
This PDF is a selection from an out-of-print volume from the National
Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume
3, number 3

Volume Author/Editor: Sanford V. Berg, editor

Volume Publisher: NBER

Volume URL: http://www.nber.org/books/aesm74-3

Publication Date: July 1974

Chapter Title: Generating Submodels of a Simultaneous Equation
Model: An Algorithm Using Fisher's Correspondence Principle

Chapter Author: James Steuert

Chapter URL: http://www.nber.org/chapters/c10176

Chapter pages in book: (p. 525 - 539)

Annals of Economic and Social Measurement, 3/3, 1974

GENERATING SUBMODELS OF A SIMULTANEOUS EQUATION

MODEL: AN ALGORITHM USING FISHER’S CORRESPONDENCE

PRINCIPLE

By JAMES STEUERT*

Using Fisher’s Correspondence Principle, a graph-theoretic algorithm is presented for generating all
simultaneous submodels of a simultaneous equation model. Primitive vertex simple cycles of the directed
graphs are combined to generate the simultaneous submodels. The algorithm is efficient and can be used to
locate problems of specification, even in models for which the number of simultaneous submodels is pro-
hibitively large. Fisher’s convergence criterion is discussed, and the algorithm is applied to the 27-equation
Klein-Goldberger model.

I. INTRODUCTION

This paper deals with the problem of applying Fisher’s (1) Correspondence

Principle to simultaneous equation models. Fisher argues that causality requires

simultaneous equation models to be considered limiting approximations to non-

simultaneous models of the same form, but with very small time lags. As a result,

Fisher derives a set of conditions which well-specified models must satisfy. He

suggests tests that can be easily used to locate problems of specification.

The tests are useful because they apply both to the full simultaneous equation

model, and to all of its simultaneous submodels. A simultaneous submodel is a

subset of the full model’s set of cquations; each variable of a given submodel

depends either directly or indirectly on every other variable of the submodel. All

variables that are not in the submodel are held fixed and are considered constants

or parameters of the submodel.

Because these tests apply to all simultaneous submodels of the full model, they

can be used to locate submodels which do not satisfy Fisher’s Correspondence

Principle and are thus misspecified. A submodel is misspecified if at least one

equation in it is misspecified. More specifically, one can suspect the behavior of

some equation as a function of a select few of its independent variables, because

other variables of that equation that are not in the submodel are held constant.

By identifying such failed submodels of the full model, one may be able to find the

equations or parts of equations which cause the specification problem.

2. DIRECTED GRAPHS AND SIMULTANEOUS SUBMODELS

The application of Fisher’s Correspondence Principle thus requires the genera-

tion and testing of all simultaneous submodels of the full model. Every variable x

of a simultaneous submodel depends on every other variable y of that submodel,

either directly through the determining equation of x, as in x = x(..., y,...), Or

* This research was supported by National Science Foundation Grant No. GS-2403 to Massa-
chusetts Institute of Technology. I am indebted to Franklin M. Fisher for supervision and advice but
retain responsibility for error. Referees for the Annals aided in the organization of this paper.

525

indirectly through the determining equations of other variables (say, z) of the

submodel, as in x = x(...,2,...) amd z = 2(..., y,...). A submodel is simul-

taneous because of the functional dependencies of its equations, regardless of the

specific form of those equations.

The dependencies of a simultaneous equation model may be represented as

the set of vertices and arcs of a directed graph. In this representation, each vertex

represents a variable (such as x, y, or z), and an arc of the form x < y implies that

variable x depends directly on variable y via x’s determining equation

x = x(...,y,...). Given this directed graph of the full model’s functional depen-

dencies, a simultaneous submodel is defined as a set of variables (say, w, x, y, z) and

the equations that determine them, such that every variable x of that set is depen-

dent on every other variable y of that set, either directly via x’s determining

equation x < y, or indirectly through other equations of the submodel (say, z’s

x

W = .352-X + Y?

X=W-Z

Y=7.6-X+ LOG ,,W

Z=Wt+Y

Figure | Directed Graph of a Simultaneous Equation Model

equation, yielding x « z and z « y). See Figure | for an example of the directed

graph of a simultaneous equation model. The graph theory relevant to generating

simultaneous submodels will be discussed later.

