
This PDF is a selection from an out-of-print volume from the National Bureau
of Economic Research

Volume Title: New Developments in Productivity Analysis

Volume Author/Editor: Charles R. Hulten, Edwin R. Dean and Michael J.
Harper, editors

Volume Publisher: University of Chicago Press

Volume ISBN: 0-226-36062-8

Volume URL: http://www.nber.org/books/hult01-1

Publication Date: January 2001

Chapter Title: Dynamic Factor Demand Models and Productivity Analysis

Chapter Author: M. Ishaq Nadiri, Ingmar Prucha

Chapter URL: http://www.nber.org/chapters/c10125

Chapter pages in book: (p. 103 - 172)



M. Ishaq Nadiri is the Jay Gould Professor in Economics at New York University and a
research associate of the National Bureau of Economic Research.

Ingmar R. Prucha is professor of economics at the University of Maryland, College Park.
We would like to thank, in particular, William Baumol and Dale Jorgenson, and the parti-

cipants of the CRIW Conference on New Developments in Productivity Analysis for inter-
esting comments. Das Debabrata and Michel Kumhof provided excellent research assistance.
We are also grateful for the support received from the C. V. Starr Center for Applied Eco-
nomics at New York University.

�4
Dynamic Factor Demand Models
and Productivity Analysis

M. Ishaq Nadiri and Ingmar R. Prucha

4.1 Introduction

The traditional approach to productivity analysis is to use the Divisia
index number methodology. This approach has the advantage of simplicity
as well as the benefit of not requiring direct estimation of the underlying
technology. Therefore, the often difficult tasks of econometric specification
and estimation of structural models can be avoided. However, for the index
number approach to provide meaningful estimates of technical change,
fairly strong assumptions about the underlying technology and allocation
decisions by the firm must be maintained. In particular, it is necessary to
assume a constant returns to scale technology, competitive input and out-
put markets, full utilization of all inputs, and instantaneous adjustment of
all inputs to their desired demand levels. As a result, the productivity mea-
sures based on the index number approach will in general yield biased es-
timates of technical change, if any of these assumptions are violated.

Technical change is an integral feature of the production process.
Changes in variable factor inputs, the accumulation of quasi-fixed factor
inputs, and technical change are in general intertwined in that the demand
for inputs and the supply of outputs depend on the rate of technical
change, while technical change, in turn depends typically on the input and
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output mix. The traditional measure of total factor productivity (TFP)
measures only technical change, but does not explain the complex and
simultaneously determined process that governs the evolution of outputs,
inputs, and technical change.

A rationale for a general structural econometric modeling approach is
that it allows for the careful testing of various features of a postulated
model, rather than to simply impose those features a priori. We note that
any misspecification of the underlying technology of the firm will typically
lead to inconsistent estimates of technical change and the determinants of
the investment decisions. A simple illustration of misspecification is the
case where the true technology is translog but the hypothesized model is
Cobb-Douglas, or the case where the input adjustments involve consider-
able time lags but are ignored, or where the expectation process is not
taken into account or not formulated correctly. In such cases, the estimates
of the model parameters, including the estimates of technical change, will
be inconsistent. Thus, if the objective is to obtain a consistent estimate
of the true model parameters, choosing, for example, a simple model for
convenience of presentation and estimation is not admissible empirical
practice. The reason for considering a dynamic rather than a static factor
demand model is to not impose a priori that all factors are in long-run
equilibrium.

A general dynamic factor demand model, as considered in this paper,
has a fairly elaborate structure, requires an extensive data set and poses
considerable estimation challenges. However, there seem to be two im-
portant advantages to this approach: First, the model contains “simpler”
models as special cases. In particular, it contains static factor demand
models as special cases, but does not impose a priori the premise that all
factors are in long-run equilibrium. As in case of static factor demand
models, the analysis can be carried out by specifying the technology in
terms of a production function, cost/profit function, or restricted cost/
profit function, and the model can be estimated from a subset or the com-
plete set of the factor demand equations. Of course, if the model is only
estimated from the variable factor demand equations, then we do not have
to formulate an intertemporal optimal control problem.

Second, the dynamic factor demand model generates a very rich set of
critical information about the structure of production, sources of produc-
tivity growth, impact of technical change and effects of policy instruments
and expectations on output supply, input demand, direction of technical
change and productivity growth. Not only is it possible to calculate the
components of traditional productivity measures but also the determi-
nants of employment and investment decisions of the firm simultaneously.

More specifically, the advantages of the estimation of (dynamic) factor
demand models—apart from providing for the possibility of testing vari-
ous modeling hypotheses—may include the following:
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1. In estimating the technology we obtain explicit information on the
process that transforms inputs into outputs, and on changes of the techno-
logical frontier over time. In particular, we obtain estimates of technologi-
cal characteristics such as, for example, technical change, scale, and scope.
We may also gain estimates of the effects of R&D, spillovers, and so on.
Furthermore, we can compute marginal products, elasticities of substitu-
tion among the inputs, and the like, to describe the underlying structure
of production.

2. In estimating the demand for variable and quasi-fixed factors, we
gain additional insight into the underlying dynamics of factor allocation
and factor accumulation—short-run, intermediate-run, and long-run—as
a function of the variables that are exogenous to the firm. The latter vari-
ables typically include (expected) factor prices, taxes, exogenous technical
change, spillovers, and so on.

3. As a by-product of estimating dynamic factor demand equations, we
may gain insight into the expectation formation process and the firms
planning horizon, and how this process affects production decisions in
general and investment decisions in particular.

4. Furthermore, given that we allow the depreciation rate of capital
goods to be endogenously determined, we obtain an economic model for
replacement investment and expansion investment. (We note, however,
that the modeling framework also covers the case of an exogenous and
constant depreciation rate.)

The paper is organized as follows. In section 4.2, we begin by precisely
defining input- and output-based technical change on the primal (produc-
tion) side in the presence of adjustment costs. We then discuss how those
measures can be evaluated on the dual (cost) side. We also show how
capacity utilization rates can be derived in the context of dynamic factor
demand models. Next we discuss the conventional measure of TFP based
on the Divisia index, and show how this measure can be biased (as a mea-
sure of technical change) if the assumptions underlying its derivation are
not satisfied. The biases can, for example, be due to the presence of econ-
omies of scale, adjustment costs, and the difference between the shadow
prices and long-run rental prices of the quasi-fixed inputs.

In section 4.3, we first specify a general class of dynamic factor demand
models, which allows for several nonseparable quasi-fixed factors, for the
utilization rate/depreciation rate of some of the quasi-fixed factors to be
endogenously determined, and for expectations to be nonstatic. We then
discuss the class of linear quadratic dynamic factor demand models in
more detail. For this class of models we give explicit analytic expressions
for the firm’s optimal control solution, that is, for the firm’s optimal factor
inputs. Those expressions make clear the dependence of the firm’s invest-
ment decisions on the expectations of future exogenous variables. We also
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1. The subsequent discussion makes use of the following notational conventions (unless
explicitly indicated otherwise): Let Zt be some l � 1 vector of goods in period t, then pZ

t

refers to the corresponding l � 1 price vector; Zti and pZ
ti denote the i-th elements of Zt and

pZ
t , respectively. Furthermore, in the following we often write ( pZ

t )�Zt for ∑ l
i�1 pZ

tiZti where “�”
stands for transpose.

discuss convenient ways of estimating such models based on a reparame-
terization. Since some of this material may be unfamiliar and technically
involved, we have attempted to show step-by-step how the models are de-
rived and estimated. After our discussion of linear quadratic dynamic fac-
tor demand models, we discuss several approaches towards the estimation
of dynamic factor demand models in general. This includes the estimation
of the Euler equations by the generalized method of moments approach,
given rational expectations.

Section 4.4 reviews several empirical applications of dynamic factor de-
mand models. Dynamic factor demand models have been widely employed
to study the behavior of factor demands including investment and employ-
ment decisions, output supply behavior, profitability, nature of technical
change, spillover effects of R&D investment, international technology spill-
overs, role of public investment, taxes and subsidies, and so on. The empir-
ical examples are provided to illustrate the versatility of these models.

In section 4.5 we present briefly the results of a Monte Carlo study that
explores the effects of misspecifications. The true data generating process
corresponds to a general dynamic factor demand specification with non-
separable quasi-fixed factors, nonconstant returns to scale, and nonstatic
expectations. The model and various implied characteristics including
technical change are then estimated under the correct specification and
under various forms of misspecification. This allows us to assess the degree
of bias induced by various forms of misspecifications as when a simple
model of the firm’s technology is adopted for convenience of presentation
and estimation instead of the true model. Concluding comments are given
in section 4.6. A longer version of this paper is available as Nadiri and
Prucha (1999), which contains many of the underlying mathematical deri-
vations, and a more extensive list of references.

4.2 On the Conventional Approach to Productivity Analysis

As remarked in the Introduction, a focus of this paper is the presenta-
tion of recent developments in the dynamic factor demand literature and
their application to estimation of technical change and output growth. To
set the stage, we first give a brief review of the conventional Divisia index
based approach to productivity analysis. To put the discussion on sound
footing, we start with a formal definition of technical change.1
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2. The assumption of constant returns to scale is not necessary in cases where an indepen-
dent observation of the rental price of capital is available.

3. See, e.g., Berndt and Fuss (1986, 1989), Bernstein and Mohnen (1991), Caves, Chris-
tensen, and Swanson (1981), Caves, Christensen, and Diewert (1982), Denny, Fuss, and Wa-
verman (1981a), Hall (1988), Hulten (1986), Mohnen (1992a), Mohnen, Nadiri, and Prucha
(1983), Morrison (1986, 1992a,b), Nadiri and Prucha (1986, 1990a,b), Nadiri and Schanker-
man (1981a,b), and Prucha and Nadiri (1996).

4. Generalizations that allow for variable factor utilization rates will be discussed later.

4.2.1 Definition of Technical Change

The conventional Divisia index based measure of total factor productiv-
ity growth assumes, in particular: (1) that producers are in long-run equi-
librium, (2) that the technology exhibits constant returns to scale, (3) that
output and input markets are competitive, and (4) that factors are utilized
at a constant rate.2 The puzzle of the observed slowdown of productivity
growth during the 1970s has initiated a critical methodological review of
the conventional measure of productivity growth.3

The model considered in the following discussion relaxes these assump-
tions corresponding to the conventional measure of total factor productiv-
ity growth. In the following we define, within the context of that model,
appropriate measures of technical change. More specifically, in defining
technical change we first give such a definition on the (primal) production
side. We then show how the measure of technical change so defined can
be expressed alternatively on the (dual) cost side. To interpret the expres-
sions on the cost side, we also discuss measures of capacity utilization.

The following discussion allows, in particular, for a technology with
multiple outputs, allows for some of the factors to be quasi-fixed (and thus
does not assume that the firm is in long-run equilibrium), and allows for
nonconstant returns to scale.4 Now let Yt � (Yt1, . . . ,Ytk)� be the vector
of output goods produced by a firm during period t, and let Vt �
(Vt1, . . . ,Vtm)� and Xt � (Xt1, . . . ,Xtn)� be the vectors of variable and
quasi-fixed inputs utilized during period t, respectively. We then assume
that the technology can be represented by the following transformation
function

(1) F Y V X X Tt t t t t( , , , , ) ,� = 0

where the vector of first differences �Xt represent internal adjustment costs
in terms of foregone output due to changes in the quasi-fixed factors, and
Tt represents an index of (exogenous) technical change.

In the following it will also be useful to decompose the variable factors
into Mt � Vt1 and Lt � (Vt2, . . . ,Vtm)�, and to represent the technology in
terms of the following factor requirement function

(2) M M Y L X X Tt t t t t t= ( , , , , ).�
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5. See appendix A in Nadiri and Prucha (1999) for a derivation.

We can then think of the transformation function to be of the form

(3) F Y V X X T M Y L X X T Mt t t t t t t t t t t( , , , , ) ( , , , , ) .� �= − ≡ 0

For ease of notation, in the following we drop time-subscripts whenever
those subscripts are obvious from the context.

Primal Measures of Technical Change

To define technical change formally, assume that the technology index
T shifts by, say, �. Now let a � a(�, Y, V, X, �X, T) be the proportionality
factor by which all outputs Y can be increased, and let b � b(�, Y, V, X,
�X, T ) be the proportionality factor by which all inputs can be decreased
corresponding to this shift in technology when the firm remains on its
production surface, that is, F(aY, V, X, �X, T � �) � 0 and F(Y, bV, bX,
b�X, T � �) � 0. Furthermore, let c � c(�, Y, V, X, �X, T ) be the propor-
tionality factor by which all outputs Y can be increased corresponding to
an increase in all inputs by a factor � when the firm remains on its produc-
tion surface, that is, F(cY, �V, �X, ��X, T ) � 0. We can then give the
following two definitions of technical change, �Y and �X, and returns to
scale, �:

(4)
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where F(�) is evaluated at (Y, V, X, �X, T ). We refer to �Y and �X, respec-
tively, as the rates of output and input based technical change or produc-
tivity growth. For an explicit derivation of the above expressions see ap-
pendix A in Nadiri and Prucha (1999). We note that the definitions given
above are consistent with those given, for example, in Caves, Christensen,
and Swanson (1981) and Caves, Christensen, and Diewert (1982) for the
case of technologies without explicit adjustment costs.

In case of a single output good, we can also represent the technology in
terms of a production function, say,

(5) Y f V X X T= ( , , , ).�

Input and output based technical change can then also be expressed as
usual as5
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Dual Measures of Technical Change

We next show how these measures can be evaluated from the cost side,
using simple arguments of duality theory. We note that the expressions
developed below are given in terms of a restricted or variable cost function.
Expressions in terms of the (unrestricted) cost function are contained as a
special case, in that for the case where all factors are variable the restricted
cost function and the (unrestricted) cost function coincide.

Let pL denote the price vector for the variable inputs L normalized by
the price of the variable input M. The normalized variable cost is then
given by M(Y, L, X, �X, T ) � ( pL)�L. The normalized variable cost func-
tion is obtained by minimizing this expression w.r.t. L. Assuming that the
factor requirement function M(�) is differentiable and that a unique inte-
rior minimum exists, the corresponding first order conditions are given by

(7)
∂
∂

+ ′ =M
L

pL( ) .0

Let L̂ denote the minimizing vector. The normalized variable cost function
is then given by

(8) G p Y X X T M p LL L( , , , , ) ˆ ( ) ˆ� = + ′

where

ˆ ( , ˆ, , , ).M M Y L X X T= �

For duality results between factor requirement functions and normalized
restricted cost functions G(�), see, for example, Diewert (1982) and Lau
(1976). We assume that the function G(�) is twice continuously differenti-
able in all its arguments, homogeneous of degree zero in pL, nondecreasing
in Y, |�X |, and pL, nonincreasing in X, concave in pL, and convex in X,
and �X.

Differentiating equation (3) yields

(9)  for 
∂
∂

= ∂
∂

=F
Z

M
Z

Z Y L X X T, , , , .�

Differentiating equation (8) and utilizing equation (7) yields

(10)  for 
∂
∂

= ∂
∂

=G
Z

M
Z

Z Y X X T, , , .�
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6. We note that the mathematics used in deriving the expressions in equation (15) is analo-
gous to that used by Caves, Christensen, and Swanson (1981). The expressions also general-
ize those previously given in Nadiri and Prucha (1990a,b) for single-output technologies with

Consequently, we have

(11)  for 
∂
∂

= ∂
∂

=F
Z

G
Z

Z Y X X T, , , .�

From equation (9) with Z � L and equation (7) we obtain

(12)
∂
∂

= − ′F
L

pL( ) .

Furthermore, we have from equation (3)

(13)
∂
∂

= −F
M

1.

Given the variable inputs V � [M, L�]� are chosen optimally, that is, L �
L̂ and M � M̂, it follows from equations (12) and (13), and from equation
(8), that

(14) G p Y X X T M p L
F
V

VL L

j
j

j

m

( , , , , ) ˆ ( ) ˆ .� = + ′ = − ∂
∂=

∑
1

Substituting the expressions in equations (11) and (14) into equation (4)
yields the following expressions for technical change and returns to scale
in terms of the normalized restricted cost function G:

(15)
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The total shadow cost (normalized by the price of the variable factor M )
is defined as

(16) C G p Y X X T
G
X

X
G
X

XL

l
l

l

n

l
l

l

n

= − ∂
∂

− ∂
∂= =

∑ ∑( , , , , ) ,�
�

�
1 1

where �∂G/∂Xl and �∂G/∂�Xl denote the respective “shadow values.” The
above expressions for output based and input based technical change and
returns to scale generalize those given in Caves, Christensen, and Swanson
(1981) in that they allow explicitly for adjustment costs.6

110 M. Ishaq Nadiri and Ingmar R. Prucha



adjustment costs. A generalization of those expressions for multiple-output technologies with
adjustment costs and variable factor utilization rates is given in Prucha and Nadiri (1990,
1996), and will be discussed shortly.

