) y, = 2,6, + & = ox.) + &, 

‘g 

form a matrix of instruments Y, as the G,-predicted values from (5.21)—or the 

simulation—corresponding to those variates included in Y, , the included endogen- 

ous variables of equation g. 

The IV estimation technique of Section 5.3 can now be applied to the 

matrix 

(5.28) A, = [X,¥,Y,y,] 

to obtain df,ye, an efficient LIVE estimate of 6,. 

o;, the variance of ¢,, can be consistently estimated through the use of the 

first-stage consistent estimates 0, by forming 

(5.29) e, =), — Z,5, 

where 6, = is: and B, and 9, are the first-stage consistent estimates used in (5.25). 
& 

62 can now be estimated consistently as 

(5.30) Ss; = eft or “et, 
a i 
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The Variance-Covariance Matrix. The variance-covariarice matrix of the 

LIVE estimator takes a simpler form than that of the usual IV estimator. The: 

asymptotic variance-covariance matrix of T'/?(8 yp — 6,) is 

(5.31) — plim T(W‘,Z,)~ (W‘e,¢,W')(Z,W,)~! 

= Of wz WW ZW, = LW, W 

since plim T~' W,Z, = plim T~' W,W,. 

‘ Hence a good estimator of the approximate variance-covariance matrix of 

Ofive is 

(5.32) Vibtive) = sy(W,W,)* 

where W=[X, ¥.), the T x (G, + K,) matrix of instruments. Reference to 

(5.16) indicates this is easily calculated from the elements of the QR decomposition 

already used to calculate df,y_ as 

(5.33) s?(M'M)~' = s2M~'M'~! 

Ri, Ri 
where M = ; | as in (5.15) and is a matrix that is easily inverted due to 

22 
its upper triangularity. 

Across-Equation Covariance Matrix. It is also possible to make use of the 

LIVE estimates to obtain estimates of the asymptotic covariance between Of ,,, and 

Olive, the estimated coefficients from two separate equations. Indeed 

(5.34) plim T(5five — 5) (tive — 6,) 

= plim T(W,Z,)"'W'46,£,W,Z,W,)-* 

= O.w.w,lw,w,2waW, 

where o,, is the gh-th element of £,, from (5.22) and Ly.y, = plim T”'W,W, 

by definition. 

Hence the approximate covariance between 0f,y, and 6% ,,y, is estimated by 

(5.35) Se(M.M ,) *(W,W,)(M,M,)-* 

The first and last of the three matrix terms in (5.35) have already been computed 

in (5.33), when V(d5£,y-) and V(é",y-) were computed. The middle term, wWeW,, 

must be computed anew for these calculations. The estimated covariance is 

calculated as 

ee 
(5.36) Sa = i 

where e, and e, are determined from (5.29). 

Summary of Computational Steps for LIVE. The computational steps for the 

LIVE estimator can be summarized as follows: 

1. For each g determine first-stage consistent estimates of 5, and o as in 

(5.29). 
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2. From these 5,, form f, B and fl = —Bf~'. 

3. Form the LIVE instruments ? = Xfl, or determine Y directly by simula- 

tion from Step 1. (In the latter case skip Step 2.) 

4. Form A, = [X RAAA and use the IV estimator of Section 5.1 to determine 

IVE: 
5. Form M~' and calculate V(5f,y,) as s2>M~'M’~' from (5.33). 

6. Calculate s,,W,W,, and form (5.35) along with the (M,M,)~' from 

Step 5. 

FIVE 

FIVE, like LIVE, is a full-system estimator. It is “full information”’ relative 

to LIVE not in the sense that it requires full specification of the entire system (for 

both LIVE and FIVE require this), but in the sense that FIVE takes into account 

the across-equation covariation ignored by LIVE. The asymptotic efficiency of 

FIVE, therefore, is the same as that of 3SLS and FIML. 

The FIVE estimator uses the same building blocks as LIVE, but unfortu- 

nately the resulting equation system cannot be solved in a way that exploits the 

computationally efficient algorithm of Section 5.3. Instead the IV normal equations 

must be solved in their basic form (5.11). 