3. GENERATING SIMULTANEOUS SUBMODELS

Locating all simultaneous submodels of an n-equation model by direct |

enumeration (i.¢., by testing all 2” combinations of equations to determine if that

526

a

combination is simultaneous) is infeasible for all but the smallest models. This

paper describes an algorithm which efficiently generates all simultaneous sub-

models of a large model (n = 23) in a small amount of computing time. Further,

this algorithm first generates a small set of “‘primitive’’ simultaneous submodels

which are later combined in special ways to generate all simultaneous submodels.

(A simultaneous submodel will henceforth be referred to simply as a submodel.)

A suvmodel is generated or ““grown”’ by combining an already-generated submodel

with one of these primitive submodels. This feature of the algorithm is useful in two

respects.

First, a submodel generated by combining a failed submodel with a primitive

submodel will also include the misspecified equations or functional dependencies

of the original failed submodel. The failure (or success) of the combined submodel

will not provide more specific information about the location of the problem than

that provided by the original failed submodel. For a large simultaneous equation

model the application of Fisher’s test to all submodels may be infeasible because

of the large number of such submodels. By not “growing” submodels from failed

submodels, the number of submodels tested may be greatly reduced, without

sacrificing any information about the location of misspecified equations and

dependencies.

Second, if a successful submodel is combined with a primitive submodel, and

if the combined submodel fails the tests, then further information may be derived.

Variables (and dependencies) of the failed submodel that are constants of the

successful submodel are to be suspected as causes of the failure. In other words, if

the primitive submodel is added, some constants of the successful submodel become

variables, and the behavior of those variables and their dependencies may be the

cause of failure. This provides more specific information about the location of a

misspecification than does simply identifying the failed submodel and its equations.

4. GRAPH THEORY

The dependencies of a simultaneous equation model may be represented by

a directed graph. In this representation, each vertex of the directed graph corres-

ponds to an endogeneous variable of the model, and an arc corresponds to a

functional dependency of the model. It is assumed that the model is consistently

normalized with a different endogeneous variable on the left-hand side of each

equation. The arcs directed inward toward variable x specify those other variables

that x depends on in its determining equation. For example, if x = x(a, b, c), then

variable (vertex) x would have the arcs x « a, x + b, and x — c directed inward

toward x.

A simultaneous submodel of a model is a set of variables, along with the

equations that determine them, such that each variable is dependent on every

other variable via some chain of functional dependencies. Thus, a simultaneous

submodel corresponds uniquely to a set of vertices and their connecting arcs, such

that there exists a directed sequence of arcs connecting every ordered pair of

vertices (a start vertex and an end vertex). Such a directed sequence of arcs is known

as a directed path, or simply a path. For example, a — b — c « disa path between

vertices d and a. This path specifies that variable a depends on variable d.

527

The directed graph of an m-equation model is a set of m vertices, and a set of

arcs connecting those vertices. An arc of the form a — b is an ordered pair of

vertices (a, b), where vertex a is called the start vertex of the arc, and vertex b is

called the end vertex of the arc. A path is thus an ordered sequence of arcs

(A,, Az, A3,Aq,---,A,) where the end vertex of A; is the same as the start vertex

of A;, , (i.e., where the arcs are consecutive). A simple cycle isa closed path where no

vertex is the start or end of more than one arc of that path; i.e., the start vertex of

the first arc of the path is the same as the end vertex of the last arc of the path,

and no vertex is repeated. For example, the path (a > b, b > c, c > a) is a simple

cycle, and may be represented as a sequence of vertices a> b—+c-—a. Fora

given set of vertices, there may exist niore than one simple cycle which consists of

those vertices (Figure 2).

en

THE SIMPLE CYCLE

1727374-5>1

HAS THE SAME VERTICES AS

THE SIMPLE CYCLE

1727573724>1

Figure 2 Two Simple Cycles From One Set of Vertices

Thus, a vertex simple cycle, or v-cycle for short, is a set of vertices for which

there exists at least one simple cycle as previously defined. Two v-cycles are said

to be connected if they have a vertex in common. A connected sequence of v-cycles

is an ordered sequence of v-cycles, each of which is connected to some previous

member of the sequence. The primary result of this theory is that every simultaneous

submodel may be represented as the vertices of a connected sequence of v-cycles

of the full model’s directed graph. The following discussion will demonstrate this.