Observe that substituting equation (16) into equation (15) yields the fol-
lowing expressions for input-based technical change and scale: �X ��(∂G/
∂T )/C and � � 1/[�k

i�1 (∂G/∂Yi)Yi /C ]. In the case where all factors are
variable we have C � G, and thus in the case of a single output good we
have the following simplifications: �Y � ��1�X with �X � �(∂C/∂T )/C and
� � 1/[(∂C/∂Y )Y/C ].

Capacity Utilization and Technical Change

The issue of a proper measure of technical change, given the firm is in
short-run or temporary equilibrium, but not in long-run equilibrium, has
also been discussed, among others, by Berndt and Fuss (1986, 1989),
Berndt and Morrison (1981), Hulten (1986), and Morrison (1986). Those
authors discuss proper measures of technical change in terms of adjust-
ments of traditional technical change measures by utilization rate mea-
sures. Berndt and Fuss (1986) and Hulten (1986) consider single output
technologies with constant returns to scale. Morrison also considers single
output technologies, but allows for (possibly) nonconstant returns to scale
and explicitly takes into account adjustment costs. Berndt and Fuss (1989)
consider multiple output technologies with (possibly) nonconstant returns
to scale, but do not explicitly consider adjustment costs.

We now show that the measures for �Y and �X are consistent with the
technical change measures of Berndt, Fuss, Hulten and Morrison by dem-
onstrating that �Y and �X can also be viewed as having been obtained via
a capacity utilization adjustment of conventional (long-run) measures of
technical change. For this purpose, consider the following restricted total
cost function (normalized by the price of the variable factor M ):

(17) C M p L c X

G p Y X X T c X

L X

L X

+ = + ′ + ′

= + ′

ˆ ( ) ˆ ( )

( , , , , ) ( ) ,�

where cX denote the vector of rental prices for the quasi-fixed factors X
(normalized by the price of the variable factor M ). Recall that in long-run
equilibrium, or in the case where all factors are variable, we have shown
above that input based technical change equals�(∂C/∂T )/C. Now suppose
we attempt to measure technical change in terms of the total restricted
cost function C� analogously by

(18) � +
+ += − ∂ ∂X C T C( / )/ .

Observing that ∂C�/∂T � ∂G/∂T it follows immediately from equation (15)
and equation (16) that
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7. See also the article by Hulten, chapter 1 in this volume.
8. The TFP measure based on the Divisia index may, however, be of interest.

(19) � ��

� �

Y X

X X

C C

C C

=

=
+

+

+
+

( / ) ,

( / ).

Analogously to Berndt, Fuss, Hulten, and Morrison we can interpret

(20) CU C C= +/

as a measure of capacity utilization and we can therefore interpret our
input- and output-based measures for technical change as being derived
from �X

� via an adjustment in terms of a capacity utilization measure to
account for temporary equilibrium. Clearly, in long-run equilibrium C�

equals C and hence in the long run �X
� equals �X. In general, however, �X

�

differs from �X by the factor C�/C.

4.2.2 Divisia Index Approach

In the productivity literature, technical change is often estimated as the
difference between the growth rate of a measure of aggregate output minus
the growth rate of a measure of aggregate input. This approach to estimate
technical change in terms of a residual dates back to Solow (1957). In
computing aggregate output and input, one of the most widely used meth-
ods of aggregation is Divisia aggregation. The conceptual justifications for
Divisia aggregation were developed by Jorgenson and Griliches (1967),
Richter (1966), Hulten (1973), and Diewert (1976), among others.7 In the
following we first define the conventional measure of total factor produc-
tivity based on the Divisia index formula. As remarked, the Divisia index
approach is based on a set of particular assumptions concerning the tech-
nology and the inputs and output markets. If any one of those assumptions
is violated, the measure of total factor productivity based on the Divisia
index formula will in general yield biased estimates of technical change in
that it may then include, for example, effects of scale economies or tempo-
rary equilibrium in addition to shifts in the production frontier.8 In the
following, we first develop a growth accounting equation for technical
change. We then compare this expression with that for the conventional
measure of total factor productivity, and based on this comparison discuss
potential sources of bias in the latter measure. The subsequent discussion
builds on Denny, Fuss, and Waverman (1981a), who consider a model
where all factors are variable, but where scale is allowed to differ from
unity. In the following discussion we take T � t.

The Conventional Measure of Total Factor Productivity

For ease of presentation, we start our discussion in continuous time.
Recall that V � [M, L�]� denotes the vector of all variable factors, and let
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pV � [1, pL�]� denote the corresponding price vector (normalized by the
price of M ). Furthermore, let pY denote the vector of output prices, and
let cX denote the vector of rental prices for the quasi-fixed factors X (nor-
malized by the price of M ). The Divisia index for aggregate output, say
Ya, is now defined by

(21)
˙ ˙Y

Y
s

Y
Y

a

a i
Y

i

k
i

i

=
=
∑

1

where the sY
i ’s denote output shares in total revenue R� � �k

i�1 pY
i Yi, i.e.,

(22) s
p Y
Ri

Y i
Y

i=
+

,

and where dots over variables denote derivatives w.r.t. time t. The Divisia
index for aggregate input, say Fa, is analogously defined by
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where the sV
j ’s and sX

l ’s denote input shares in total cost C� � �m
j�1 pV

j Vj �
�n

l�1 cX
l Xl; that is,

(24) s
p V

C
s

c X
Cj

V j
V

j
l
X l

X
l= =

+ +
, .

The conventional measure of total factor productivity, say, TFP, is now
defined as the ratio of the Divisia index of aggregate output over the Divi-
sia index of aggregate input, that is, TFP � Ya/Fa, and thus

(25)
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˙ ˙ ˙
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11 1

The above Divisia index based definition of total factor productivity
growth is given in continuous time. Empirical data typically refer to dis-
crete time points. For discrete data, the above formulae for the growth
rates of aggregate output, aggregate input, and total factor productivity
are typically approximated by the following Törnqvist approximations,
where � denotes the first difference operator:

(26) � �ln [ ] ln( ) ,,Y s s Yt
a

ti
Y

t i
Y
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k

= + −
=
∑1

2 1
1
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(27) � �
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Diewert (1976) has shown that the Törnqvist index is in fact exact if the
underlying potential function has a translog form. We note further that a
primary feature of the Divisia/Törnqvist index approach is that it can be
implemented even if the number of inputs and outputs is large; see Die-
wert (1980).

Growth Accounting Equation for Technical Change

For ease of presentation we again start our discussion in continuous
time. Consider the continuous time analog of equation (8),

(29) G p Y X X t M p LL L( , , , ˙ , ) ˆ ( ) ˆ .= + ′

Differentiation of the above equation w.r.t. t and observing that L � L̂ and
M �M̂ yields
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By Shephard’s lemma L � (∂G/∂pL)�. Upon substitution of this expression
into the above equation it is easily seen that
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As implied by equation (15), input-based technical change is now obtained
by dividing the above equation by the continuous time analog of the re-
stricted total shadow cost defined in equation (16), that is, C �
G( pL,Y,X,Ẋ,t) � �l(∂G/∂Xl)Xl � �l (∂G/∂Ẋl)Ẋl. Some simple algebra—and
recalling that V � [M,L�]� and pV � [1,pL�]�—then yields the following
expression for input-based technical change:
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For given “shadow values” �∂G/∂Xl and �∂G/∂Ẋl we have ∂G/∂Yi � ∂C/
∂Yi, and the gis can be interpreted as the elasticities of the restricted total
shadow cost C with respect to the output Yi. Furthermore, sV

j , sX
l and sẊ

l

represent the input cost shares for, respectively, Vj, Xl and Ẋl in the re-
stricted total shadow cost. An analogous expression to (32) for single
output technologies is, for example, given in Morrison (1986, 1992a).
Analogous expressions for models without explicit adjustment costs are
given in, for example, Denny, Fuss, and Waverman (1981a) and Berndt
and Fuss (1989). Generalizations that allow for endogenous factor utiliza-
tion are given in Prucha and Nadiri (1990, 1996), and will be discussed in
section 4.3.

For purposes of interpreting equation (32), observe that in light of equa-
tion (15), �k

i�1 gi � 1/�, where � denotes the scale elasticity. In case of single
output good, the above expression for input based technical change simpli-
fies to
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From this expression we see that in calculating input based technical
change in case of increasing (decreasing) returns to scale, output growth
is diminished (enhanced) before subtracting the growth in aggregate in-
puts. In case of a single output good, constant returns to scale, and in
case all factors are variable, the growth accounting equation for technical
change simplifies further to
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which corresponds to the expression developed by Solow (1957).
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The above expressions for technical change were derived in continuous
time. In appendix A in Nadiri and Prucha (1999), we derive the following
discrete time approximation of equation (32):

(35)
1
2

1
2

1 1
1

1
2

1
2

1
2

1
1

1

1
1

1
1

1
1

( )
( )

[ ] ln( )

[ ] ln( )

[

,

,

� �t
X

t
X

t

t

t

t

i

k

ti t i ti

j

m

tj
V

t j
V

tj

l

n

tl
X

t

C

G

t C

G

t

g g Y

s s V

s s

+ = −
∂
∂

−
∂

∂ −







= +

− +

− +

−
−

−

=
−

=
−

=
−

∑

∑

∑

�

�

,,

,

] ln( )

[ ] ln( )

l
X

tl

l

n

tl
X

t l
X

tl

X

s s X

�

� �� �− +
=

−∑1
2 1

1

with

g
G
Y

Y

C
s

p V

C

s
G

X

X

C
s

G

X

X

C

ti
t

ti

ti

t
t j
V tj

V
tj

t

lt
X t

lt

tl

t
lt

X t

lt

tl

t

= ∂
∂

=

= −
∂
∂

= −
∂
∂

, ,

, .�
�

Sources of Bias in the Conventional Measure of Total Factor Productivity

We now compare the growth accounting expression for technical change
with the conventional measure of TFP and explore sources of potential
bias in the latter measure. For ease of presentation, we again start the
discussion in continuous time. Consider the following alternative index for
aggregate output, say Y b, defined by
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9. Suppose the shadow price for a particular quasi-fixed factor exceeds the long-run price
used in the computation of TḞP/TFP. In this case TḞP/TFP will, ceteris paribus, overesti-
mate the technical change effects given the growth rate of the quasi-fixed input exceeds that
of the aggregate input index.

Recalling that in light of equation (15), �k
i�1 gi � 1/�, where � denotes the

scale elasticity, we can now write the growth accounting equation (32) for
input-based technical change as
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˙ ˙
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= −−

As demonstrated in appendix A in Nadiri and Prucha (1999), comparing
equations (25) and (38) yields the following decomposition of the conven-
tional measure of total factor productivity growth in continuous time.
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The first term in the above decomposition of TḞP/TFP corresponds to
actual (input-based) technical change. The remaining terms decompose
the difference between TḞP/TFP and technical change; that is, they reflect
sources of potential bias of TḞP/TFP as a measure of technical change.
More specifically, the second term reflects scale effects. We note that under
increasing returns to scale and positive output growth TḞP/TFP will over-
estimate technical change. The third term reflects the effects of deviations
from marginal cost pricing. The fourth term is due to the presence of ad-
justment costs. It consists of two effects: One effect stems from the differ-
ence in the marginal conditions for the quasi-fixed factors between short-
and long-run equilibrium due to adjustment cost, that is, the difference
between the shadow price and (long-run) rental price.9 The other effect
reflects the direct effect of adjustment costs in the sense that due to the
presence of Ẋ in the transformation function the growth rates of those
terms also enter the decomposition of the output growth rate.

Empirical data typically refer to discrete time points. Equations (26)–
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(28) provided Törnqvist approximations for the growth rates of the aggre-
gate output Ya, the aggregate input F a, and total factor productivity TFP.
Analogously, consider the following approximations for the growth rates
of the aggregate output Y b, and of the aggregate input F b:
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As demonstrated in appendix A in Nadiri and Prucha (1999), it is then
possible to decompose the Törnqvist index based approximation of the
growth rate of the conventional measure of total factor productivity as
follows:
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for � � t, t � 1. This decomposition and its interpretation is analogous to
the continuous time decomposition of TFP growth given in equations (39)
and (40). It generalizes analogous expressions given in Denny, Fuss, and
Waverman (1981a) for technologies without adjustment costs and in Na-
diri and Prucha (1986, 1990a,b) for single output technologies with adjust-
ment costs. Expressions that allow for endogenous factor utilization have
been considered in Prucha and Nadiri (1990, 1996), and will be discussed
in section 4.3. We note that variations of the decomposition equations
(39) or (43) have also appeared in various other studies, including Nadiri
and Schankerman (1981b), Bernstein and Mohnen (1991), and Mohnen
(1992a).

4.3 Recent Developments in Modeling Dynamic Factor Demand

The recent dynamic factor demand literature rests on the seminal work
of several contributors. Four advances in the theory and estimation meth-
odology are of particular importance: The neoclassical theory of invest-
ment, the advances in flexible functional forms of the production (cost)
functions, the development of duality theory, and the theoretical and em-
pirical developments concerning adjustment costs. It is the confluence of
these strands of literature that made the wide empirical applications of
factor demand models possible.

First, in a seminal contribution Jorgenson (1963) laid the foundation of
the neoclassical model of investment. He developed the concept of the
user cost of capital, that included explicitly various taxes and incentives.
Also, he modeled the lagged response of investment to changes in demand
for capital by generalizing the Koyck (1954) geometric lag distribution to
what is called the rational distributed lag; see Jorgenson (1966) and Jorgen-
son and Stephenson (1967). Many other facets of investment decisions
such as the rate of depreciation and the distinction between net and re-
placement investment were explicitly considered in a series of papers deal-
ing with theory and application of the neoclassical theory of investment;
see Jorgenson (1996a,b) for a collection of this important body of work.

Building on the neoclassical model of investment Nadiri and Rosen
(1969, 1973) introduced their interrelated disequilibrium model, whereby
disequilibrium in one factor market was formally related to the extent of
disequilibrium in other factor markets. As a result, short-run overshooting
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10. The transcendental logarithmic form has been used by Jorgenson with different associ-
ates to study the properties of the production structure and productivity analysis in a number
of sectors in the U.S. and Japanese economies and to compare productivity growth among
different countries; see Jorgenson (1995a,b).

11. For a detailed review of the literature and a collection of various other important
contributions see Fuss and McFadden (1978).

is possible, and the difference between short- and long-run price elasticities
for a particular input depends not only on its own partial adjustment pa-
rameter, but also on all cross adjustment parameters of other inputs.

A second major advance in the literature has been the formulation of
flexible functional forms for the description of the technology. The purpose
was to avoid restrictive features inherent in, for example, the Leontief and
Cobb-Douglas production functions. Flexible functional forms of cost and
production functions have first been introduced in the economics literature
in seminal papers by Christensen, Jorgenson, and Lau (1971, 1973) and
Diewert (1971). These authors introduced the transcendental logarithmic
and the generalized Leontief functional forms, respectively.10 These func-
tional forms do not impose a priori restrictive constraints such as homo-
theticity, constancy of elasticity of substitution, additivity, and so on. An-
other important flexible functional form has been proposed by McFadden
(1978) and extended by Diewert and Wales (1987).

The third strand of literature contributing to advances in the theory of
production was the development of duality theory. Fundamental contribu-
tions include Shephard (1953), Diewert (1971, 1982), Lau (1976), and Mc-
Fadden (1978).11 Of course, there was close interaction between the devel-
opment of flexible functional forms and duality theory. Profit and cost
functions (or restricted versions thereof) are widely used in empirical anal-
ysis. This may be explained in part by the following observation of McFad-
den (1978): “In econometric applications, use of the cost function as the
starting point of developing models avoids the difficulty of deriving de-
mand systems constructively from production possibilities, while at the
same time insuring consistency with the hypothesis of competitive cost
minimization” (4).