The FIVE Instruments. FIVE begins exactly as does LIVE: for each equation 

g=1...G,a 5, and e, = y, — Z,5, are determined from (5.29) through some 

consistent (but perhaps inefficient) single-equation estimator. From these 0, 

and e, one forms f, B, and fi = Bf~' from (5.25) and S = T~'U’U, where U = 

[e,...@g], 2 T x G matrix of estimated residuals. S is clearly an estimated co- 

variance matrix whose elements s,, will be used to weight the blocks in the FIVE 

normal equations. 

For each equation, then, a set of instruments is formed as 

(5.37) W, = (Xfi, X,], a T x (G, + K,) matrix, g = 1...G, 

where fi, is the K x G, submatrix of fl formed by taking only the columns 

of fi corresponding to the G, endogenous variables Y, included in equation ag 

From these a set of cross-equation blocks is formed as 

(5.38) W,, = s*W,, g,k=1...G 

where s** is the gk element of S~!. 

Finally, a complete instrument matrix is formed as 

W, 1 W, 2 W, G 

(5.39) W=| . 

Wo: We2.--Wee 

a matrix of size GT x 2,(G, + K,). 

3° That is, if equation g includes only Y, Y,¥, and Y,, then fi, would consist of columns 1, 5, 8, 
and 9 of fi—or equivalently, ’, =X fi, would consist of columns 1, 5, 8, and 9 of Y. 
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The FIVE Normal Equations. The g-th equation of the system is y, = Z,6, + 

é,, and the full system to which the instruments W of (5.39) are applied is 

(5.40) y=Zd+e 

where 

yi Z, 0] é, e 

y=i i], Z= ey , 6= and ¢=|: 

Ye 0 Ze 5g &G 

The normal equations from which the FIVE estimator 5,,y, is solved are 

(5.41) (W'Z)bnve = W'y, 

in general a very large system, for W’Z is square and of size L(G, + K,). WZ 

should be formed directly, and MINFIT or some other suitable routine should 

be applied directly to (5.41). However, W need not be formed and stored as a 

whole, for its G* blocks are composed only of the G matrices W, from (5.37) and 

the elements from the G x G matrix S. W can be formed piecemeal, as required, 

from these building blocks, while W’'Z and W’y in (5.41) are being formed. Like- 

wise, the full TG x X(G, + K,) matrix Z need never be formed, for it is block 

diagonal with blocks Z,, g = 1...G, from (5.40). The block multiplication 

which forms W’Z can therefore take advantage of the sparsity of both W and Z. 

The Variance-Covariance Matrix. The estimated variance-covariance matrix 

of drive is easily formulated but presents computational difficulties because 

it is usually very large. The true asymptotic variance-covariance matrix of 

T’*Orwve — 6) is 

(5.42) = plim T(W'Z)"'W'ee’'W(Z'W)-' | 

_ ge ee J 

where o* is gh-th element of 2) and 

-_ = 
x = plim —W,W,. 

Hence the estimated approximate variance-covariance matrix of d,,y_ is given by 

(5.43) Vorve) = (S*wWiW)' gg, h=1...G 

a square, symmetric matrix of size 2,(G, + K,). 

In general V(5,,y,) is large, and an inversion routine capable of such matrices 

is required. 

Prior Restriction on X,,. As in 3SLS, the calculations involved in computing 

drive from (5.41) and 0(5,,y¢) from (5.43) can be substantially reduced if some of the 

s*" are constrained to be zero. This would be the case if £ were assumed to be 

block diagonal from the outset. So also, then, would be £~', and both (5.41) and 
(5.43) would be sparse. In this case routines exploiting the resulting block de- 
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composition should be utilized to reduce the calculations to several systems of 

smaller size. 

Summary of Steps for FIVE. The computational steps for the FIVE estimator 

can be summarized as follows: 

1. For each g, determine first-stage consistent estimates 5; and for each 

g and h, determine s,, as in (5.36) and form S = (s,,). 