528

ore

6

5

3

PATHS:

Pi,=174>2

Pi, =275>3

Pi, 73767534

Pi. 7475

P..=5>6

Po, =6>1

TRAVERSE:

174-27$73-6-57-4-5-6->1

SEQUENCE OF V-CYCLES:

€{1 456 1},{425 4}, {5 36 5}>

PINCH es a ae Soh

NUMBER

Figure 3 Generation of Traverse From Paths P, ;, ,

Let the vertices of a simultaneous submodel be numbered from | to m. Because

the submodel is simultaneous, there is a directed path between every ordered pair

of vertices of that submodel. In particular, there is a path between vertex i and

vertex i + 1, for i # m; and there is a path from vertex m to vertex 1. Now create

a large path by concatenating all these paths, to yield the sequence of paths

(P12. P23, P34, Pas,.--, Py). If each path of this sequence is replaced with its

sequence of vertices, this large closed path may be reduced to a single closed path

which is a sequence of many vertices connected by arcs. Vertices may occur more

than once in this path. Such a closed path is called a traverse. Every simultaneous

submodel corresponds to at least one traverse. For a given numbering (labeling)

of the vertices of the full model’s directed graph, every simultaneous sub-

model corresponds to a unique traverse, assuming that paths P;;,, are chosen by

529

a predetermined unique rule, such as shortest path of smallest numerical ranking.

Figure 3 illustrates the generation of a traverse from paths P;;, ,.
The traverse of a simultaneous submodel may be represented as a unique

sequence of v-cycles. Consider a traverse T, which is a sequence of k vertices, some

of which may be duplicated. If no vertex is repeated in this sequence, then T is a

v-cycle, and may be represented as just one v-cycle. If a vertex (say, 4) occurs more

than once in T, then T may be split into two closed paths by “pinching” T at

vertex 4(Figure 3). T may now be represented as a sequence of two smaller traverses

T, and T,, which have vertex 4 in common. If this pinching algorithm successively

applied to T’s sequence of traverses, and if each traverse is replaced with its pinched

sequence of traverses, the original traverse T may be reduced to a sequence of

v-cycles because pinching will eventually eliminate all duplicate vertices. Thus a

traverse may be represented by a sequence of v-cycles, each of which is connected:

to a previous v-cycle of the sequence.

Pinch vertices may be chosen in order of the smallest duplicated vertex first.

Therefore, associated with every v-cycle of a connected sequence, there is a “‘pinch

number,” which is the smallest numbered vertex that it has in common with any

previous v-cycle of the sequence. (See Figure 3 for an illustration of pinch-numbers.)

Pinch numbers are necessarily non-decreasing because that would imply an

interval which would have been pinched previously, contrary to our rule of

selecting smallest pinch vertices first. For exampie, in Figure 3, a v-cycle with

vertex 2 cannot be appended to the current sequences of v-cycles, because the

resulting expanded traverse would have included two occurrences of vertex 2 and

thus could have been pinched with vertex 2 first rather than with vertex 4. A v-cycle

of the sequence must be. connected to a v-cycle of a smaller pinch-number.

A primitive v-cycle is a v-cycle which cannot be represented as the union of a

connected set of smaller v-cycles. Thus, by definition, any v-cycle may be represented

as the union ofa connected sequence of primitive v-cycles. If any v-cycle of theabove

represertation is replaced by its representation as a sequence of primitive v-cycles,

and if the primitive v-cycles are then grouped by their pinch number, any traverse

may be represented by a sequence of primitive v-cycles ordered by increasing

pinch-number. The above results are fundamental constraints which make

practical the algorithm for generating simultaneous submodels.

5. THE ALGORITHM FOR GENERATING PRIMITIVE V-CYCLES

The theory discussed above suggests an algorithm for generating simultaneous

submodels. Basically, the technique involves two steps. First, generate the primitive

v-cycles of the full model’s directed graph. Second, combine these primitive v-cycles

in sequences which generate all simultaneous submodels. The number of v-

cycles of a directed graph may be very large. However, the number of primitive

v-cycles should be significantly smaller. This turned out to be the case with the

Klein—Goldberger model (Appendix A), which yields 111 primitive v-cycles.

The procedure for generating primitive v-cycles is known as a “‘tree-search”.

Branches of the tree correspond to the paths of the directed graph that are searched.