Fourth, in an effort to construct a dynamic framework capable of yield-
ing a demand for investment Eisner and Strotz (1963) introduced adjust-
ment cost into the neoclassical theory of the firm. Other important contri-
butions include Lucas (1967a,b), Treadway (1969, 1974), and Mortenson
(1973). These studies indicated that the multivariate flexible accelerator
model can be justified theoretically as a solution of a dynamic optimiza-
tion problem that incorporates adjustment cost for the quasi-fixed factors.
The adjustment cost incurred in order to change the level of the quasi-
fixed factors can take two forms. The first type is internal and reflects the
fact that firms may have to make trade-offs between producing current
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output and diverting some of the resources from current production to
accumulate capital for future production (e.g., Treadway 1974). The sec-
ond type is external: As the firm adjusts its quasi-fixed factors it may face
either a higher purchase price for these factors (e.g., Lucas 1967a,b) or a
higher financing cost for the accumulation of these inputs (e.g., Steigum
1983).

Based on these theoretical development on cost of adjustments a num-
ber of dynamic factor demand models referred to as the “third generation
models” have been estimated. For comprehensive reviews of this influen-
tial literature see Berndt, Morrison, and Watkins (1981) and Watkins
(1991). Examples include Denny, Fuss, and Waverman (1981b), Morrison
and Berndt (1981), Morrison (1986), and Watkins and Berndt (1992). Sev-
eral features of the “third generation” dynamic factor demand models are
important to note. First, those models are explicitly dynamic and provide
the optimal path of investment from temporary to full long-run equilib-
rium. The dynamic path of adjustment to long-run equilibrium is based
on economic optimization at each point in time; thus short-, intermediate-,
and long-run are clearly defined. Second, the speed of adjustment of the
quasi-fixed factors to their long-run equilibrium levels is allowed to be
endogenous and time varying, rather than exogenous and fixed. Third, the
short-run demand equations for variable inputs depend on, among other
things, prices of variable inputs, output, and stocks of the quasi-fixed in-
puts. Variable inputs may in the short-run overshoot their long-run equi-
librium values to compensate for the partial adjustment of the quasi-
fixed factors.

Empirical applications of third generation dynamic factor demand mod-
els typically only allowed for one quasi-fixed factor, or, slightly more gener-
ally, for several separable quasi-fixed factors. As a consequence of the sep-
arability assumption the models did not allow for interactions between the
optimal investment paths. The technical reason for maintaining separabil-
ity between the quasi-fixed factors was that it facilitated a major simplifi-
cation in the computation of the firm’s optimal investment decision. More
specifically, separability implies the absence of interaction between the
difference equations describing the optimal investment paths of the respec-
tive quasi-fixed factors. As a consequence, each of those equations can be
solved separately. Technically this entails the solving of a quadratic equa-
tion for each of the quasi-fixed factors—which, of course, can readily be
done analytically. If, however, separability is not maintained, then rather
than having to solve several quadratic scalar equations, one is confronted
with a quadratic matrix equation. Analytic expressions for the solution of
this quadratic matrix equation, and hence for optimal investment, are then
generally not available.

Other characteristics of the empirical implementation of third genera-
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12. On a theoretical level the generalized modeling framework has also been considered
by Bernstein and Nadiri (1987). A special case of the model was implemented in Nadiri and
Prucha (1996). Bischoff and Kokkelenberg (1987) adopt a related framework in which the
depreciation rate is modeled as a function of capacity utilization. For other contributions to
the dynamic factor demand literature that allows for the firm to operate at different levels of
utilization, but are based on an alternative modeling framework, see, e.g., Abel (1981) and
Shapiro (1986).

tion dynamic factor demand models were that the underlying technology
was modeled in a linear quadratic fashion, that expectations were typically
modeled as static, and that factor utilization rates were assumed to be
constant. Recent developments were aimed at a relaxation of those as-
sumptions.

4.3.1 Theoretical Model Specification

Technology and Optimal Control Policy

For the subsequent discussion we generalize the setup of section 4.2, in
that we consider a firm that combines the set of variable inputs Vt and the
set of quasi-fixed inputs Xt to produce the set of outputs for current sale Yt,
as well as a set of capital inputs for future production. More specifically, in
the generalized setup we allow the firm to also choose how much of the
beginning-of-period stocks of some (but not necessarily all) of the quasi-
fixed capital inputs will be left over at the end of the period. We note that
this adopted modeling framework dates back to Hicks (1946), Malinvaud
(1953), and Diewert (1980). In the empirical dynamic factor demand lit-
erature this framework was first adopted by Epstein and Denny (1980)
and Kollintzas and Choi (1985) for the case of a single quasi-fixed factor.
Prucha and Nadiri (1990, 1996) generalized the setup by allowing for
more than one quasi-fixed factor. They also discuss measures of technical
change and capacity utilization for the generalized modeling framework.12

We note that the generalized modeling framework contains—as discussed
in more detail later—the case where a constant fraction of the beginning-
of-period stocks is left over at the end of the period as a special case.

In the following we use Kt to denote the vector of the stocks of the quasi-
fixed capital inputs at the end of period t for which the firm chooses how
much of the beginning-of-period stocks will be left over at the end of the
period, and Ko

t to denote the vector of “old” stocks left over at the end of
period t from the beginning-of-period stocks Kt�1. Of course, being able
to choose the level of K o

t by, for example, choosing appropriate levels of
maintenance, is equivalent to being able to choose endogenously the rate
of depreciation for those stocks, since we can always write Ko

t � (1 � �K
t )

Kt�1 and interpret �K
t as a diagonal matrix of depreciation rates. Rt is the

vector of the end-of-period stocks of the quasi-fixed factors, whose depre-
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13. This assumption is made for simplicity of exposition. For a generalization where some
of the quasi-fixed factors immediately become productive and some become productive with
a lag see Prucha and Nadiri (1990, 1996).

14. As an illustration, suppose K is a scalar and corresponds to the stock of a certain
capital good; then qK may equal [1 � c � u (1 � mc)B]pIK/(1 � u), where pIK denotes the
price of new investment goods, u denotes the corporate tax rate, c is the rate of the investment
tax credit, m is the portion of the investment tax credit which reduces the depreciable base
for tax purposes, and B is the present value of depreciation allowances. We note that the
appropriate expressions for the price of new investment goods after taxes are actually ob-
tained by explicitly introducing taxes into the firm’s objective function. As a result, the price
of new investment goods after taxes will in general also depend on expectations on future
tax variables. We have not chosen this route for simplicity of presentation.

15. We note that the subsequent theoretical discussion can be readily modified also to
apply to the case of a profit maximizing firm.

ciation rates are exogenous to the firm. We assume furthermore that all
quasi-fixed factors become productive with a lag.13 In the notation of sec-
tion 4.2, we then have Xt � [K�t�1, R�t�1]� and �Xt � [�K�t , �R�t ]�. Fur-
thermore, as in section 4.2, we will decompose the variable inputs as Vt �
[Mt, L�t ]�.

In more detail, we assume that the firm’s technology can be represented
by the following factor requirement function:

( ) ( , , , , , , , ).45 1 1M M Y L K K R K R Tt t t t
o

t t t t t= − − � �

This specification generalizes the factor requirement function considered
in equation (2) in that it includes the vector of capital stocks left over at
the end of the period Ko

t . The stocks Kt and Rt accumulate according to
the following equations:

( ) , ( ) ,46 1K I K R I I Rt t
K

t
o

t t
R

t
R

t= + = + − −�

where IK
t and IR

t denote the respective vectors of gross investment and �R
t

denotes the diagonal matrix of exogenous depreciation rates (some of
which may be zero).

The firm’s cost in period t, normalized by the price of the variable factor
Mt, is given by

( ) ( ) ( ) ( ) ,47 M p L q I q It t
L

t t
K

t
K

t
R

t
R+ ′ + ′ + ′

where qK
t and qR

t denote the prices of new investment goods after taxes,
possibly normalized by 1 � ut, where ut denotes the corporate tax rate.14

We assume that the firm faces perfectly competitive markets with respect
to its factor inputs.

Suppose the firm’s objective is to minimize the expected present value
of its future cost stream.15 Substitution of equations (45) and (46) into
equation (47) then yields the following expression for the firm’s objective
function:
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where Et denotes the expectations operator conditional on the set of infor-
mation available in period t and r denotes the real discount rate (which
may possibly also incorporate variations in the corporate tax rate).

Suppose the firm follows a stochastic closed loop feedback control pol-
icy in minimizing the expected present value of its future cost stream de-
fined by equation (48). Then, in period t the firm will choose optimal val-
ues for its current inputs Lt, Kt, Rt, and for Ko

t . At the same time the firm
will choose a contingency plan for setting L�, K�, R�, and Ko

� in periods � �
t � 1, t � 2, . . . optimally, depending on observed realizations of the
exogenous variables and past choices for the quasi-fixed factors. Of course,
for given optimal values for L�, K�, R�, and Ko

� the optimal values for M�

are implied by equation (45). Prices, output, and the discount rate are
assumed to be exogenous to the firm’s optimization problem.

Since L� and Ko
� can be changed without adjustment costs the stochastic

closed loop feedback control solution can be found conveniently in two
steps. In the first step, we minimize the total (normalized) cost in each period
�� t, t� 1, . . . with respect to L� and Ko

� for given values of the quasi-fixed
factors and the exogenous variables. Substitution of the minimized expres-
sions into equation (48) then leads in the second step to an optimal control
problem that only involves the quasi-fixed factors K� and R�.

The part of total cost that actually depends on L� and Ko
� is given by

( ) ( , , , , , , , ) ( ) ( ) ,49 1 1M Y L K K R K R T p L q Ko L K o
� � � � � � � � � � � �− − + ′ − ′� �

that is, variable cost minus the value of the “old” stocks left over at the
end of the period from the beginning of period stocks. Assuming that M(�)
is differentiable and that a unique interior minimum of the above expres-
sion exists, the first order conditions for that minimum are given by
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Let L̂� and K̂o
� denote the minimizing vectors, then the minimum of the

variable cost minus the value of the “old” stocks is given by

( ) ( , , , , , , , )

ˆ ( ) ˆ ( ) ˆ ,

51 1 1G G p q Y K R K R T

M p L q K
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=
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with M̂� � M(Y�,L̂�,K̂o
�,K��1,R��1,�K�,�R�,T�). The function G(�) has the

interpretation of a normalized variable cost function net of the value of
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16. Compare, e.g., Stokey, Lucas, and Prescott (1989, ch. 9), for a more detailed list of
assumptions and a careful exposition of stochastic control theory, as well as for a discussion
of the transversality condition.

the “old” stocks left over at the end of the period from the beginning of
period stocks. Technically it can be viewed as the negative of a normalized
restricted profit function. For duality, results between factor requirement
functions and normalized variable profit functions see, for example, Diew-
ert (1982) and Lau (1976). We assume that the function G(�) is twice con-
tinuously differentiable in all its arguments, homogeneous of degree zero
in pL and qK, nondecreasing in Y, |�K |, |�R | and pL, nonincreasing in K�1,
R�1 and qK, concave in pL and qK, and convex in K�1, R�1, �K and �R.

As indicated above, the stochastic closed loop optimal control solution
for the quasi-fixed factors can now be found by replacing M� � ( pL

� )�L� �
(qK
� )�Ko

� in (48) by G( pL
� ,qK

� ,Y�,K��1,R��1,�K�,�R�,T�) defined in equation
(51), and then by minimizing
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with respect to the quasi-fixed factors {K�,R�}∞��t only. Standard control
theory implies that the stochastic closed loop feedback control solution
that minimizes (52), say {K̂�, R̂�}∞

��t, must satisfy the following set of sto-
chastic Euler equations (� � t,t � 1, . . . ):16
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where

c E q r I q rR R R R
� � � � � � ��= + − − ++ + +[ ( ) ( ) ]/( )1 11 1 1

can be viewed as a vector of rental prices. The firm’s optimization deci-
sions with respect to L� and Ko

� are incorporated in the stochastic Euler
equations via G�. (Recall from equation [51] that G� gives the minimal
value of the variable cost net of the value of the “old” stocks for given
values of the quasi-fixed factors and exogenous variables.) A detailed eco-
nomic interpretation of the stochastic Euler equations is given in appendix
B in Nadiri and Prucha (1999).

The optimal values for L� and Ko
� can be found by differentiating G� with
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17. In case of a profit maximizing model we have furthermore the following condition for
the output vector: ∂G� /∂Y� � pY

� � [∂pY
� /∂Y�]Y�.

18. For general technologies input decisions corresponding to the latter policy may be
viewed as first-order approximations to those of the former policy; see, e.g., Malinvaud
(1969) on the principle of certainty and first-order certainty equivalence.

respect to pL
� and qK

� and then making use of equation (50), that is, via
Shephard’s and Hotelling’s lemma:17
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The derivatives on the r.h.s. of the above equations need to be evaluated
at the optimal control solution for the quasi-fixed factors.

The formulation of a stochastic closed loop control policy generally re-
quires knowledge of the entire distribution of the exogenous variables. Al-
ternatively, one may postulate—as will be the case in the empirical appli-
cation—that the firm formulates a certainty equivalence feedback control
policy, which only requires knowledge of the first moment (mean) of the
exogenous variables. In that case, the firm’s objective function is given by
equations (48) or (52) with the expectations operator moved next to each
of the exogenous variables. The firm would now devise in each period t an
optimal plan for its inputs in periods t, t � 1, . . . such that its objective
function in period t is optimized, and then choose its inputs in period t
accordingly. In each future period the firm will revise its expectations and
optimal plan for its inputs based on new information. In case of a certainty
equivalence feedback control policy, the first order conditions for the opti-
mal plan in period t for the quasi-fixed factors would be given by equations
(53) and (54) with all exogenous variables replaced by their expected val-
ues (conditional on information available at time t and the expectations
operator in front of the respective derivatives suppressed). Equation (55)
remains the same. If G(�) is linear quadratic, then the well-known certainty
equivalence principle implies that the stochastic closed loop and the cer-
tainty equivalence feedback control policy are identical.18

Generalized Expressions for Technical Change and
Total Factor Productivity Decomposition

The discussion in section 4.2 considered the case where the depreciation
rates of all of the quasi-fixed factors are exogenously given. In this section,
we have allowed the depreciation rate of some of the quasi-fixed factors to
be endogenously determined. Analogously to equations (4) and (15) in
section 4.2.1, we can define primal and dual measures of input-based tech-
nical change �X, output-based technical change �Y, and scale �, and we
can define measures of capacity utilization for the generalized technology
considered in this section. Those expressions are given in Prucha and Na-
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19. There are some typos in Prucha and Nadiri (1996) in that between equations (3.4) and
(3.6) cK and cR should read cK and cR, and in equation (3.9) C� should read C.

20. For general surveys of functional forms in modeling the firm’s technology see, e.g.,
Fuss, McFadden, and Mundlak (1978) and Lau (1986).

21. The discussion can readily be extended to the case where both types of quasi-fixed
factors are present.

diri (1990, 1996), and are not repeated here in order to conserve space.19

Analogously to equations (39), (40), (43), and (44), one can also obtain,
respectively, a decomposition of the growth rate of total factor productiv-
ity and its Törnqvist index based approximation. A generalization of the
decomposition in equations (39) and (40) of the growth rate of TFP in
continuous time is given in appendix B in Nadiri and Prucha (1999). The
generalization of the Törnqvist index–based approximation in equations
(43) and (44) is analogous. For the case of a single output good, the latter
generalization is also given in Prucha and Nadiri (1990, 1996).

Flexible Functional Forms of Restricted Cost Functions

Empirical specifications of dynamic factor demand models typically
model the underlying technology in a “flexible” fashion. As discussed at
the beginning of section 4.3, flexible functional forms of cost and produc-
tion functions have first been introduced by Diewert (1971) and Chris-
tensen, Jorgenson, and Lau (1971, 1973). In the dynamic factor demand
literature, the technology has often been modeled in terms of a normalized
restricted cost function. In the following we discuss some of the functional
forms used in the recent literature.20

Recall that in our notation K refers to the vector of quasi-fixed factors
whose depreciation rate is endogenously determined, and R refers to the
vector of quasi-fixed factors whose depreciation rates are exogenous. For
ease of presentation, we focus the subsequent discussion on the case where
the depreciation rates of all quasi-fixed factors are exogenous to the firm.21

In this case the normalized restricted cost function equation given in (51)
simplifies to

( ) ( , , , , )56 1G G p Y R R TL
� � � � ��
= − �

given that we can now suppress K (and thus qK ). Also, we focus the discus-
sion on the case of a single output good Y. Furthermore, for ease of presen-
tation, we drop time subscripts in the following.