. From the 5,, form f°, B and fi = — Bf‘ as in (5.25). 

. Form the FIVE instruments ¥ = Xfi, or determine Y directly by simula- 

tion from Step 1. (In the latter case skip Step 2.) 

. Form W, = [Y, X,] = [Xfl, X,) for g = 1...G. 

. Calculate S~' and form W,, = s*"W,,  g,h =1...G. 

. Form (W’Z) and (W’y) as 

(‘V'Z) = {s"*W'Z,} 

G 
(W’y) = { Y Wy, 

h=1 

G 
= uz > sty, 

A=1 

7. Calculate dpiyp as (W’Z)opwe = *V’y 

8. Form V = [s**W,W,],g,h =1...G, and calculate V~' as V(d,y¢), re- 

calling that Vis symmetric. 

Steps 6-8 should take advantage of any zero restrictions given on ~,,. 

Iterative FIVE. Hausman (1974) has shown that the FIVE estimator (5.41) 

iterates to the FIML estimator of 6. Iteration of FIVE proceeds as follows: an 

initial estimate 5(4\,, is determined as in the previous section. The 6()),,. becomes the 

5, of Step 1, and a new estimate, wate. is produced. This in turn is used at Step 1 

until an effective convergence of 5%). = 4,1) occurs. Step 8 need be calculated 

only once, at the end. 

The user should have the option of stopping the iterations prior to conver- 

gence. Because FIVE is a consistent and asymptotically efficient estimator for 

any consistent initial estimates in Step 1, each d{},, is consistent and asymptotically 

efficient. Stopping before convergence, therefore, is costless in terms of these 

asymptotic properties. Only when convergence is reached, however, will the 

iterated FIVE estimate also be FIML. 

APPENDIX. ITERATIVE PROCEDURES FOR NONLINEAR EQUATIONS 

A.0. INTRODUCTION 

The purpose of this appendix is to examine estimation of a single equation 

that is nonlinear in its parameters and to develop in detail the notation and 

terminology utilized in Section 1.5. 



A model that is appropriate to OLS is considered first. Then the results are 

extended to a model that is appropriate to estimation of one equation from a 

simultaneous system—i.e., one equation having endogerous regressors. A Gauss— 

Newton method (using first derivatives only) is developed first; this technique 

was employed in earlier versions of TROLL (National Bureau of Economic 

Research, 1974) but often failed to converge. A Newton—Raphson (second- 

derivative) technique was used with greater success, and this technique is presented 

next and adapted for use in simultaneous equations. 

A.1. PROCEDURE WITH EXOGENOUS COTERMS 

Assume T observations on the outcome of a nonlinear random function 

f' in K observed arguments x(t) and having G unknown constant parameters 

(nonlinear) B which are the object of estimation.*’ Hence in period t assume 

(A.1) — f(x(0), B) = «,, 

where ¢, is a random variable having mean zero, constant variance and independent 

across time. 

In matrix summary we have 

f*(x(1), B) 

(A.2) —f(X, p) =e 

f™(x(T), B) 

where f is a T-vector function 

x‘(1 
X is the T x K data matrix X be £ 

x'(T) 

B is the G-vector of parameters to be estimated 

é is distributed with mean 0, and 

V(e) = 07 I. 

Further, define the Jacobian matrix of coterms** 

Rens aw 

({A.3) i= ; a T x G matrix. 

i fi 

In this section f, is assumed to be nonstochastic; i.e., the partial of f (which is a 

stochastic function) with respect to all parameters is assumed to be nonstochastic. 

This assumption is appropriate to a nonlinear generalization of the context of 

37 The notation f' means not that function f is different in each period—it is in fact the same 
function for all t—but that it is evaluated at different x(t). 

3® The meaning of “‘coterms” will become apparent in equation (A.5) below, where coterms are 
paired up with their corresponding f’s in the linearized approximation. Also see Eisner and Pindyck, 
1973. 
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OLS with all the regressors exogenous. The assumption will be relaxed in Section 

A.2. 