When a path leads back to the starting vertex of the search, then a v-cycle is found

because a closed directed path has been generated. When searching the directed

graph, a path is extended by adding to it an arc which connects the end of the present

530

:

V-CYCLEA: {1,2,3,6,7}

1 2 3 6 7 1

V-CYCLEB: {2,3,4,5,6}

2 3 4 5 6

NON-PRIMITIVE V-CYCLEC: {1,2,3,4,5,6,7}

1 2 3 4 5 6 7 1

OO O0>—_ 00000

CONCLUSION: GIVEN PATH 1>2>3>4-5, VERTEX 6

MUST NOT FOLLOW BECAUSE OF ARCS

6<3AND6>2

Figure 4 Pruning: Inhibited Search for Non-Primitive -Cycles

path to another vertex. This newly connected vertex might be the starting vertex,

in which case a v-cycle is found. However, that vertex must not be a part of the

current path, because a simple cycle is a closed path in which no vertex is repeated

(the starting vertex is an exception to this restriction). This search procedure must

rememeber its current path and the already-searched directions at each vertex of

that path, so that it may “back up” and continue the search in another direction

when the search is exhausted in a given direction.

The search just described would generate all simple cycles and would be

impractical. However, an additional restriction is used to greatly reduce the search

time for generating primitive v-cycles. This technique prevents the search from

generating v-cycles which are the union of two smaller, connected v-cycles (Figure

4). The “pruning” technique shown in Figure 5 accomplishes this and makes the

algorithm practical.

The above procedure, if applied to every vertex as starting vertex with no

restrictions, would generate an m-vertex v-cycle m times, once for each of m vertices.

531

S = START VERTEX,

K = 0,J=S, SOFAR (1) =

PRUNED (1) = {1,...,M} \
\

INCREASE PATH LENGTH

K=K+1

i

V-CYCLE IDENTIFY NEW PATH END
FOUND V(K) =J

RECORD IT

'

SET “ALREADY TRIED”
CHOOSE SMALLEST TO “NONE SO FAR”

_| VERTEXFROM |4 | sis try T(K)=S—1

~ | ALLOWED (K) T(K) =J
THAT IS > T(K) '

NONE | FOUND ALL VERTICES OF PATH

Y EXCEPT START VERTEX

BACK TRACK FOR K > 1 SOFAR (K) =

K=K-1 SOFAR (K — 1) U {J}

1

ADJACENT TO PATH END
< | FINISHED ADJACENT (K) =

{x lJ>x}

‘

ALLOWED (K) = FOR K> 1EXCLUDE
ADJACENT (K) NON-PRIMITIVE PATH
© PRUNED (K) PRUNED (K) =
A SOFAR (K) PRUNED (K — 1)

7 {x IV(K — 1) > X

AND SOFAR (K) « X

AND X#S}

'

IF K>2 AND V(i) > V(K) FORI=K—2T01

THEN PRUNED (K) = PRUNED (K) 97 {x#S 1X=>

SOFAR (I + 1)} 97 {x IV(K — 1) > x}

IF V(K — 1) + SOFAR (1) OR S THEN BACKTRACK

Figure 5 Generation of Primitive V-Cycles by a Depth-First Tree Search Assume a Directed Graph
of M Vertices.

532

—_—_

To prevent this redundancy, the algorithm is first applied to the entire directed

graph G with vertex | as start vertex, then to G-(1) with vertex 2 as start vertex, then

to G-(1, 2) with vertex 3 as start vertex, and so on. Thus every simple cycle generated

by this algorithm is generated only once, with its minimum-numbered vertex as

start vertex.

The tree-search algorithm was programmed in Assembly Language for the

IBM 370/155 computer. With pruning the algorithm generated the v-cycles in

0.352 minutes for the version of the Klein—Goldberger model given in Fisher (1).

Without pruning, the algorithm never finished, but would have taken an estimated

240 minutes. Clearly, pruning makes the algorithm practical.

Because a v-cycle may be derived from several distinct simple cycles with the

same vertices (but different paths), the algorithm may generate a v-cycle more than

once. Also, there is no guarantee that the v-cycles generated are primitive. The

v-cycles generated by this algorithm are verified to be primitive by comparing them

with all smaller v-cycles, and testing to determine whether or not they are primitive.

6. GENERATING SIMULTANEOUS SUBMODELS FROM PRIMITIVE V-CYCLES

Now that a set of primitive v-cycles have been generated, it is necessary to

combine them to form simultaneous submodels. As the pinching process demon-

strated, every simultaneous submodel may be represented by at least one traverse,

and every traverse may be represented by a connected sequence of primitive

v-cycles. This sequence: of v-cycles must be grouped in order of non-decreasing

pinch-number and each v-cycle of the sequence must be connected to some v-cycle

of a smaller pinch-number group. In this manner, every simultaneous submodel

may be generated by appending to an existing sequence of v-cycles (an already-

generated submodel) a primitive v-cycle of pinch number equal to or greater than

any previous v-cycle of the sequence. Note that the pinch-number property is not

intrinsic to a primitive v-cycle; it is determined only as applied to a currently

generated submodel. This procedure is also a tree search, but is of a somewhat

different form. Backing up involves changing the primitive v-cycle at a previous

element of the sequence, and then looking for all sequences generated by appending

primitive v-cycles to that sequence.