Observe that for linear homogeneous technologies we have

( ) ( , , , , ) ( , , , ) .57 1
1G p Y R R T g p

R
Y

R
Y

T YL L
−

−=�
�

The normalized restricted cost function introduced by Denny, Fuss, and
Waverman (1981b) and Morrison and Berndt (1981) is of the form
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22. Suppose we approximate H(Y ) in terms of a second-order expansion in logs, then
ln H(Y ) � const � �0 ln Y � �1(ln Y )2 � const � ln h(Y ), and therefore H(Y )	Y�0��1 ln Y.
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where 	0, 	T , 	TT are (scalar) parameters, aL, aR, aṘ, aLT , aRT , aṘT are
conformably dimensioned parameter vectors and ALL, ALR, ALṘ, ARR, ARṘ,
AṘṘ are conformably dimensioned parameter matrices. The normalized
restricted cost function given in equation (58) can be viewed as having
been obtained from a second order approximation of g( pL, R�1/Y, �R /Y,
T ). Following Denny, Fuss, and Waverman (1981b) and Morrison and
Berndt (1981), the above normalized restricted cost function can be simpli-
fied by imposing parameter restrictions such that the marginal adjustment
costs are zero at �R � 0, i.e., aṘ � 0, ALṘ � 0, ARṘ � 0, aṘT � 0.

Nadiri and Prucha (1990b) generalize this normalized restricted cost
function to cover also homothetic technologies by replacing Y on the r.h.s.
of equation (58) by h(Y ) � Y�0 � �1 ln(Y ). This generalization is based on the
observation that the normalized restricted cost function corresponding to
homothetic technologies is of the following general form:
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where H(Y ) is some function of Y. We note that h(Y ) can—apart from a
scaling factor—be viewed as a second-order translog approximation of
H(Y ), assuming the latter function is sufficiently smooth.22 Utilizing (15)
it is readily seen that scale is given by [(dH/dY )(Y/H )]�1. In the special
case where H(Y ) � Y�1 scale equals 1/�1.

A convenient feature of the normalized restricted cost function equation
(58) and its generalization is that they allow for closed form solutions for
the firm’s optimal factor demand. However, the factor demand equations
implied by these restricted cost functions are not symmetric in the sense
that they are not invariant as to which of the variable factors is chosen as
the numeraire. Thus different normalizations represent different specifica-
tions of the technology, which may seem arbitrary.
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Recently Mohnen (1992a) introduced a new restricted cost function
which treats all factors symmetrically, but also allows for closed form solu-
tions for the firm’s optimal factor demand. This cost function generalizes
the symmetric Generalized McFadden cost function put forth by Diewert
and Wales (1987) through the inclusion of quasi-fixed factors. The manner
in which the quasi-fixed factors are introduced is analogous to that in
equation (59).

A further restricted cost function which treats all factors symmetrically
was suggested by Morrison (1990). This restricted cost function represents
an extension of the Generalized Leontief restricted cost function intro-
duced by Diewert (1971). Prucha (1990) points out, however, that Morri-
son’s restricted cost function is not invariant to units of measurement. Thus
different choices of the units of measurements represent different speci-
fications of the technology, which may again seem arbitrary. Prucha (1990)
suggests a modification of Morrison’s restricted cost function such that
the resulting function is invariant to units of measurement. Based on the
observation in equation (59), he also suggests a generalization to cover ho-
mothetic technologies.

For all of the above discussed functional forms, the implied Euler equa-
tions form in essence a linear system of difference equations, which can be
solved explicitly along the lines discussed next in section 4.3.2. The Euler
equation estimation approach discussed in section 4.3.3 does not require
an explicit solution of the Euler equations. A functional form that has
been used widely in conjunction with this approach is the transcendental
logarithmic functional form introduced by Christensen, Jorgenson, and
Lau (1971, 1973).

4.3.2 Solution and Estimation of Dynamic Factor Demand
Models in Case of Linear Quadratic Technologies

Section 4.3.1 provided a general discussion of recent vintages of dy-
namic factor demand models. In this section, we consider in more detail
dynamic factor demand models in case the firm’s optimal control problem
is of a “linear quadratic” nature. In this case, it is possible to obtain ex-
plicit analytic solutions for the firm’s optimal factor inputs. We start the
discussion by considering a specific example. We then consider the solu-
tion and estimation of a general class of “linear quadratic” dynamic factor
demand models. To keep this discussion widely applicable, we only specify
the model in terms of a set of first order conditions, rather than in terms
of a specific cost or profit maximization problem.

Illustrative Example with Endogenous Depreciation Rate

In this subsection, we illustrate the solution and estimation of dynamic
factor demand models by considering in detail a specific example of the
model considered in section 4.3.1. As our illustrative model we consider
the model employed by Prucha and Nadiri (1990, 1996) in analyzing the
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production structure, factor demand, and productivity growth in the U.S.
electrical machinery industry. More specifically, we consider a model with
two variable inputs Mt, and Lt, two quasi-fixed factors Kt and Rt, and one
output good Yt. Following Prucha and Nadiri (1990, 1996), we may as-
sume that Mt and Lt denote, respectively, material input and labor input,
and Kt and Rt denote, respectively, the end of period stocks of physical
capital and R&D, and Yt denotes gross output. We allow for the firm to
determine the depreciation rate of capital endogenously, in that we allow
the firm to choose Ko

t , the level of “old” stocks left over at the end of
period t from Kt�1. The depreciation rate of R&D �R is fixed. With pL

t we
denote the price of labor, and qK

t and qR
t denote the after tax acquisition

price for capital and R&D normalized by the price of material goods. The
real discount rate r is taken to be constant over time.

To model the technology, we specify (dropping subscripts t) the follow-
ing functional form for the normalized variable cost function net of the
value of the “old” stocks as
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We note that the adopted functional form is a special case of the linear
quadratic restricted cost function specified in equation (58)—abstracting
from the fact that for notational simplicity the specification in equation
(58) was given only for the case where the depreciation rates for all quasi-
fixed factors are exogenously given. In light of the above discussion, we
note further that the technology specified by equation (60) is homogeneous
of degree �. Also recall that by duality theory G(�) is convex in K, R, �K,
�R and concave in pL and qK. This implies the following parameter restric-
tions: 	KK � 0, 	RR � 0, 	KK	RR � 	2

KR � 0, 	K̇K̇ � 0, 	ṘṘ � 0, 	LL � 0,
	KoKo � 0, 	LL	KoKo � 	2

LKo � 0.
Now suppose the firm’s objective is to minimize the present value of its

130 M. Ishaq Nadiri and Ingmar R. Prucha



23. A vector process, say, �t is said to be of mean exponential order less than � if there
exist constants c and � with 0 � � � � such that Et � �t�j � � c�t�j for all t and j � 0.

future cost stream. Suppose further that the firm determines its inputs
according to a certainty equivalence feedback control policy, and holds
static expectations on relative prices, output, and the technology. In this
case the firm’s objective function is given by the certainty equivalence an-
alog of equation (52) with G(�) defined by equation (60). As discussed
above, in each period t the firm establishes a plan for periods t, t � 1, . . .
of how to choose its inputs optimally by optimizing this objective function
conditional on its expectations, and implements the plan for the current
period t (only). The plan is revised every period as new information be-
comes available. For simplicity, we assume that expected (relative) prices
equal current (relative) prices. The certainty equivalence analog of the Eu-
ler equations (53) and (54) is then given by (� � 0, 1, . . . )
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where Ŷt denotes expected output. In solving equation (61), we restrict the
solution space to the class of processes that are of mean exponential order
less than (1 � r)1/2.23 This rules out the unstable roots. (Of course, the
unstable roots can also be ruled out by imposing the transversality condi-
tion.) As demonstrated in appendix B in Nadiri and Prucha (1999), solving
equation (61) yields
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That is, the optimal quasi-fixed inputs can be described in terms of an
accelerator model. The accelerator coefficients M � (mij)i, j�K,R are shown
to satisfy the following matrix equation:
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24. As discussed in more detail in section 4.4, Prucha and Nadiri (1996) cannot reject the
hypothesis of a constant depreciation rate for physical capital in the U.S. electrical machin-
ery industry.

(63) BM A rB M A2 0+ + − =( )

with A � (	ij)i, j�K,R and where B is the diagonal matrix with elements 	K̇K̇

and 	ṘṘ in the diagonal. The matrix C � (cij)i, j�K,R � �BM is seen to be
symmetric and negative definite.

The firm’s demand equations for the variable factors and the firm’s op-
timal choice for the “old” stock (to be left over from the beginning-of-
period capital stock) can be derived from equation (60)—using Shephard’s
and Hotelling’s lemma—as Mt � Gt � pL

t Lt � qK
t Ko

t , Lt � ∂Gt /∂pL
t , and

Ko
t � �∂Gt /∂qK
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Equation (65) provides an economic model for Ko
t and hence for the depre-

ciation rate of capital �K
t ; recall that the depreciation rate of capital is

implicitly defined by Ko
t � (1 � �K

t )Kt�1. Equation (65) explains Ko
t as a

function of relative prices, output, and lagged stocks. The case of a con-
stant and exogenously given depreciation rate is contained as a special
case with 	LKo � 	KoKo � 	RKo � 0 and 	KKo � �(1 � �K ). We emphasize
that by imposing those zero restrictions we can formally test whether or
not the depreciation rate is constant.24

One difficulty we face in trying to estimate this model is that in general
the quadratic matrix equation (63) cannot be solved for M in terms of A
and B. The equation can, however, be solved for A in terms of M and B:
A � BM(M � rI )(I � M )�1. Since the real discount rate r was assumed
to be constant, the matrix M is constant over the sample. Hence, instead
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25. This reparameterization approach was first suggested by Epstein and Yatchew (1985)
for a somewhat different model with a similar algebra, and was further generalized by Madan
and Prucha (1989). It will be discussed in more detail and within a generalized setting in the
next subsection. For additional empirical studies utilizing the reparameterization approach,
see, e.g., Mohnen, Nadiri, and Prucha (1986) and Nadiri and Prucha (1990a,b).

of estimating the elements of A and B, we may estimate those of M and
B.25 To impose the symmetry of C we can also estimate B and C instead
of B and M. Observe that A � C � (1 � r)[B � B(C � B)�1B] and hence
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To reparameterize equation (62), it also proves helpful to define D �
(dij)i, j�K,R � �MA�1. Observe that D � B�1 � (1 � r)(C � rB)�1. Hence,
D is symmetric and its elements are given by
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Given the definition of D we can rewrite equation (62) as
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The reparameterized factor demand equations are now given by equations
(64), (65), and (68) with 	KK, 	RR, 	KR, dKK, dRR, and dKR defined by equa-
tions (66) and (67). Once the model has been estimated in the reparameter-
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ized form, we can obtain estimates for the original model parameters via
A � C � (1 � r)[B � B(C � B)�1B].

A further difficulty in estimating the factor demand equations is that

(69) K I Kt t
K

t= + 0

is unobserved, since Ko
t depends on a set of unknown model parameters.

(We note that Ko
t is unobserved even in the special case of a constant and

exogenously given depreciation rate, that is, even in the case where 	LKo �
	KoKo � 	RKo � 0 and 	KKo � �(1 � �K), as long as �K is estimated from
the data.) We now assume, analogously to the approach taken by Epstein
and Denny (1980), that equation (65) for Ko

t holds exactly. This assumption
is clearly strong. However, it facilitates expression of the unobservable
stocks Kt and Ko

t , at least in principle, as functions of observable variables
and the unknown model parameters. More specifically, by solving equa-
tion (65) together with the identity Kt � IK

t � Ko
t recursively for Kt and Ko

t

from some given initial capital stock, say K0, we can express Kt as a func-
tion of IK

t , IK
t�1, . . . ,K0, Rt�1, Rt�2, . . . , the exogenous variables and the

model parameters. Consequently, upon replacing Kt and Kt�1 in the vari-
able factor demand equation (64) and in the quasi-fixed factor demand
equation (68) by the expressions so obtained we can, at least in principle,
rewrite the system of factor demand equations as a dynamic system of
equations that determines IK

t , Rt, Mt, and Lt, and where in the so obtained
system all variables are observable. (If the initial stock is unobserved we
may treat it as an additional parameter.)

For purposes of estimation, we need to add stochastic disturbance terms
to each of the factor demand equations (64) and (68). Those disturbances
can be viewed as random errors of optimization, errors in the data, or as
stemming from random shocks observed by the firm but not by the re-
searcher; cp., for example, Epstein and Yatchew (1985). Assuming that the
disturbances are not correlated with the variables in the firm’s information
set we can, for example, use those variables (and functions of them) as
instruments in estimating the model by the generalized method of mo-
ments (GMM) approach. The GMM estimation approach was introduced
by Hansen (1982) within the context of stationary data generating proces-
ses. To allow for (possibly unknown) correlation over time, we may esti-
mate the variance covariance matrix of the moments with a heteroskedas-
ticity and autocorrelation robust variance covariance matrix estimator.
For a general discussion and recent results concerning the asymptotic prop-
erties of GMM estimators for (possibly) temporally dependent and non-
stationary data generating processes, including a discussion and consis-
tency results of heteroskedasticity and autocorrelation robust variance
covariance matrix estimator, see, for example, Gallant and White (1988)
and Pötscher and Prucha (1997).

Numerical algorithms for the computation of estimators that are defined
as optimizers of some statistical objective function—as, for example, the
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generalized methods of moments estimator or maximum likelihood esti-
mator—generally require the numerical evaluation of the statistical objec-
tive function for different sets of parameter values. We note that for the
actual numerical computation of estimators of the model parameters it is
not necessary to solve equations (65) and (69) analytically for Kt (and Ko

t).
Rather we can first solve, for any given set of parameter values, equations
(65) and (69) numerically for Kt (and Ko

t), and then employ the numerical
solution for Kt (rather than the analytic solution) in evaluating the statisti-
cal objective function. This approach is, however, typically cumbersome
in that it requires the programming of the estimation algorithm by the
researcher. Recently Prucha (1995, 1997) suggested a more convenient ap-
proach based on a reformulation of the analytic solution. This approach
can be performed with standard econometric packages such as TSP.

Solution and Estimation of a General Class of Models

The illustrative example presented in the previous subsection can be
viewed as a special case of a more general class of models where the firm’s
optimization problem involves the computation of a stochastic closed loop
optimal control solution and where the objective function is “linear qua-
dratic.” As discussed above, the stochastic closed loop optimal control so-
lution can always be found in two steps. In the first step we optimize the
firm’s objective function in each period with respect to the variable factors,
for given values of the quasi-fixed factors. Substitution of the optimized
values for the variable factors back into the firm’s objective function then
yields a new optimal control problem that only involves the quasi-fixed
factors, which can be solved in a second step. In the following, let Xt denote
the, say, n � 1 vector of quasi-fixed factors—that is, the vector of control
variables for the second step.

For a wide class of linear quadratic optimal control problems, the opti-
mal control solution will have to satisfy a set of linear second order differ-
ence equations (possibly after recasting a higher order difference equation
system into a second order one). In particular, assume that the control var-
iables satisfy the following set of difference equations (� � t, t � 1, . . . ):

(70) − + − + ′ =+ −BE X GX r B X E� � � � � ��1 11( )

where B and G are n � n matrices, the ��s represent a set of forcing vari-
ables, r is the discount rate, and where the respective expectations are as-
sumed to exist. Since the objective function is linear quadratic, certainty
equivalence implies that solving equation (70) is equivalent to solving the
difference equations (� � t, t � 1, . . . ):

(71) − + − + ′ = ++ −BX GX r B X r a� � � �1 11 1( ) ( )

with a� � Et�� /(1 � r).
We note that while the methodology discussed here is presented within
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26. We note that the discussion also applies to processes described by a set of higher order
difference equations, as long as that system can be rewritten as a second order difference
equation system of the above form.