Linearized OLS: A Gauss~Newton Procedure 

Using the first two terms of a Taylor expansion about fo, linearize (A.2) as 

(A.4) e = —f(B) = —f(Bo) — f(Bo)[B — Bo] 

= [—f(Bo) + So(Bo)Bo] — Sp(Bo)B 

or 

(A.5)°° S(Bo)Bo — f(Bo) = S(Bo)B + €, 

where all partials are evaluated at B,. For given By, OLS can be applied to (A.5) 

to obtain the least squares estimator. 

(A.6) B = (F5(Bo) fp(Bo)] *f'(Bo) fp(Bo)Bo — F(Bo)] 

x Bo os. CF (Bo) fp(Bo))” 'f (Bo) f (Bo). 

The form of (A.6) suggests the iterative procedure 

(A.7) b.41 = b, — [f ld) f(b)” fb) S(O,). 

This method, employed in earlier versions of TROLL, displayed some difficulties 

in converging, and was replaced by the Newton—Raphson procedure described 

next. 

A Newton—Raphson Procedure 

If (A.7) converges so that b,, , = b, = b, then it reduces to 

(A.8) — (Fb) f(b) *Fp(b) f(b) = 0 

or equivalently 

(A.9) FS plb) f(b) = 0. 

This set of normal equations, whose solution is necessarily the same as a 

convergent solution of (A.7), can also be derived from minimizing the sampling 

sum of squared errors from 

(A.10) e = —f(X,b), 

i.e., the solution of 

(A.11)*° min e’e = f'f. 

Define F(b) 2s , 

(A.12) F(b) = f(b) f(b) = 0 

39 The use of “coterms” should be clear from (A.5). In the linearized model, the f, serve the same 
function relative to the parameters B as the X’s do in the standard linear model y = XB + «. 

*° Differentiating (A.i1) produces 2f,'(b)f(b) = 0. 

608 



and expand F about by to obtain 

(A.13) 0 = F(b) = F(bo) + Felbo)[b — bo] 

where F, = 0F/0B,a G x G nonstochastic matrix. 

Solving (A.13) gives 

(A.14) b = bo — F5 (bo) F (bo), 

which, rewritten in terms of f, becomes 

T -1 
(A.15) b=bo-| 5 FY + Sihs| Sf, 

t=1 ‘ 

d of" 
where F' is the G x G Hessian matrix f = (f',). 

Op,OB, r 
Iteration in terms of (A.15) is like that in terms of (A.7), except that a second- 

derivative term £7_ , F'f' is included additively in the inverse.*' 

A.2. PROCEDURE WITH ENDOGENOUS COTERMS 

In Section A.1 the coterm matrix f, is assumed nonstochastic ; this is the non- 

linear analog to the OLS case. Now, however, nonlinear estimation is extended to 

simultaneous equations ; hence it is assumed that: 

1. f, is a stochastic matrix (some of whose elements may be nonstochastic). 

2. X, (distinct from X) is a set of H preliminary regressors assumed in- 

dependent of ¢ (i.e., of the stochastic elements of /—and hence, also of f,). 

Instrumental Variables in the Limited Information Case 

Begin with the linearized equation (A.5), in which, however, f, is no longer 

independent of «. Application of OLS to (A.5) is no longer indicated; instead, 

a set of instruments iP is introduced by regressing f, on X;. 

(A.16) f, = X,P = Xf{X;X)"'Xj5, 

=Z fz 

where 

(A.17) Z, = XfX;X)7 'X}. 

In the spirit of instrumental variables, f, in the right-hand side of (A.5) is replaced 

by iP from (A.16). As will be clear from (A.20), there is no need to purge the left-hand 

side of its stochastic terms; hence, the estimation is based on 

(A.18) SBoBo — f(Bo) = flBodB + n 

where n =e + [fp(Bo) — FlBoNlB 

=e+ VB. 