The above procedures for generating simultaneous submodels take a total of

2.15 minutes on the IBM 370/155 to generate all the simultaneous submodels of

the Klein—Goldberger model given in Fisher (1). There are 111 primitive v-cycles

and 25,565 simultaneous submodels. The algorithm is successful mainly because

of the pruning technique for generating primitive v-cycles.

7. THE CONVERGENCE TEST

The convergence criterion of Fisher (1) is applied to each of the simultaneous

submodels specified by the above algorithm. The requirement is that the average

of G(YO) converges, where Y = G(Y) is the simultaneous submodel, and YO is

the initial vector of the variables endogeneous to that submodel (with all other

variables held constant), and where G'(YO) = G(G"~ '(YO)) with G°(YO) = YO.

In practice, this average is formed iteratively using the formula Y(n + 1) =

533

TOTAL NUMBER CF SUBMODELS WHICH HAVE
PASSED CONVERGENCE = 969
FAILED Y(N4L)-Y(N) = 111
FAILED Y(NI-G(Y(N)) = 0
BLOWN UP SCMEHCW = 830

TOTAL NUMBER GF SUBMODELS
WHICH CONTAIN EQUATION

1 WHICH
PASSED CONVERGENCE = 572
FATLED Y(N#+LI—-Y(N) = 68
FAILED YI{NI-G(Y(N))= 0
BLEW UP SOMEHOW = 421

2 WHICH
PASSED CCNVERGENCE = 556
FAILED Y(N#+1L)-YIN) = €4
FATLED Y(NI-G(Y(N))= 0
BLEW UP SOMEHOW = 450

3 WHICH
PASSED CCNVERGENCE = 960
FAILED Y(N#L)-YC(N) = 111
FAILED Y(NI-GIY(N))= 0
BLEW UP SCMEHOW = 830

4 WHICH
PASSED CCNVERGENCE = 534
FAILED Y(N+1)-Y(N)I = 55
FATLED Y{N)-G(Y(N))= 0
BLEW UP SCMEHDW = 446

5 WHICH
PASSED CONVERGENCE = 192
FAILED Y(N+1)-Y(N) = €9
FAILED Y{N)-G(Y(N))= O
BLEW UP SCMEHOW = 824

6 WHICH
PASSED CCNVERGENCE = 783
FAILED Y(N4#1)-Y(N) = 12
FATLED Y(N)-G(Y{N) I= 0
BLEW UP SCMEHSW = 807

7 WHICH
PASSED CONVERGENCE = 484
FAILED Y(N4#1)-Y(N) = 12
FAILED Y(N)-G(YIN))= O
BLEW UP SCMEHOW = 688

8 WHICH
PASSEC CCNVERGENCE = 551
FAILED YIN+lL)I-V(K) = 108
FAILED Y(NI-GCY(NID= C
RLEW UP SCHMEHOW = 377

9 WHICH
PASSEC CONVERGENCE = 175
FATLED Y(N#+1)-Y(N) = S
FAILED Y(IN)I-G(Y(NID)D= O
BLEW UP SCMEHCW = 256

Figure 6 Summary Statistics on Convergence Tests of Submodels of the Klein-Goldberger Model

534

(1/(n + 1))(¥(n) + nG"(YO)) where the average at step n of the iteration is denoted

by Y(n). At each iteration, G"(YO) is formed as G(X), where X = G"~ '(YO) was

formed at the previous iteration. The algorithm is determined to have converged if

|Y¥(n + 1); — Y(n)j < ¢; for all i = 1, 2,...,r where r is the number of equations

of the submodel; where Y; is the i-th component of the vector Y of endogeneous

variables of the submodel; and where the ¢; = 0.001|YO,|. In practice, the Y(n)

often converged very rapidly to a solution Y(n) = G(Y(n)) of the model (within the

€; given above) whereas the |¥(n + 1) — Y(n)| converged much more slowly. The

total time taken by the convergence program is largely that of the convergence

test since the generation of the submodels takes only about 2 minutes. With the

Klein—Goldberger model (Appendix A) it was found that the |¥(n + 1) — Y(n)|

test had failed for most of the submodels for over 500 iterations, whereas the Y(n)

had converged very quickly to G(Y(n)). The convergence of the average is apparently

much slower than the convergence of the iteration based on G.