27. See, e.g., Epstein and Yatchew (1985), Hansen and Sargent (1980, 1981), Kokkelenberg
and Bischoff (1986), Kollintzas (1985), and Madan and Prucha (1989). See also Binder and
Pesaran (1995, 1997) for a recent review of rational expectations models and macroeconome-
tric modelling.

the context of dynamic factor demand models, it applies more generally to
any rational expectations model where the data generating process Xt is
determined in the preceding manner.26 The literature on finding optimal
control solutions and solving rational expectations models has a long his-
tory.27 The aim of the methodology outlined below is not only to obtain a
solution of equation (71) for the Xt, but to express the solution so that
the estimation of the model can be performed by standard econometric
packages (such as TSP).

We assume that B is nonsingular and restrict the solution space to the
class of processes Xt that are of mean exponential order less than (1 � r)1/2.
The characteristic roots of the difference equation system (71) are defined
as solutions of

(72) p B G r B( ) det[ ( ) ] .� � �= − + − + ′ =2 1 0

It is well known and not difficult to show that those characteristic roots
come in pairs multiplying to (1 � r). We assume that these roots are dis-
tinct. It then follows that there are exactly n roots that are less than (1 �
r)1/2 in modulus. Let � be the n � n diagonal matrix of these roots, and let
V be the n � n matrix of solution vectors corresponding to those roots,
that is,

(73) − + − + ′ =BV GV r B V� �2 1 0( ) .

As in Kollintzas (1986) and Madan and Prucha (1989), we assume that V
is nonsingular, and define M � I � V�V�1. Given the maintained assump-
tions, the following theorem follows, for example, from Madan and Pru-
cha (1989):

T 1. The solution for Xt of the difference equation system (70) (or,
because of certainty equivalence, [71]) is uniquely given by the following
accelerator model:

(74) X MX I M X X A J
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28. Both Epstein and Yatchew (1985) and Madan and Prucha (1989) consider matrices G
with additional structure, which they utilize during the reparameterization. The discussion
in this appendix shows that the reparameterization approach works even without additional
structure on G.

29. The above discussion of the solution and estimation of dynamic factor demand models
is given in form of a discrete time model. The reason for this is that empirical data typically

The accelerator matrix M satisfies

( ) ( ) ( ) ( ) .75 1 02− − + − − + ′ =B I M G I M r B

Furthermore, S � B(I � M ) is symmetric.

In the case of static expectations on the forcing variables we have a� �
a t. In this case the above solution simplifies in that in this case Jt � a t.

Madan and Prucha’s proof of the theorem is based on a decomposition
of X� into a backward component, given by (I � M )X��1, and a forward
component, given by g� � X� � (I � M )X��1, where M is determined by
equation (75). This basic approach has recently also been used by Binder
and Pesaran (1995, 1997) to solve rational expectations models, where, in
our notation, B is allowed to be nonsingular. Binder and Pesaran refer to
this approach as the quadratic determinantal equation (QDE) method.

The quadratic matrix equation (75) can generally not be solved for M
in terms of the original parameter matrices B and G, except in case Xt is a
scalar; that is, n � 1. However, we can use equation (75) to express G in
terms of M and B, that is,

( ) ( ) ( ) ( ) .76 1 1G B I M r B I M= − + + ′ − −

Thus, we can reparameterize the model in terms of M and B, and estimate
M and B rather than the original parameter matrices G and B. As re-
marked above, this reparameterization approach was first suggested by Ep-
stein and Yatchew (1985) within the context of a symmetric dynamic factor
demand model where B�B� (and G�G�). Madan and Prucha (1989) point
out that this symmetry is, for example, typically violated if factors are
allowed to become productive at different points in time—for example, if
some factors become productive immediately and some with a lag—and/
or if we allow for nonseparability between the adjustment cost terms and
the inputs. Madan and Prucha (1989) then extend the reparameterization
approach to nonsymmetric dynamic factor demand models with B � B�
(and G � G�). This approach is presented in more detail in appendix B in
Nadiri and Prucha (1999).28 The discussion in this appendix also considers
an explicit specification of the stochastic process governing the forcing vari-
ables. In adopting a re-parameterization for the parameters describing that
process, it is possible, as also demonstrated in this appendix, to obtain
closed form analytic expressions for Xt in terms of the model parameters and
the forcing variables. The advantage of the reparameterized model is that it
can be estimated with standard econometric packages such as TSP.29

Dynamic Factor Demand Models and Productivity Analysis 137



refer to discrete time points. Potential pitfalls in using formulas for the optimal factor inputs
derived from a continuous time model for estimation from discrete data are considered in
Prucha and Nadiri (1991). For a more detailed discussion see Nadiri and Prucha (1999).

4.3.3 Estimation of Dynamic Factor Demand
Models for General Technologies

The theoretical model specified in section 4.3.1 is quite general, and
allows for the firm’s technology and optimal control problem to be “non–
linear quadratic.” We note that in case the firm’s optimal control problem
is not of a linear quadratic nature, it is generally not possible to obtain an
explicit analytic expression for the firm’s stochastic closed loop feedback
control solution. In the following, we discuss strategies for estimating non–
linear quadratic dynamic factor demand models. Those strategies can, of
course, also be applied in estimating linear quadratic dynamic factor de-
mand models.

Before proceeding we reemphasize that while the model specification in
section 4.3.1 is quite general, the discussion does not impose this general-
ity. That is, the discussion also covers implicitly less general specifications
as special cases. The specification in section 4.3.1 contains in particular
the case where all factors are variable—and hence the firm is at each point
in time in long-run equilibrium—or the case where the depreciation rates
of all quasi-fixed factors are exogenously given as special cases.

Estimation of Variable Factor Demand Equations

In estimating a factor demand model we can, in principle, always at-
tempt to estimate the unknown model parameters from only a subset
rather than the entire set of factor demand equations. Statistically there
are pros and cons for such a strategy: If the model is correctly specified,
we will generally obtain more efficient estimates by utilizing the entire set
of factor demand equations rather than a subset. However, if one or a sub-
set of the factor demand equations is misspecified, then not only the param-
eters appearing in the misspecified equations, but in general all model
parameters will be estimated inconsistently.

As is evident from the discussion in section 4.3.1, certain aspects of the
model specification such as the nature of the optimal control policy and
the expectation formation process only enter into the specification of the
demand equations for the quasi-fixed factors. Consequently, in this sense
the demand equations for the quasi-fixed factors are more susceptible to
potential misspecification than the demand equations for the variable fac-
tors. In cases where the determinants of the demand for the quasi-fixed
factors are not of real interest, but where one is especially concerned about
the possibility of misspecification of the quasi-fixed factor demand equa-
tions, it may be prudent only to estimate the variable factor demand equa-
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30. The variable factor demand equations typically form a triangular structural system.
Lahiri and Schmidt (1978) point out that the full information maximum likelihood (FIML)
estimator and the iterative seemingly unrelated regressions (SUR) estimator are identical for
triangular structural systems. This identity might be thought to imply that for such systems
the variance covariance matrix estimator typically associated with the SUR estimator is a
consistent estimator for the asymptotic variance covariance matrix. However, Prucha (1987)
points out that this is generally not the case.

31. The approach has been used widely in empirical work. Early empirical implementa-
tions include Pindyck and Rotemberg (1983) and Shapiro (1986).

tions. By estimating only the variable factor demand equations, we are
typically also faced with a less complex estimation problem.

The variable factor demand systems can take various forms depending
on the specification of the technology. For example, in case the technology
is specified in terms of a translog restricted cost function the variable fac-
tor demand system is typically given by a system of share equations.30 The
model specified in section 4.3.1 allows depreciation rates of some of the
quasi-fixed factors to be determined endogenously and to be modeled as
a function of unknown parameters. As remarked above, as a result the
stocks of those quasi-fixed factors are then unobserved. To estimate the
system of variable factors, we may proceed analogously as outlined at the
end of section 4.3.2, subsection “Illustrative Example with Endogenous
Depreciation Rate”; for empirical applications see, for example, Epstein
and Denny (1980) and Nadiri and Prucha (1996).

Euler Equation Estimation Approach

In section 4.3.1 we derived a general set of stochastic Euler equations
that need to be satisfied by the stochastic closed loop feedback optimal
control solution for the quasi-fixed factors without restricting the technol-
ogy to be linear quadratic. Those stochastic Euler equations are given by
equations (53) and (54). In section 4.3.2 we solved those equations explic-
itly for the case where the technology is, indeed, linear quadratic. In case
the technology is non–linear quadratic, such an explicit solution is gener-
ally not available. In this case we may then adopt an alternative estimation
approach due to Kennan (1979), Hansen (1982), Hansen and Sargent
(1982), and Hansen and Singleton (1982).31 In this approach all expecta-
tions of future variables are replaced by their observed values in future
periods. More specifically, in this approach we would rewrite the stochas-
tic Euler equations (53) and (54) as
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32. For references concerning the asymptotic properties of GMM estimators see the dis-
cussion at the end of section 4.3.2.

33. A further approach for modeling and estimating dynamic factor demand models that
allows for “non–linear quadratic” technologies and nonstatic expectations, and is based on
a finite horizon specification, was suggested in several papers by Prucha and Nadiri (1982,
1986, 1988, 1991); recent contributions include Gordon (1996) and Steigerwald and Stuart
(1997). A more detailed discussion is given in Nadiri and Prucha (1999).

If expectations are truly formed rationally, we have EtvK
t � 0 and EtvR

t �
0, and equations (77) and (78) can then be estimated consistently by the
GMM estimation approach.32 Of course, the stochastic Euler equations
(77) and (78) can be augmented by the demand equations for the variable
factors. Recall that Kt denotes the vector of quasi-fixed factors for which
the depreciation rates are determined endogenously and are modeled as a
function of unknown parameters. Thus, as remarked, Kt is unobserved. In
estimating the demand equations, we may again proceed analogously as
outlined at the end of the “Illustrative Example” subsection.

The Euler equation estimation approach allows considerable flexibility
in the choice of the functional form for the technology. Also, it does not
require an explicit specification of the process that generates the variables
exogenous to the firm’s decision process or specific assumptions concern-
ing the firm’s planning horizon. However, it is generally not fully efficient
in that it neglects information from the entire set of Euler equations (and,
e.g., the transversality condition), which only comes into play by actually
solving the Euler equations. In their comparison of alternative methods
for estimating dynamic factor demand models, Prucha and Nadiri (1986)
report that small sample biases and efficiency losses seem especially pro-
nounced for parameters that determine the dynamics of the demand for
the quasi-fixed factors. We note further that, although the Euler equation
estimation approach does not require either an analytic or numerical solu-
tion for the firm’s optimal demand for the quasi-fixed factors, such a solu-
tion—or some approximation to it—will be needed, for example, for tax
simulations.33

4.3.4 Further Developments

There have been other important developments in addition to those de-
scribed above. In particular, since the late 1970s there was a process of
convergence between the investment literature based on Tobin’s (1969) q
and the investment literature with explicit adjustment costs. In Tobin’s in-
vestment model the rate of investment is a function of q, defined as the
ratio of the market value of capital to its replacement cost. Hayashi (1982)
shows the equivalence of the two investment theories for a general class of
models; see also Mussa (1977) and Abel (1983). The literature distin-
guishes between average q, defined as the ratio of the market value of
existing capital to its replacement cost, and marginal q, defined as the ratio
of the market value of an additional unit of capital to its replacement cost.
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34. See, e.g., Berndt, Morrison, and Watkins (1981), Jorgenson (1986, 1995a,b, 1996a,b),
Watkins (1991), and Good, Nadiri, and Sickles (1997) for partial references.

While average q is observable, marginal q, which is the quantity relevant
for the firm’s investment decision, is not observable. However, Hayashi
(1982) also derives an exact relationship between average q and marginal
q, which is important for a proper empirical implementation of the q the-
ory of investment.

Another important development is an expanding literature that consid-
ers the effects of irreversibility combined with uncertainty and timing flex-
ibility on the firm’s investment decision. Irreversibility is another avenue
that introduces a dynamic element into the investment decisions. The liter-
ature on irreversible investment dates back to Arrow (1968). The more
recent literature utilizes option pricing techniques to determine the firm’s
optimal investment pattern under irreversibility. A survey of this literature
and exposition of those techniques is given in Dixit and Pindyck (1994).
One way to incorporate irreversibility into an adjustment cost model is
to assume infinitely large adjustment costs for negative investment. This
approach was, for example, taken by Caballero (1991). Another approach
was explored by Abel and Eberly (1994). Their model incorporates Ar-
row’s observation that the resale price of capital may be less than the pur-
chase price of new capital, which includes the case where the resale of cap-
ital is impossible, corresponding to the extreme case of a resale price of
zero. Additionally, their model includes adjustment costs as well as fixed
costs and thus provides for an interesting integration of the irreversible
investment and adjustment cost literature.

4.4 Applications

There are numerous applications of the factor demand models using
different sets of data and answering important questions of theoretical,
empirical, and policy interest. There is a vast literature showing the wide-
spread use of factor demand models for empirical analysis.34 The class of
dynamic factor demand models considered in section 4.3 has been used to
study a variety of subjects ranging from the analysis of the production
structure of various industries, the rate of technical change, the impact of
R&D investment and R&D spillovers, the convergence of productivity lev-
els, the effect of public infrastructure on the private sector productivity,
the impact of financial variables on production decisions, the cyclical be-
havior of utilization and markup of prices over costs, and so on. Here we
will provide only a brief description of a few applications of dynamic fac-
tor demand models for illustrative purposes. To save space, we do not
report on the formal structure of the models used in the studies.

As remarked above, besides analyzing productivity behavior, the dy-
namic factor demand methodology also addresses issues concerning the
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structure of production such as substitution among factors of production
in response to changes in relative prices; technological change; changes in
public capital; international, interindustry, or interfirm spillovers due to
R&D investment; and so on. The time path of the adjustment of different
types of capital and the linkages between short-, intermediate-, and long-
run behavior are explicitly modeled and estimated. Changes in capacity
utilization rates and depreciation rates of different types of capital and
their effects on the demand for other inputs can be estimated. Given esti-
mates of the depreciation rates it is possible to decompose gross invest-
ment into replacement and net investments, and generate consistent mea-
sures of capital stocks within the framework of the dynamic factor
demand model.

4.4.1 Tax Incentives, Financing, and Technical Change

The effect of taxes and other incentives on factor demand and output
growth has been of a long and ongoing interest in the literature. The role
of taxes as a component of the user cost of capital was made clear in
seminal papers by Jorgenson (1963) and Hall and Jorgenson (1967, 1971).
Jorgenson and his associates have examined the impact of tax incentives
for business investment in the United States in a series of papers; see Jor-
genson (1996b) for more detailed references. Hall and Jorgenson (1967,
1971) modeled the accelerated depreciation of the 1954 tax law and guide-
lines for asset lifetimes, the investment tax credit introduced in 1962, the
reduction in corporate tax rate in 1964 and the suspension of the invest-
ment tax credit in 1966. These tax law changes were incorporated as ele-
ments of the user cost of capital. The general conclusion of this body of
work was that investment incentives exert a considerable long-run effect
on the rate of capital accumulation. Each major change in investment in-
centives was followed by an investment boom which in turn led to in-
creases in the level of economic activity that induced further increases in
investment. However, the lag between changes in investment incentives
and investment expenditure was found to be fairly long.

As discussed in section 4.3, given the underlying intertemporal optimi-
zation framework, the notion of a user cost of capital or the after tax
acquisition price is also present within the framework of the dynamic fac-
tor demand models reviewed in this paper. A general discussion of the
effect of taxes and incentives within the context of dynamic factor demand
models is, for example, provided by Bernstein and Nadiri (1987). We
emphasize that in general the effect of any tax changes designed to affect
a particular factor of production will influence also the demand for other
inputs. This arises from the interrelatedness of factors. Early generations
of dynamic factor demand models assumed separability between the
quasi-fixed factors and hence could not fully capture such effects.

Tax policy operates through factor prices. The effect of changes in tax
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policy depends in general on the degree of substitutability or complemen-
tarity among factors of production. As discussed in section 4.2, technolog-
ical change, if not neutral, depends on relative prices (as is, e.g., evident
from its definition on the cost side). Hence, tax policy can also affect tech-
nological change. We note that in the short-run the effects of changes in
tax policy on factor demands may be quite different from their effects in
the long-run in that in the short-run the firm may find it advantageous to
over-adjust some of its variable factors to lessen the effects of adjustment
costs. The framework of a dynamic factor demand model also provides a
natural setting for analyzing the effects of expectations about future tax
policies.