‘F=eff=eC_SSsl= [F*] a G x 1 vector. Then Ff = OF*/0B, = DAS aS‘ + ffi) and 
hence F, = [FE] = (11.1 F'S; + Sp Gl: 
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Least squares applied to (A.18) gives 

(A.19) B= (fof 9)" 'f /SpBo — f) = Bo — S sfp) Fh sf 

which uses the fact that 

(A.20) Fife = (SZ rfp = S'Z (Zi fp) =S hp 

due to the idempotency of Z,. This last fact proves that f, need not be adjusted 

by Z, on the left-hand side of (A.18). 

The iterative procedure suggested by (A.19), and analogous to (A.7), is 

(A.21) b,4 (= b, ct CF lb, fob) ‘fF (b,) f (b,). 

Newton-Raphson in the Limited Information Case 

If (A.21) converges to b,, , = b, = b, then again the normal equations 

(A.22) - f(b) f(b) = 0 

must be satisfied by b. An alternative to finding b is therefore offered by solving 

(A.22) for b by Newton’s method. 

Using (A.16), let 

(A.23) F=fif=,Z,f =09. 

Expanding F gives 

(A.24) 0= F(B) = F(Bo) “9 F(Bo)(B — Bo) 

or 

(A.25) B = Bo — Fy \(Bo)F(Bo). 

Rewriting (A.25) in terms of f gives 

(A.26) B= Bo-[G+fpfsl ‘fof 

where 

G = (g,,) 

and 

Sek = LLL ZS g, k= 1... G, 

Z = (Z,,), 

% arf" 

J gk 3 ; 
Op,OB, 

alternatively, 

Sek = S Zt 

where 

[Jn 

mis , 
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G =X F'f'. 

The properties of (A.26) as an estimator need to be investigated. Clearly 

the estimator is consistent if the stochastic nature of the auxiliary relationship 

between f, and the instruments X, approaches that assumed behind (A.16), i.e., 

if f, constantly estimates f,. Otherwise the properties of the resulting estimator 

depend upon the true stochastic relation between f,, X,, V, and «. 

A.3. THE DouBLe-k CLAss ADAPTATION 

The preceding adjustment procedure can be generalized to the double-k 

class context. Instead of regressing f, on X, (effectively the 2SLS option), calculate 

(A.27) (fpfpix, and (fpf)ix, 

to use in an iterative scheme generalizing the basic double-k class estimator (1.2). 

Gauss —Newton Generalization 

Applying the Gauss—Newton iterative procedure analogous to (A.7) to the 

double-k class estimator (1.2) results in the following iterative scheme: 

(A.28) bo +1 ag b, ‘a (fete 7. kif pfpdixi) ‘Th of Fe kf pf ).x,)- 

The Newton—Raphson Generalization 

The analogous adaptation of the Full-Newton Step would be 

(A293) bg = b, — (6 + Spfp — kil pfpax. US sf — kf pix] 

where 

G=(8,), Sx =Satf 

J=I1-k,H 

H=I-Z 

Z=XfX,X)-*X; . 

or 

Ber = Sef — ki Su Six: 

Some f, Nonstochastic 

When not every element of f, is stochastic, some partials can be functions of 

the X, alone, and f, can be partitioned as 

(A.30) Ie = [ds xp] 

where @, is the matrix of stochastic coterms, and 7, is the matrix of nonstochastic 

coterms. Estimation can now proceed by edjusting only the @,. as, for example, 
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with a Newton-Raphson step of 

Ns: hahas eh cae et mia, ved | 

paver Oe — XpPp XpXp - 

[eof - ihe 

Xef : 

Should the x, be included with the X, as instruments? Some may already be 

there if, for example, x, has a term linear in the X ,. Either these linear equivalences 

must somehow be purged; or, as is the case with most procedures considered in 

this paper, the determination of (¢¢,), x, (where Xf is the set of X, augmented 

by xg) must be able to proceed even if X7 is singular. At least one computational 

consideration is apparent: with a fixed X;, many calculations can be saved in 

determining (¢¢,),x,, but Xf will change with each iteration and cause re- 

calculation of Z, = X#(X}*X#)"'X;*. 

Boston College and 

NBER Computer Research Center 
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