Thus the convergence algorithm in its final form is as follows:

(a) For each iteration n = 1 to 500, form GY) = G(X) where X is the

previously derived G"~ '(Yo).

(b) Form the running average of G"(Y)) as Y(n) = G"(Yo) + ((n — 1)/n)-

Y(n — 1).

(c) Test |G"(Yo); — G"~ '(Yo);| < e; for all components i. If this test succeeds

for 5 consecutive values of n, the submodel passes the convergence test.

(d) If n is 500, do step (e); otherwise, go back to (a).

(e) Test convergence of average : if| ¥(500); — Y(499),| < «;for all components

i, then do step (f); otherwise, submodel fails.

(f) Test requirement that average be a fixed point: if |(G(Y(500)); — Y(S00),

< ¢; for all components i, then submodel passes the convergence test;

otherwise, it fails.

When the test is applied, it is useful to store some statistical information about

the submodels. The stored information includes : (1) the total number of submodels

which have passed the convergence test ; (2) the total number of submodels which

have failed the : Y(n + 1) — Y(n): test (i.e., reached iteration 500 without passing

the test); (3) the total number which failed the : Y(n + 1) — G(Y(n + 1): test (e.,

passed :Y(n + 1) — Y(n): test and then immediately failed the :Y(n + 1) —

G(Y(n + 1)): test); (4) the total number of submodels which blew up somehow

(e.g., some components of the vector Y(n) got extremely large compared with the

initial components of YO). In the first 2,000 submodels generated for the Klein-

Goldberger model (Appendix A), only one submodel failed to pass test (3). Test (4)

reported a blow-up condition when | ¥(n)|; > 100,000 | YO\;: for any component i.

More significant information was determined by storing the above information

correlated with the number of submodels which contain equation K for each

Bt Bivvy m, where m is the number of equations of the full model. The print-out

of these numbers made it possible to determine which equations of the full model

were involved in events (1), (2), (3) and (4); and which equations are most likely

misspecified according to Fisher’s Correspondence principle. An example of this

output for the Klein—Goldberger Model (Appendix A) is given in Figure 6. Note

that equation 5 appears likely to be misspecified.

535

In the model tested, about half of the 2,000 submodels tested failed ; and more

models failed with ¢; = 0.001 |YO,| than with e; = 0.01|Y0O,, which was expected.

The test took 7.414 minutes of CPU time; if all 25,665 submodels had been tested,

it would have taken an estimated 60 minutes of CPU time. An advantage of the

algorithm as programmed is that the test may be stopped after a given number of

submodels have been generated, and the relevant statistical information printed

out. Useful results may be obtained without testing all submodels, although

convergence of untested submodels cannot be guaranteed.

Another option of the program is the selection of submodels to be tested. The

user can specify that only submodels which include a given subset of equation

numbers will be generated and tested for convergence. Another option specifies

that only submodels which do not include any of a given set of equation numbers

wiil be generated and tested. Thus the algorithm facilitates the application of

Fisher’s Correspondence Principle to an econometric model and the discovery of

misspecified equations. 2

Massachusetts Institute of Technology

Submitted May 1972

Revised September 1973

REFERENCES

{1] Fisher, Franklin M., ““A Correspondence Principle for Simultaneous Equation Models,” Econo-
metrica, Vol. 38 No. | (January 1970), pp. 73-92.

(2] Purdom Jr., Paul, ““A Transitive Closure Algorithm,” BJT, No. 10 (1970), pp. 76-94.
[3] Tarjan, Robert, ““Depth-First Search and Linear Graph Algorithms,” SJAM Journal on Computing,

Vol. 1 No. 2 (June 1972), pp. 146-160.
[4] Tiernan, James C., “‘An Efficient Search Algorithm to Find the Elementary Circuits of a Graph,”

Comm. A.C.M., Vol. 13 No. 12 (December 1970), pp. 722-726.
[5] Weinblatt, Herbert, ““A New Search Algorithm for Finding the Simple Cycles of a Finite Directed

Graph,” Journal of the A.C.M., Vol. 19 No. 1 (January 1972), pp. 43-56.