As an illustration of the application of the dynamic factor demand mod-
els for tax analysis, consider the recent study by Bernstein (1994). The tax
instruments considered are the corporate income tax (CIT), the investment
tax allowances (ITA), and capital consumption allowance (CCA). A nor-
malized variable profit function with quadratic adjustment costs for capital
stock is formulated and the model is estimated using data for the Turkish
electrical machinery, non-electrical machinery, and transportation equip-
ment industries. The empirical results suggest the following findings:

1. The adjustment cost parameter estimates suggest that these indus-
tries are not in long-run equilibrium. The mean value of the speed of ad-
justment ranged between 0.33 to 0.36 for each of the industries, implying
that about 35 percent of the capital stock adjustment occurs within the
first year of capital accumulation.

2. The effects of taxes and incentives on production and investment de-
cisions are transmitted though changes in the rental price of capital. The
magnitudes of the input elasticities to changes in tax instruments differ in
short-, intermediate-, and long-run due to the presence of adjustment
costs. They also differ with respect to the various tax policy instruments,
as well as across industries. The long-run elasticities of output and the
inputs are quite small, but larger than the short- and intermediate-run
elasticities. Another important point is that, because of the interdepen-
dence among production decisions embedded in the dynamic factor de-
mand models, taxes and incentives targeted toward a particular input also
have effects on the other inputs.

3. Productivity growth can be affected by the tax policies. This arises
since productivity growth depends on the growth of output and inputs,
which are affected by changes in factor prices. As noted above, the latter
are in turn affected by changes in tax instruments.

As illustrated by the above discussion, dynamic factor demand models
provide a powerful framework to trace the effects of various policy deci-
sions, such as tax and incentive policies and financial decisions. It is pos-
sible to examine the impact of these decisions in the short, intermediate,
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35. For an exploration of Bell Canada see, e.g., Bernstein (1989b) and Fuss (1994).

and long run on the production decisions and productivity performance.
Also, the effect of expectations can be examined in this framework.

4.4.2 R&D Investment, Production Structure, and TFP Decomposition

The role of R&D and the behavior of other factors of production in
the United States, Japanese, and German manufacturing industries was
explored by Mohnen, Nadiri, and Prucha (1983, 1986) based on a special
case of the dynamic factor demand model considered in section 4.3. One
of the results of the study was that the average net rates of return were
similar for both R&D and capital in the manufacturing sectors of the three
countries. However, the rate of return on R&D was greater than that on
capital in each sector. A further finding was that it takes a considerably
longer time for the R&D stock to adjust to its optimum value than for the
physical capital stock. The average lag for capital was approximately three
years in the three countries, while the average lag for R&D was about five
years in the United States, eight years in Japan, and ten years in Germany.
The patterns of own- and cross-price elasticities of the inputs varied con-
siderably among countries. The own-price elasticities were generally
higher than the cross-price elasticities. There was mostly a substitutional
relationship between the inputs. The output elasticities of the inputs in the
short and intermediate runs differed from each other and across countries.
The materials input overshot in the short run its long-run equilibrium
value to compensate for the sluggish adjustments of the two quasi-fixed
inputs, capital, and R&D; the output elasticities of the capital stock were
larger than those of R&D in the short and intermediate runs; also, there
was evidence of short-run increasing returns to labor. The Japanese manu-
facturing sector seems to have higher elasticities than the U.S. manufactur-
ing sector and to display more flexibility.

Nadiri and Prucha (1990b) explore the production structure of the U.S.
Bell System before its divestiture.35 They consider a model with two vari-
able factors, labor and materials, and two quasi-fixed factors, physical and
R&D capital. The technology is not assumed to be linear homogeneous,
but is allowed to be homothetic of a general form. The estimated degree
of scale was about 1.6. As a consequence, in decomposing the traditional
TFP measure they find that almost 80 percent of the growth of TFP is at-
tributable to scale. The conventional TFP measure, if it is considered as a
measure of technical change, was thus seriously biased upwards. The esti-
mated rate of technical change was only about 10–15 percent of the mea-
sured TFP. The most significant source of output growth was the growth
of capital with a contribution of over 50 percent, while labor and material
contributed about 15 percent, and the contribution of technical change
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was about half as much. The growth of R&D contributed about 2 percent,
which, given its small share in the production is fairly substantial. The rate
of return on R&D, however, was much greater than that on plant and
equipment investment. The net rate of return for R&D investment is about
20 percent in comparison to the net rate of return of about 7 percent for
investment in physical capital.

The study by Nadiri and Prucha also considers alternative specifications
of the length of the planning horizon and the expectation formation pro-
cess. They find that the optimal plans for the finite horizon model converge
rapidly to those of the infinite horizon model as the planning horizon ex-
tends. This observation suggests that additional planning costs will quickly
exceed additional gains from extending the planning horizon, which may
provide a rationale for why many firms plan only for short periods into the
future. Parameter estimates differ in their sensitivity to alternative specifi-
cations of the expectation formation process. Estimates of parameters de-
termining the adjustment path of capital and R&D turned out to be sensi-
tive. On the other hand, estimates of other characteristics of the underlying
technology such as scale seem to be insensitive to the specification of the
expectation formation process.

Recently the dynamic factor demand framework has been used to ex-
plore the role of high-tech capital and information technology equipment,
as well as human capital, on the production structure and productivity
growth in U.S. manufacturing; see Morrison (1997) and Morrison and
Siegel (1997). One finding is that high-tech capital expansion increases
demand for most capital and non-capital inputs overall, but saves on mate-
rial inputs.

4.4.3 Technological Spillovers and Productivity Growth

An important feature of R&D investment that distinguishes it from
other forms of investment is that firms which undertake R&D investment
are often not able to exclude others from freely obtaining some of the
benefits; that is, the benefits from R&D investment spill over to other firms
in the economy, and the recipient firms do not have to pay for the use of
knowledge generated by the investing firms’ R&D activity. R&D spillovers
may affect the production structure and factor demand in several ways. In
particular, R&D investment may shift the production function up (or the
cost function downward). This is the direct productivity effect. Also,
changes in the R&D spillover may cause factor substitution. In the lan-
guage of the technological change literature, changes in R&D spillovers
may cause factor biases, which may be either factor using or factor saving.
Changes in the R&D spillovers may also affect the adjustment process of
the quasi-fixed factors.

There are a number of empirical studies using the dynamic factor de-
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36. In recent years there has been a considerable effort to model and estimate the role of
R&D spillover. There are a number of different approaches that have been taken to specify
and measure technical spillover effects. Recent studies on R&D spillovers within the frame-
work of dynamic factor demand models other than those discussed in this section include
papers by Bernstein (1989a), Bernstein and Nadiri (1988), Goto and Suzuki (1989), Mohnen
(1992a), Mohnen and Lépine (1991), and Srinivasan (1995).

mand framework to measure the impact of technology spillover.36 As an
illustration, consider the Bernstein and Nadiri (1989) study which provides
an example of intraindustry spillover effects among the U.S. instruments,
machinery, petroleum, and chemical industries. Several interesting results
are reported:

1. The adjustment process of the two quasi-fixed inputs were shown
to be interdependent; that is, as the physical and R&D capitals adjust
toward their equilibrium levels, the speed of adjustment of one is affected
by the adjustment of the other. The estimates indicate that about 33–42
percent of the adjustment of the physical capital stock occurred within a
single year. R&D capital adjustment is lower than that of physical capital;
the estimates show that about 22–30 percent of the adjustment of R&D
capital occurred in one year. The adjustment processes vary across the in-
dustries.

2. There are a number of effects associated with the intraindustry R&D
spillover. First, costs decline as knowledge expands for the externality-
receiving firms. Second, production structures are affected, as factor de-
mands change in response to the spillover. Third, the rates of both physical
and knowledge capital accumulation are affected by the R&D spillover.
The results indicate that the short-run demand for R&D and physical capi-
tal decreased in response to an increase in the intraindustry spillovers.
Both the variable and average costs for each industry declined in response
to the intra-industry spillovers. Spillover-receiving firms gained a 0.05 per-
cent, 0.08 percent, 0.11 percent, and 0.13 percent average cost reduction,
respectively, in the instruments, machinery, petroleum, and chemical in-
dustries as a result of a 1 percent increase in the intraindustry spillover.
Not surprisingly, the effect of spillovers on the factor inputs and cost was
larger in the long run than in the short run.

3. The results also indicate that for all four industries the net social rate
of return greatly exceeded the net private rate of return. However, there
was significant variation across industries in the differential between the
returns. For chemicals and instruments, the social rate of return exceeded
the private rate of return by 67 and 90 percent, respectively. Machinery
exhibited the smallest differential of about 30 percent, and the petroleum
industry exhibited the greatest differential as the social rate exceeded the
private rate by 123 percent.
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Bernstein’s (1988) study of Canadian industries shows that spillovers
occur between rival firms within the same industry and between firms op-
erating in different industries. These spillovers, specially those associated
with interindustry spillovers, caused unit costs to decline and the structure
of production of the receiving industries to change as the spillovers in-
duced factor substitution. The productivity effect of the spillovers and the
gap between the private and social rates of return to R&D varied among
the industries.

Mohnen (1992b) explored the question of possible cross-country R&D
spillovers among the manufacturing sectors of the United States, Japan,
France, and the United Kingdom. He used a cost function with quasi-
fixed factors and adjustment cost based on the symmetric generalized
McFadden functional form. The results indicated that foreign R&D yields
greater cost reduction than own R&D, own R&D and foreign R&D are
complementary and foreign R&D can explain part of the productivity con-
vergence among the manufacturing sectors of the leading industrial coun-
tries. In the case of the Canadian manufacturing sector, Mohnen (1992a)
reports surprisingly weak spillover effects for R&D undertaken in other
major industrialized countries. Bernstein and Mohnen (1998) have devel-
oped a bilateral model of production between U.S. and Japanese econo-
mies and trace the effects of international R&D spillovers on production
cost, traditional factor demands, the demand for R&D capital, and pro-
ductivity growth in each country. Their results show that international
spillovers increased U.S. productivity growth by about 15 percent, while
productivity growth of the Japanese economy is increased by 52 percent.
The R&D spillovers affect the structure of production in both countries,
particularly the demand for labor in Japan.

4.4.4 Capital Utilization, Depreciation Rates,
and Replacement Investment

In general, productivity growth may, at least in the short run, be influ-
enced by whether various factors of production are fully utilized. Most of
the studies of firm demand for factors of production assume a constant
rate of utilization of inputs and ignore the fact that the firm can choose
simultaneously the level and rate of utilization of its inputs. As discussed
above, a model which allows for the capital utilization and depreciation
rate to be determined endogenously, along the lines of the dynamic factor
demand model considered in section 4.3, was first implemented empiri-
cally by Epstein and Denny (1980). Using only the demand equations for
the variable factors, their model was estimated from U.S. manufacturing
data, based on a data set developed by Berndt and Wood. Epstein and
Denny report an average rate of depreciation of 0.126 for physical capital.
The estimated depreciation rates vary between 0.11 and 0.145 over the
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sample. The model generates a capital stock series which is quite different
from that implied by the Berndt and Wood data. Also, their model indi-
cates substantial cross-price elasticities, showing the interrelated nature of
the choice about capital usage and other inputs and outputs which would
be ignored if a simpler framework is used to describe the firm’s technology.
Kollintzas and Choi (1985) and Bischoff and Kokkelenberg (1987) report
estimates of 0.126 and 0.106 on average for the rate of depreciation of
physical capital in the U.S. manufacturing sector.

Morrison (1992a) reports that a significant portion of cost declines in
the U.S., Canadian, and Japanese manufacturing industries, resulting from
fluctuations in capacity utilization and scale economies, has been erron-
eously attributed to technical change. Morrison (1992b) finds furthermore
that the markups of prices over costs are significant and influence mea-
sured productivity. Galeotti and Schiantarelli (1998) have examined the
counter-cyclical behavior of markups in U.S. two-digit manufacturing
industries in the context of a dynamic optimization model. Their results
show that markups are affected by both the level and growth of the de-
mand facing an industry in the presence of cost of adjustment.

As discussed above, Prucha and Nadiri (1990, 1996) apply the dynamic
factor demand model specified in section 4.3.2 to data for the U.S. electri-
cal machinery industry for the period 1960–80. This study builds on an
earlier study by Nadiri and Prucha (1990a) that is based on capital stock
data from the Office of Business Analysis (OBA). They estimate two ver-
sions of the model. In the more general version of the model, Ko

t , the stock
of capital left over at the end of the period from the beginning of period
stock, or equivalently the depreciation rate of capital, is permitted to be
determined as a function of output and relative prices; see equation (65).
In the other version of the model the depreciation rate of capital is taken
to be constant but unknown by imposing the parameter restrictions
	LKo � 	KoKo � 	RKo � 0. We note that for both models the depreciation
rate is estimated and the respective capital stocks are generated internally
during estimation in a theoretically consistent fashion. The paper reports
the following findings:

1. The depreciation rate of capital is estimated to be 0.038 as compared
to 0.055 for the OBA capital stock series. This translates into a difference
of 16 percent in magnitude between the implied capital stock series and
the OBA capital stock series at the end of the sample period.

2. Based on their tests Prucha and Nadiri accept the model correspond-
ing to a constant depreciation rate. This finding is interesting, since the
assumption of a constant depreciation rate has a long history, but has also
been the subject of considerable debate. The assumption of a constant
depreciation rate was challenged by, among others, Feldstein and Foot
(1971), Eisner (1972), Eisner and Nadiri (1968, 1970), and Feldstein
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37. The validity of a constant depreciation rate has also been tested in several papers by
Hulten and Wykoff; see, e.g., Hulten and Wykoff (1981a,b).

(1974). It was forcefully defended by Jorgenson (1974).37 Among other
things he pointed out that some of the earlier studies on replacement in-
vestment were not fully consistent, in that they employed capital stock
data that were generated under a different set of assumptions than those
maintained in those studies. Within the modeling framework discussed
here the capital stocks are generated in an internally consistent fashion
from gross investment data. Thus, as a by-product, a consistent decompo-
sition of gross investment into replacement investment and net investment
can be obtained. In particular, replacement investment IKR

t is defined as
the difference between the beginning of period stocks and what is left over
from these stocks at the end of the period, that is, IKR

t � Kt�1 � Ko
t . Net

investment IKE
t is defined as the difference between gross investment and

replacement investment, that is, IKE
t � IK

t � IKR
t � Kt � Ko

t . For the entire
sample period, net investment as a percent of gross investment was about
60 percent. As expected, this ratio exhibited cyclical patterns with a low
of 41 percent in 1975. The ratio of net investment to gross investment
based on the estimated model is much higher than the rates implied by the
OBA capital stock series.

3. The study finds significant adjustment costs. The own accelerator co-
efficient for physical capital is approximately 0.20, while that for the R&D
capital is 0.15. The cross accelerator coefficients are small (about 0.02).
The total adjustment costs are about 15 percent of total gross investments
for each of these two types of capital.

4. The pattern of output elasticities reveals that the variable factors of
production, labor, and materials, respond strongly in the short run to
changes in output; in fact, they overshoot their long-run equilibrium val-
ues in the short run. The output elasticities of the quasi-fixed factors, capi-
tal, and R&D, are small in the short run but increase over time. The long-
run output elasticities suggest an estimate of economics of scale of approx-
imately 1.2. The own price elasticities are, as expected, all negative. The
results also suggest that the cross price elasticities of labor and capital may
be sensitive to whether or not the rate of depreciation is endogenous.

5. The study also provides a decomposition of the sources of TFP
growth. This decomposition is reproduced in table 4.1 for both versions of
the model. It shows that the estimate of productivity growth based on
the traditional TFP measure is approximately three times larger than the
estimate of pure technical change generated by the econometric model.
The main source of the difference is the scale effect which represents about
46 percent of the growth in the traditional TFP measure. The remainder
of the difference is mainly due to the presence of adjustment costs, which
accounts for almost 21 percent of total factor productivity growth. The
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38. See, e.g., Griliches (1980), Bernstein and Nadiri (1988), and Mamuneas and Nadiri
(1996).

estimated pure technical change exhibits a very smooth pattern and in-
creases over time.

Nadiri and Prucha (1996) employ a special case of the model in section
4.3—where the depreciation rates are modeled as constant but un-
known—to estimate the depreciation rates of both physical and R&D cap-
ital for the U.S. total manufacturing sector. The depreciation rate of R&D
capital was, in particular, estimated to be about 0.12, which is quite similar
to the ad hoc assumption of the R&D depreciation rate used in many
studies that use the R&D capital stock as an input in the production func-
tion.38 Given estimates for the depreciation rates, gross investment can
again be decomposed into net and replacement investment. For the entire
sample period, net investment in R&D in the U.S. total manufacturing as
a percent of gross investment was 16 percent. However, during the 1970s,
this percentage declined to 5 percent, reflecting the near collapse of R&D
investment in that period.