APPENDIX A

The Klein—Goldberger Model as Used in Appiying the Convergence Criterion

(1) Z1 = Al- Y + CON1

(2) Z2 = A4- Y + CON2

(3) Z3 = All- Y + CON3

(4) Z4 = CON4- X + CONS

(5) Z5 = Al8-X — (A19-(Z9- Z6- Z7)/Z8) + CON6

(6) Z6 = (1/A24)-(X — A22-Z3 — CON7-Z7 — A22-C21 — CON8)

(7) Z7 = CON9- Z9 — CON10- Z6 + CON 11

(8) Z8 = A29- X + CON12

(9) Z9 = —A32-Z7 +- CON13

(10) Z10 = (Z8/(Z9 - Z6- Z7))(—Z18 + A38((Z9 - Z6- Z7 - Z11/Z8)

+ Z18 — Z14) + CON14)

(11) Z11 = PI — A41-X — (Z8/((Z9 - Z6- Z7))-(Z18 + CON15)

(i2) Z12 = (A44-(Z3 + C21)) + (Z8/(Z6 - Z7 - Z9))- A45- C24 + CON 16)

(13) Z13 = Cl + (C2. X-Z9- Z6- Z7/Z8)

536

(14) Z14 = C3 + (C4- Z11- Z9- Z6- Z7/Z8)

(15) Z15 = (CON17- Y- Z9- Z6- Z7/Z8) + CTS

(16) Z16 = (X - AS57- Z9- Z6- Z7/Z8) + CON18

(17) Z17 = —C9-Z7 + CON19

(18) Z18 = (A55- Z6- Z9- Z7/Z8) + CON20

The Z’s are the endogeneous variables of the full model, while the X, Y, and P/ are

literal substitutions (identities) for the following expressions.

X = Z1 + Z2+ Z3 + Z4 — Z5 + C21 + FCON1

Y = Z1 + Z2 + Z3 + Z4 — Z5 + C21 + FCON1 — Z10

+ (Z8/(Z6 - Z7 - Z9)) -(—Z13 — Z14 — Z15 — Z16 + Z17 — Z18

— C23 + FCON2)

PI = Z1 + Z2 + Z3 + Z4 — Z5 + C21 + FCON1 — Z8 — Z12

+ (Z8/(Z6 + Z7 + Z8)) — (—Z13 — Z16 — C23 + FCON3)

P = (Z6- Z9/Z8)

All other symbols are constants (which includes lagged variables for the purpose

of the convergence test). The correspondence between the Z’s and the quantities

they represent follows.

Zi = C: consumption of durables, billions of 1954 dollars

Z2 = C: consumption of non-durables and services, billions of 1954 dollars

Z3 = R: residential construction, billions of 1954 dollars

Z4 = H: stock of inventories, billions of 1954 dollars

Z5 = I,,: imports, billions of 1954 dollars

Z6 = h: index of hours worked per week, 1954 = 1.00

Z7 = N,,: wage and salary workers, millions

Z8 = W: wages and salaries and supplements to wages and salaries, billions

of 1954 dollars

Z9 = w: annual earnings, thousands of dollars

Z10 = S,: corporate savings, billions of 1954 dollars

Z11 = P.: corporate profits, billions of 1954 dollars

Z12 = z,: rental income and net interest, billions of 1954 dollars

Z13 = IT: indirect taxes, billions of current dollars

Z14 = T,: corporate profit taxes, billions of current dollars

Z15 = PT: personal taxes, billions of current dollars

Z16 = BT: business transfers, billions of current dollars

Z17 = GT: government transfers, billions of current dollars

Z18 = IVA: inventory valuation adjustment, billions of current dollars

The expressions of the following variables were substituted literally as they are

identities of the model.

X = X: gross national product, billions of current dollars

Y = Y: personal disposable incame, billions of 1954 dollars

PI = PI: proprietor’s income, billions of 1954 dollars plus P and IVA

P = Z6-Z7 — Z9/Z8: implicit GNP deflator, 1954 = 1.00

537

The following variables depend solely on lagged or exogeneous variables and were

not included in the incidence matrix of endogeneous variables.

r: yield on prime commercial paper, 4-6 months, percent

I: investment in plant and equipment, billions of 1954 dollars

D: capital consumption allowances, billions of current dollars

r: average yield on corporate bonds (Moody’s), percent

The following variable was not included (except as a constant) because coefficients

supplied in Fisher (1) caused it to be a constant.