4.5 Effects of Misspecification: A Monte Carlo Study

In this section we briefly explore, by means of a Monte Carlo study, the
effects of model misspecification on the estimation of important character-
istics of the production process such as technical change, scale, and adjust-
ment speed. The “true” model from which the data for the Monte Carlo
study are generated has the same basic structure as the model for the U.S.
electrical machinery sector considered in Prucha and Nadiri (1996), but

Table 4.1 Decomposition of TFP Growth in the U.S. Electrical Machinery
Industry in Percentages, 1960–80

Model
(estimated capital stock)

Constant Variable
Depreciation Rate Depreciation Rate

Technical change 0.69 0.66
Scale effect 0.83 0.93
Adjustment cost effects

Temporary equilibrium effect 0.42 0.39
Direct adjustment cost effect 0.02 0.02

Variable depreciation effect 0.00 0.02
Unexplained residual 0.03 �0.03

Total factor productivity 1.99 1.99
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39. The number of Monte Carlo trials is small, but is reflective of the considerable compu-
tational complexities underlying this study.

differs in terms of the specification of the restricted cost function and in
terms of the assumed expectation formation. The model considered by
Prucha and Nadiri is discussed in detail in section 4.3.2. The restricted
cost function for that model is given by equation (60), which is a linear-
quadratic function in pL, qK, qR, K�1/Y�, R�1/Y�, �K /Y�, �R /Y�, T, multi-
plied by Y�, where we have maintained the notation of section 4.3.2. In
contrast, the restricted cost function of the true model underlying this
Monte Carlo study is linear quadratic in pL, qK, qR, K�1, R�1, �K, �R,
Y, T, which allows for an explicit analytic solution even under non-static
expectations. In the following, we use the abbreviations LQR (short for
“linear quadratic in ratios”) and LQ (short for “linear quadratic”) to de-
note the former and latter restricted cost function. The true model assumes
that prices and output are generated by simple first order autoregressive
processes and takes expectation to be rational (and thus nonstatic). Ex-
plicit expressions for the demand equations for the labor, materials, cap-
ital, and R&D of the true model and the equations for the forcing variables
are given in appendix C in Nadiri and Prucha (1999).

The selection of the true model parameters for the Monte Carlo study
was guided by fitting a static version of the model to the U.S. electrical
machinery data used in the Prucha and Nadiri study, and by estimating
first order autoregressive processes for the forcing variables from those
data. The aim was to select the true model parameters such that the gener-
ated data exhibited properties consistent with those found in the study by
Prucha and Nadiri. The selection of the variance and covariances of the
disturbance processes was also guided by those empirical results, as well
as by computational considerations to keep the computing time within
practical limits. In analogy to the study by Prucha and Nadiri, the data
were generated for the period 1960 to 1980, with the initial values taken
from the data set for that study. Each Monte Carlo experiment consisted
of 100 trials.39

The R2 values (calculated as the squared correlation coefficient between
the actual variables and their fitted values calculated from the reduced
form based on true parameter values) for the factor demand equations
were approximately 0.98; those for the forcing variables ranged from 0.93
to 0.85. Output-based technical change, �Y , and scale, �, are computed
from equation (15). Their values depend on the input and output mix. The
median value of �Y , computed from the Monte Carlo sample, correspond-
ing to the true parameter values decreased in a smooth pattern from 1.53
in 1961 to 1.00 in 1976 and 0.94 in 1980. The median value of � corre-
sponding to the true parameter values was 1.09 in 1961, 1.11 in 1976, and
1.12 in 1980. The true accelerator coefficients mKK, mKR, mRK, and mRR take
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the values 0.22, �0.02, �0.01, 0.15. The true depreciation rate �K was for
simplicity taken to be constant and assumed to be 0.038.

Table 4.2 gives a description of the respective Monte Carlo experiments.
The first experiment reestimates the true model from the generated data.
As discussed above, the true model is based on the LQ restricted cost
function, takes expectations to be rational, allows for nonconstant returns
to scale and for nonzero adjustment costs; the equations for the true model
are given in appendix C in Nadiri and Prucha (1999). In our second experi-
ment, we estimate the same model, except that expectations are misspeci-
fied in that they are taken to be static. The third experiment estimates
again the same model, but imposes zero adjustment costs (and thus im-
poses incorrectly mKK � mRR � 1). Of course, with zero adjustment costs
expectations do not come into play. In experiment four, we then misspecify
the functional form of the restricted cost function. More specifically, we
estimate the model discussed in section 4.3.2 based on the restricted cost
function LQR. We also take expectations to be static. Experiment five is
as experiment four, except that here also scale is incorrectly assumed to be
equal to unity. For each of the experiments we run two variants. Variant
“A” takes the stock of capital (or equivalently, the depreciation rate of
capital) as observed. Variant “B” takes the stock of capital as unobserved
and estimates the (constant) depreciation rate of capital �K jointly with the
other model parameters. As an estimation procedure, we use 3SLS with
lagged inputs, output, prices, and squares of those lagged values as instru-
ments. The sample period is 1961 to 1980. The study was performed using
TSP 4.4.

In tables 4.3 and 4.4 we report, respectively, on the estimation results
obtained from the Monte Carlo experiments corresponding to variants A
and B of the experiments. Rather than to report on all parameter esti-
mates, we focus on estimates of the adjustment coefficients, and the param-
eters determining those coefficients, and on estimates of technical change
�Y and scale �. As in the Prucha and Nadiri study, we report estimates for
�Y and � in 1976. The estimated values in tables 4.3 and 4.4 are Monte

Table 4.2 Description of Monte Carlo Experiments

Basic Characteristics of Estimated Model

Number Cost Function Expectation Returns to Scale Adjustment Costs

1A, 1B LQ Rational Nonconstant Nonzero
2A, 2B LQ Static Nonconstant Nonzero
3A, 3B LQ Statica Nonconstant Zero
4A, 4B LQR Static Nonconstant Nonzero
5A, 5B LQR Static Constant Nonzero

aExpectations do not come into play, since the adjustment costs are zero.
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Table 4.3 Estimates of Model Parameters, Technical Change, and Scale (capital
stock observed)

Estimates for Monte Carlo Experiment Number

Parameter True Value 1A 2A 3A 4A 5A

	KK 0.420 0.472 0.314 0.598 1.151 2.356
(0.214) (0.298) (1.703) (1.457) (5.941)

	KR �0.066 �0.096 �0.310 �0.336 �0.442 �1.232
(0.097) (0.091) (1.314) (0.839) (3.338)

	RR 0.376 0.391 0.338 0.585 0.357 0.921
(0.138) (0.177) (1.534) (0.632) (1.987)

	K̇K̇ 5.616 5.487 4.337 0.0 8.655 8.134
(2.323) (2.978) (4.842) (4.573)

	ṘṘ 10.98 12.52 13.05 0.0 8.645 10.27
(6.487) (4.870) (7.204) (10.37)

mKK 0.217 0.226 0.217 1.0 0.268 0.332
(0.050) (0.058) (0.093) (0.218)

mKR �0.021 �0.029 �0.012 0.0 �0.060 �0.183
(0.031) (0.043) (0.078) (0.161)

mRK �0.011 �0.013 �0.004 0.0 �0.066 �0.131
(0.013) (0.012) (0.164) (0.180)

mRR 0.147 0.144 0.125 1.0 0.134 0.119
(0.024) (0.034) (0.177) (0.199)

�Y 1.000 0.968 0.604 1.296 0.503 1.216
(0.167) (0.287) (0.490) (0.217) (0.454) (0.323)

Scale 1.110 1.136 1.212 1.025 1.341 1.0
(0.084) (0.121) (0.194) (0.115) (0.152)

40. Since �Y and � depend on the input and output mix, their values vary in respective
Monte Carlo trials even if evaluated at the true parameter values. It is for that reason that
we also report an inter-quantile range for the true values of �Y and �. The variability of the
parameter estimates reflects the small sample size and the assumptions on the variances of
the disturbance processes.

Carlo medians. The second column contains the true values for compari-
son. As a measure of spread of the respective estimates, we report in pa-
renthesis their interquantile ranges.40 In table 4.4 we also present estimates
for the depreciation rate of capital �K.

The estimates based on the true model, which are reported under experi-
ments 1A and 1B in tables 4.3 and 4.4 are, in general, close to the true
values. We note that the interquantile ranges of the estimates are generally
smaller for experiment 1A than for experiment 1B, reflecting the fact that
in the latter experiment also �K is being estimated in addition to the other
model parameters. It is also interesting to note that the interquantile
ranges for the estimates of the adjustment cost coefficients 	K̇K̇ and 	ṘṘ are
comparatively large. This observation is consistent with a similar finding
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in an earlier Monte Carlo study by Prucha and Nadiri (1986). In experi-
ments 2A and 2B expectations are misspecified as being static. The effect
of this misspecification is to substantially decrease the estimates of techni-
cal change to 0.60 and 0.55, respectively, as compared to a true value of
1.00, and to increase the estimates of scale to 1.21, as compared to a true
value of 1.11. If the model is further misspecified by assuming that adjust-
ment costs are zero, the estimates for technical change increase to 1.30 and
1.66, as reported under experiments 3A and 3B. Scale falls to 1.02 and
0.82, respectively. This type of misspecification also has a considerable
effect on the estimate of �K. The median estimate is 0.11 as compared to a
true value of 0.038.

Misspecifying the functional form of the restricted cost function in
terms of equation (60), and assuming static expectations, results in esti-
mates of technical change of 0.5 and 0, as reported under experiments 4A
and 4B, respectively. The estimate for scale increases to 1.30 and 1.39,
respectively. The estimates of the accelerator coefficients and the deprecia-

Table 4.4 Estimates of Model Parameters, Technical Change, and Scale (capital stock
unobserved; capital depreciation rate estimated)

Estimates for Monte Carlo Experiment Number

Parameter True Value 1B 2B 3B 4B 5B

	KK 0.419 0.469 0.218 1.350 0.414 0.774
(0.422) (0.466) (5.003) (1.151) (1.129)

	KR �0.066 �0.077 0.020 �0.035 �0.194 �1.596
(0.149) (0.134) (0.955) (0.587) (0.898)

	RR 0.376 0.414 0.362 0.375 0.408 0.477
(0.178) (0.214) (0.614) (0.719) (1.001)

	K̇K̇ 5.616 5.403 4.862 0.0 9.581 6.465
(3.710) (2.923) (9.299) (5.594)

	ṘṘ 10.98 12.84 13.68 0.0 12.26 13.09
(7.048) (5.796) (5.541) (7.689)

mKK 0.217 0.224 0.194 1.0 0.165 0.246
(0.110) (0.171) (0.249) (0.157)

mKR �0.021 �0.024 0.010 0.0 �0.051 �0.164
(0.038) (0.058) (0.087) (0.147)

mRK �0.011 �0.010 0.004 0.0 �0.037 �0.067
(0.018) (0.020) (0.078) (0.092)

mRR 0.147 0.141 0.121 1.0 0.119 0.090
(0.023) (0.043) (0.127) (0.111)

�Y 1.000 0.960 0.552 1.664 �0.003 0.816
(0.167) (0.405) (0.688) (0.823) (1.872) (0.982)

Scale 1.110 1.128 1.213 0.825 1.390 1.0
(0.084) (0.161) (0.244) (1.037) (0.266)

�K 0.038 0.036 0.033 0.117 0.004 0.015
(0.018) (0.039) (0.070) (0.058) (0.037)
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tion rate of capital are also fairly sensitive to this form of misspecification.
Imposing constant returns to scale, as in experiments 5A and 5B, results
in less bias in the technical change estimates, and in estimates of mKK and
mRR that are higher and lower than the true values. There is also substan-
tial downward bias in the estimates of the depreciation rate of capital.
These Monte Carlo results suggest that the estimates of model parameters
and model characteristics may be quite sensitive to misspecification of the
functional form, especially since the functional form misspecification im-
posed in this study may be considered as modest in that equation (60) can
be viewed as a second-order approximation of the true restricted cost
function.

4.6 Concluding Remarks

In this paper we have discussed some recent advances in modeling and
in the estimation of dynamic factor demand, and have argued that this
approach provides a powerful framework to analyze the determinants of
the production structure, factor demand, and technical change. The basic
message of this paper can be summarized briefly. The conventional index
number approach will measure the rate of technical change correctly if
certain assumptions about the underlying technology of the firm and out-
put and input markets hold. Furthermore, the conventional index number
approach is appealing in that it can be easily implemented. However, if the
underlying assumptions do not hold, then the conventional index number
approach will, in general, yield biased estimates of technical change.

The index number approach also does not provide detailed insight into
the dynamics of the production process and the determinants of factor
demand and factor accumulation. The dynamic factor demand modeling
approach reviewed in this paper provides a general framework to estimate
the structure of the underlying technology and to relate the investment
decisions and variation of technical change. Of course, in this approach
there is, as in any other econometric investigation, the danger of misspeci-
fication. However, the basic appeal of this modeling strategy is its flexibil-
ity, that enables it to incorporate and analyze in a consistent framework
both theoretical considerations and institutional factors that influence
technical change, and to test various hypothesis concerning the specifica-
tion of the technology and the optimizing behavior of the firm.

The dynamic factor demand modeling framework described in this pa-
per enables us to examine a number of issues of both basic research and
policy interest. Using the model it is possible to identify the possible biases
in the conventional measure of total factor productivity growth. These
biases can result from scale effects, the difference between marginal prod-
ucts and long-run factor rental prices in temporary equilibrium due to
adjustment costs, the direct effect of adjustment costs as they influence
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output growth, and the selection of the depreciation rate by the firm. The
model presented in this paper can be used to estimate the structure of the
underlying technology and to specify the magnitudes of these biases if
they are present. If the biases are not isolated, relying on the conventional
TFP measure will, for example, overestimate technical change in the pres-
ence of increasing returns to scale and positive output growth.

The model also provides an analytical framework for estimating the re-
sponse of input demands to changes in relative prices, exogenous technical
change, and other exogenous variables that may shift the production or
cost function. Since a clear distinction is drawn between variable and
quasi-fixed inputs due to the presence of adjustment costs, the short-, in-
termediate-, and long-run responses of output, factors of production, and
productivity growth can be estimated. (Of course, the approach does not
impose the existence of adjustment costs and quasi-fixity, but rather leaves
that to be determined empirically.) The class of models reviewed also
allows for non-static expectations and nonseparability among the quasi-
fixed factors of production. It is therefore possible to estimate possible
substitution or complementaries in the short, intermediate, and long runs
among various types of capital such as physical, R&D, and human capital.

It is also possible to formulate and estimate an appropriate measure of
capacity utilization consistent with the underlying production technology.
Moreover, the model allows for the decision on depreciation rates of vari-
ous quasi-fixed factors of production such as physical and R&D capital to
be endogenous. We note, however, that models in which the depreciation
rate is constant are included as special cases. The framework thus allows
for the econometric testing of the constancy hypothesis. Estimating the
depreciation rates permits generating consistent capital stock series which
may differ from the official estimates. It also allows the decomposition of
gross investments of various types of capital into the net and replacement
investments. The time profiles of these two types of investment have im-
portant analytical and policy implications.

To illustrate the workings of the model, we have discussed briefly some
empirical results from several studies based on the dynamic factor demand
model. These examples indicate how it is possible to account for the influ-
ences of scale, relative price movements, the rate of innovation due to
R&D efforts and R&D spillovers, and financial decisions concerning the
level of debt and dividend payouts on the production structure and techni-
cal change. The overall conclusion reached from these examples is that the
econometric modeling approach allows us to identify the contribution of
a complex and often competing set of forces that shape productivity
growth, and to test their significance statistically. Generally speaking, the
empirical results based on dynamic factor demand models suggest that the
estimated rate of technological change is often much smaller and smoother
than the conventionally measured total factor productivity growth. Also,
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there is evidence of substantial degree of interrelatedness embedded in the
production process of the firm that could not be captured using simple
formulations of the firm’s technology. The evidence from several studies
suggests that some factors of production such as physical and R&D capital
are quasi-fixed in the short run. Also, there is evidence that economies of
scale characterizes the production process in some industries and that the
elasticity of factor substitution is often much smaller than unity. Invest-
ment in R&D is an integral part of the production structure and often
significantly contributes to a reduction in cost. In addition, R&D spill-
overs among firms, industries, and economies often reduce the cost of pro-
duction of the recipient. Dynamic factor demand models also permit
studying the production and financial decisions of the firm in a consistent
framework and to analyze the effect of taxes and other exogenous policy
instruments on these decisions.