SI: contributions for social insurance, billions of current dollars

The constants used in this model, as well as the initial values of both the endogeneous

and exogeneous variable may be found in Fisher (1).

APPENDIX B

Incidence Matrix and V-Cycles of the Klein—Goldberger Model

Incidence Matrix

ee oe oO se oO § fF Fes

SRE RR ee Bw ee ES Bee eS ee

wee eee eS ee oe oe

r>t?ores@s@eg6@ee0d0ddgodss

PE $000 hi Boe Oe 2 8 6 0.8 £8 SS

$3) 2:3 @ t5o- wwe © O88 8 B's. Ce

00000100i1000000 00 0

ek £2 2 OR ewe 2s Se 8 ee Se ee

0000001000060 00 0 0 0

ie, eS a ee oe ae ek ee ee ee ek

S Bomot oe 2 apace €.4: 41 -O: #42871

.* A281 f2.8 8.59 38 6 eS 84

Ss ROR bo BAe. 2 4 0.048 862

0000011 1101000000 «0

eee ee eee © § 2 oe ee

id 2s. 0.2 3 42.8 89 8.0 6 Oe 8 eS

00000010000000000 0

0 0 SO 5 to. 2 2.0.8 © 8.6 2 8.8

538

The Primitive V-Cycles of the Graph of the Full Model

Primitive VCycles of 2 Vertices

(2, 13) (3, 15) (1, 2) (2, 5) (5, 6) (2, 15) (1, 4) (i, 13) (4, 5) (5, 8) (7, 9) CL, 5) (2, 3) (6, 7)

(1, 15) (3, 4) (3,13) (1, 3) (2, 4) (3, 5)

Primitive V-Cycles of 3 Vertices

(1, 7, 15) (2, 10, 11) (1, 6, 18) (1, 11, 14) (3, 6, 13) (1, 8, 15) (1, 6, 10) (2, 6, 13) (3, 8, 13)

(3, 6, 15) (2, 8, 13) (2, 6, 15) (3, 8, 15) (1, 6, 13) (2, 8, 15) (1, 8, 13)

Primitive V-Cycles of 4 Vertices

(1,4, 10, 11) (1,4, 8, 10) (2, 3, 6, 10) (1, 5, 8, 18) (1, 10, 11, 13) (2, 3, 8, 18) (3, 4, 6, 18)

(1, 3, 6, 14) (3, 4, 11, 14) (2, 4, 6, 14) (1, 10, 11, 16) (3, 10, 11, 12) (3, 4, 8, 14) (3, 5, 6, 14)

(1, 6, 7, 17) (3, 11, 13, 14) (1, 5, 10, 11) (1, 5, 8, 10) (2, 3, 8, 10) (3, 11, 14, 16) (3, 4, 6, 10)

(2, 4, 6, 18) (1, 2, 6, 14) (3, 4, 8, 18) (3, 5,6, 18) (1, 3, 8, 14) (2,4, 11, 14) (3, 5, 11, 14)

(1, 10, 11, 15)(2, 4, 8, 14)(2, 5, 6, 14)(3, 5, 8, 14)(2, 11, 13, 14)(3, 11, 14, 15)(1, 3, 8, 18)

(2, 11, 15, 16) (3, 4, 10, 11) (2, 4, 6, 10) (3, 4, 8, 10) (3, 5, 6, 10) (2, 4, 8, 18) (2, 5, 6, 18)

(1, 2, 8, 14) (3, 5, 8, 18) (3, 10, 11, 13) (1, 4, 6, 14) (2, 5, 11, 14) (2, 5, 8, 14) (3, 6, 7, 17)

(1, 3, 10, 11) (2, 11, 14, 15) (1, 3, 8, 10) (1, 2, 8, 18) (3, 5, 10, 11) (2, 4, 8, 10) (2, 5, 6, 10)

(3, 5, 8, 10) (2, 5, 8, 18) (1, 4, 8, 14) (1, 5, 6, 14) (2, 3, 6, 14) (3, 10, 11, 15) (2, 10, 11, 16)

(2, 6, 7, 17) (1, 2, 8, 10) (1, 11, 14, 16) (3, 11, 12, 14) (1, 4, 8, 18) (2, 5, 8, 10) (2, 3, 6, 18)

(2, 3, 11, 14) (1, 5, 8, 14) (2, 3, 8, 14) (3, 4, 6, 14)

Primitive V-Cycles of 5 Vertices

(3, 10, 11, 15, 16)