To illustrate how estimates of important characteristics of the produc-
tion process can be affected by various forms of misspecification, a Monte
Carlo study was undertaken. The results suggest, in particular, that esti-
mates of the rate of technical change are sensitive to misspecification of
the expectation formation process, to misspecification regarding whether
or not the firms is in temporary or long-run equilibrium, and to misspeci-
fications of the functional form of the cost/production function including
scale. The exhibited sensitivity of technical change (and other model char-
acteristics) to misspecification suggests that adopting simple specifications
for reasons of convenience may result in serious estimation biases. This
points to the importance of specification testing in the estimation of the
cost/production functions and derived factor demands. Dynamic factor
demand models provide a general framework for carrying out specification
tests, and yield important insights in the complexity of the production de-
cisions.

However, estimation of dynamic factor demand models is often chal-
lenging. These models are often complex and the estimation of these mod-
els requires considerable effort. Nonetheless, in order to measure technical
change properly and to capture the dynamics of the adjustment of factor
demands, and to analyze effects of relative prices and other exogenous
variables such as taxes, subsidies, R&D spillovers, and so on, on factor
demand and productivity growth, the dynamic factor demand modeling
framework presented in this paper is an important tool of analysis.
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Comment Dale W. Jorgenson

This very ambitious and stimulating paper is organized around the concept
of dynamic factor demand models. Quasi-fixed factors are characterized
by internal costs of adjustment. The production possibility frontier de-
pends on outputs and inputs, technology, economies of scale, and rates of
change of the quasi-fixed factors.

Section 4.2 of the paper connects most directly with the topic of the
conference, new developments in productivity analysis. The key result is
contained in section 4.2.3. This productivity measure is given in continu-
ous time in equation (39) and discrete time in equation (43).

Equation (39) decomposes the growth rate of productivity in a model
that does not maintain the standard assumptions. These are constant re-
turns to scale, competitive markets for inputs and outputs, and no internal
costs of adjustment. Terms in the decomposition correspond to scale
effects, deviations from marginal cost pricing, adjustment costs, and the
effects of changes in the quasi-fixed factors.

The empirical issue is how to measure the effects of departures from the
standard assumptions. The authors’ proposal is to specify and fit a dy-
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namic factor demand model. It is significant that there is no empirical
example of the full implementation of this proposal. Nonetheless, it is very
valuable to have a well-specified alternative to the production model that
underlies the productivity measures generated by official statistical pro-
grams.

The production model that underlies the Törnqvist index of productivity
used in official productivity measurements also gives rise to an economet-
ric model of factor demand. As Nadiri and Prucha point out, this model
is much more restrictive and could be tested within their dynamic factor
demand model. However, there is an important issue of research strategy
here. Is it best to relax all the assumptions of the standard model at once,
while limiting the empirical analysis to time series data on outputs and
inputs and their prices?

Let me discuss one example: namely, modeling economies of scale. This
is one of the most fruitful areas for econometric modeling of production.
The most satisfactory approach has been to study economies of scale in
isolation from other departures from the standard assumptions. Cross-
sectional and panel data, especially for regulated industries, have been
modeled extensively and reported in the econometric literature.

Intercity telecommunications and electricity generation industries are
characterized by increasing returns to scale, whereas transportation indus-
tries are characterized by constant returns. As a consequence of these
findings, transportation has been largely deregulated. Regulatory reform
in electricity generation and telecommunications has limited regulation to
areas where economies of scale are significant.

Section 4.3 is the core of the paper and presents a framework that en-
compasses all the features of production enumerated in section 4.2. Sec-
tion 4.3.1 considers minimization of the firm’s expected present value of
cost, subject to the production possibility frontier. This leads to an Euler
equation for modeling the dynamics of factor demand.

A more restrictive dynamic factor demand model, based on a linear
quadratic specification, is given in equation (27). This model is character-
ized by certainty equivalence and takes the form of a system of linear
difference equations. This idea has been present in the economic literature
for several decades and in the engineering literature for even longer.

Section 4.5 of the paper presents a Monte Carlo study of the effects of
misspecification on measures of productivity and economies of scale. This
compares the linear quadratic model shown in equation (16) and employed
by Prucha and Nadiri (1996) with a “true” linear quadratic model that
can be solved analytically under rational expectations. Table 4.3 shows
that the departures from the assumptions of the true model have sizable
impacts on measured TFP and economies of scale.

Section 4.4 of the paper summarizes empirical applications of dynamic
factor demand models. The description of these models is necessarily brief,
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but I was unable to find evidence of a successful empirical application of
the rational expectations approach featured in section 4.3. Nonetheless,
the list of topics covered is impressive:

1. Tax incentives, financing, and technical change (section 4.4.1)
2. R&D investment, production structure, and TFP decomposition

(section 4.4.2)
3. Technological spillovers and productivity growth (section 4.4.3)
4. Capacity utilization, depreciation rates, and replacement investment

(section 4.4.4)

The conclusions are worth summarizing:
First, when taxes are evaluated in terms of their effectiveness, measured

as investment expenditures per government revenue loss, specific tax in-
struments are substantially more effective than is the corporate income tax
rate. This conclusion is familiar to readers of the literature on tax policy
and investment behavior. However, the methodology of choice in this area
of policy analysis is general equilibrium modeling, which leads to mea-
sures of the impact of policy changes on consumer welfare.

Second, emphasizing economies of scale, Nadiri and Prucha have mod-
eled production in the U.S. Bell System. They find that economies of scale
accounted for more than 80 percent of the impressive productivity growth
in the Bell System, suggesting a serious bias in conventional measures of
TFP. This was a part of the unsuccessful defense of the Bell System against
the breakup that resulted from the Department of Justice antitrust case.

Third, studies of R&D investment have produced evidence of spillovers,
defined as effects of investment by one firm, industry, or country on the
productivity of other firms, industries, or countries. This literature is sur-
veyed by Griliches and Nadiri. The predominant methodology has been
the estimation of cross-sectional production functions, which was pio-
neered by Griliches and is the subject of its own very substantial literature.

Fourth, the final applications are to measures of depreciation rates from
investment in fixed assets and R&D. This has been far less influential than
research focusing on used asset prices. The studies of Hulten and Wykoff
have provided the basis for the recent revision of the capital accounts that
underly the U.S. income and product accounts. This is described by Frau-
meni (1997).

What can one claim for the empirical literature on dynamic factor de-
mand modeling? This methodology has generated an impressive literature
on a wide range of issues. However, in each of the areas reviewed in section
4.4, competing methodologies isolate one of the issues. This has been a
more successful research strategy and one that has had a major impact
on official productivity measures and the underlying national accounting
magnitudes, as well as on economic policy.

In concluding, it is important to emphasize that Nadiri and Prucha have
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very forcefully reminded us how much remains to be done. For example,
an important challenge for empirical economists is to develop satisfactory
measures of R&D outputs as opposed to the inputs. These will be required
for any definitive assessment of the prospects for endogenizing productiv-
ity growth through R&D investment and spillovers across producing units,
as Nadiri and Prucha have suggested.
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Reply M. Ishaq Nadiri and Ingmar R. Prucha

We thank Professor Jorgenson for his stimulating comments. In his own
work Jorgenson has evidently not embraced dynamic factor demand mod-
els, which are the subject of our review. This sets the stage for a discussion
of important issues of research strategy. Not surprisingly there is some
disagreement. To respond to some of the questions raised by Jorgenson’s
comments, and to reemphasize the contributions of the vast dynamic fac-
tor demand literature surveyed in our paper, we focus our reply on three
sets of issues related to (a) the treatment of the quasi fixity of some inputs,
(b) estimation strategies, and (c) comments on specific empirical studies.

First, as documented in our paper, the dynamic factor demand modeling
approach has attracted many eminent scholars and has generated a volu-
minous literature in the past three decades. We emphasize that the ap-
proach builds on seminal contributions by other eminent economists. In
particular, the dynamic factor demand literature builds on Jorgenson’s
neoclassical theory of investment and production. By introducing (internal
or external) adjustment costs explicitly into the firm’s decision-making
process, dynamic factor demand models yield optimal factor demands not
only in the long run, but also in the short and intermediate run. The intro-
duction of adjustment costs is seen by many as a natural extension of the
neoclassical theory of investment and production that permits a consistent
modeling framework for both temporary and long-run equilibrium. As
such, dynamic factor demand models provide a formal framework for trac-
ing the evolution of investment and productivity growth over the short,
intermediate, and long run.

The major methodological difference between the modeling approach
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favored by Jorgenson and the dynamic factor demand modeling approach
is the latter’s incorporation of adjustment costs to explicitly account—
within the firm’s decision-making process—for the widely documented
quasi fixity of some inputs, such as the physical capital stock. The quasi
fixity of capital inputs was in fact recognized in Jorgenson’s own empirical
study of investment expenditures some thirty years ago via the specifica-
tion of an accelerator model. We note that dynamic factor demand models
provide a formal economic justification for accelerator models of invest-
ment. Apart from the treatment of adjustment costs, both approaches are
similar: In empirical applications both have specified the production tech-
nology in a similar general fashion using flexible functional forms, and
both have considered data sets of similar levels of aggregation. As is dis-
cussed in our paper, the use of flexible functional forms was pioneered by
Diewert, Jorgenson, and Lau in the early seventies.

It is also worth pointing out that the dynamic factor demand literature
has adopted various modeling approaches ranging from linear quadratic
specifications with an explicit solution for variable and quasi-fixed factor
demands, to quadratic and nonlinear quadratic specifications in which the
demand for the quasi-fixed factors is only described in terms of the Euler
equations, to specifications in which only the variable factor demand equa-
tions are used for estimation. Static equilibrium models are, of course,
contained as a special case. In developing methodologies that cover both
complex and simple specifications, the dynamic factor demand literature
presents a menu of flexible modeling options to the empirical researcher.
The development of methodologies for complex specifications should be
interpreted not as a prescription but as an option that can be selected when
such a choice is indicated empirically. Concerning the question whether
complex specifications have been implemented successfully, we point out,
as an example, the decomposition of the conventional measure of TFP in
the U.S. electrical machinery industry given in table 4.1. This decomposi-
tion reports on all forms of possible biases considered in equations (39)
and (43).

Second, Jorgenson also raises an important issue of research strategy,
which is closely related to the points made above. In particular, he ques-
tions whether it is best to relax all the assumptions of the standard model
at once. As remarked above, the dynamic factor demand literature consid-
ers both simple and complex specifications, and we agree that a full-
fledged dynamic factor demand model may not be suitable in all situations.
However, we do advocate that specification tests are necessary prior to
imposing potentially restrictive assumptions such as constant returns to
scale, zero adjustment costs, competitive input and output markets, and
so on. Assuming away the complexity of the underlying production pro-
cess may result—as is shown by many studies and illustrated by the Monte
Carlo study in our paper—in substantial mismeasurement of the determi-
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nants of factor demand, technical change, and other characteristics of the
production process. This mismeasurement is then likely to affect signifi-
cantly the research findings in several areas of economic studies; for ex-
ample, industrial organization, income distribution, business cycle anal-
ysis, and growth modeling. For example, in the recent endogenous growth
theory, the form of the production function is typically assumed to be
Cobb-Douglas or AK. If the underlying production function is more com-
plex, the results of these models are likely to be quite different. In such
cases, the potential loss due to misspecifications may substantially exceed
the costs arising from the complexity of the analysis. Flexible functional
forms, such as the translog production and cost functions developed by
Christensen, Jorgenson, and Lau provide important protections against
potential misspecifications. We believe that for analogous reasons it is also
important to allow for the possibility of quasi fixity in some of the inputs.

As remarked earlier, one way of taking into account the quasi fixity of
some inputs is to base the estimation only on the demand equations for
the variable factors (derived, e.g., from a restricted cost or profit function).
This approach allows for the consistent estimation of the “technology”
parameters but does not provide full insight into the dynamics of the pro-
duction process. Whether this approach is appropriate—abstracting from
questions of efficiency—depends on whether the dynamics of the produc-
tion process is a focus of the investigation.

We also note that dynamic factor demand models can be estimated from
panel data subject to the usual cautions in the pooling of data. Of course,
those cautions also apply to static factor demand models.

Third, Jorgenson also makes several comments on specific empirical
studies. He points to alternative approaches toward the measurement of
depreciation rates, to evaluate and measure the effects of tax policy, spill-
overs, and economies of scale. We disagree that those alternative ap-
proaches represent more successful research strategies. In a nutshell, we
see the various methodologies mentioned by Jorgenson and those reviewed
in our paper as complementary approaches and not as substitutes. For ex-
ample:

(a) We fully agree that Hulten and Wykoff have made seminal contribu-
tions to the measurement of depreciation rates using prices of used assets.
Unfortunately, however, these types of data are not available for many
sectors of the economy and are limited in coverage. We hence believe there
is room for various approaches. In fact, one can view Hulten and Wykoff ’s
approach as modeling the demand side of used assets, whereas the ap-
proach discussed in our review, which dates back to Hicks, Malinvaud,
and Diewert, models the supply side. It seems interesting to try to combine
the two approaches in future research. Also, the dynamic factor demand
literature has generated an extensive literature on capital and capacity uti-
lization, which are allowed to affect the depreciation rate of capital. Thus,
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this literature speaks not only to the magnitude of the depreciation rate,
but also to wider related issues. Also the dynamic factor demand models
have been used to estimate the depreciation rate of R&D, which was other-
wise typically assumed as given, for example, in the literature referred to
in the comments.

(b) General equilibrium models are certainly useful for evaluating the
effects of changes in tax policies. Obviously, one of the points of contention
in putting together a general equilibrium model for tax simulations is the
choice of appropriate parameter values. (One of the major sessions of the
recent world congress of the econometric society was devoted to the con-
tentious issue of calibration versus classical estimation. In one view cali-
bration is an estimation method, though typically with unknown statistical
properties.) In estimating a dynamic factor demand model we obtain esti-
mates of important parameters using classical econometric techniques
with known statistical properties.

(c) Empirical estimation of the degree of scale at the firm, industry, and
even aggregate economy level is critical for an understanding of economic
growth. A number of models have successfully examined the degree of
scale in various sectors and industries. The focus of our study of the Bell
system was to understand the dynamics of the capital and R&D invest-
ment process as well as the nature of the production frontier faced by the
Bell system, including the magnitudes of returns to scale and exogenous
technical change. The study was undertaken after the Bell breakup. It was
undertaken to study “what is,” and not to argue either on the side of the
government or on that of the Bell system. Moreover, that dynamic factor
demand models have generally been estimated using time series data at
the industry level is due to the paucity of specific output and factor prices
at the firm level.

(d) Dynamic factor demand models provide a general dynamic frame-
work for studying the contributions of physical capital and R&D and the
spillover effects of R&D among sectors and economies. This literature has
provided explicit estimates of the magnitude of the R&D spillovers and
their contribution to the growth of output and productivity; the conver-
gence of growth rates among industries and economies; and the evolution
of productivity growth over the short, intermediate, and long run. It is
true, as Jorgenson has pointed out, that modeling spillover effects poses a
substantial challenge. We believe that the dynamic factor demand model-
ing framework can serve as a starting point to understand this dynamic
phenomenon.

In conclusion we note again that the dynamic factor demand literature
builds, in particular, on Jorgenson’s seminal contributions to the neoclassi-
cal theory of investment and production. The static equilibrium model,
which is the underlying foundation of the conventional measure of TFP, is
a special case of the dynamic factor demand model. We argue that impos-
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ing a priori restriction on the production structure for the sake of simplic-
ity can seriously bias estimates of productivity growth and can lead to a
misdiagnosis of the sources of economic growth, among other problems.
The Monte Carlo results reported in our paper clearly substantiate this
phenomenon. Hence, specification tests are essential as a justification for
imposing potentially restrictive assumptions on the form of the production
structure and its dynamic evolution. Dynamic factor demand models pro-
vide a framework for such tests and furthermore serve as the basis of a
general approach to estimating the rate of technical changes and the dy-
namics of productivity growth.
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