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Annals of Economic and Social Measurement, 3/1, 1974 

METHODS FOR COMPUTING OPTIMAL CONTROL SOLUTIONS 

ON THE SOLUTION OF OPTIMAL CONTROL PROBLEMS AS 

MAXIMIZATION PROBLEMS 

BY Ray C. Fair* 

In this paper the problem of obtaining optimal controls for econometric models is treated as a simple 
unconstrained nonlinear maximization problem. Various maximization algorithms are tested, and the 
results indicate that quite large problems can be solved. For deterministic problems it appears feasible to 
compute optimal controls for most econometric models encountered in practice. Stochastic problems can 
also be solved by the approach of this paper by means of stochastic simulation. 

1. INTRODUCTION 

There appears to be among many economists the view that the computation of 

optimal controls for moderate- to large-scale nonlinear econometric models is 

not feasible. Pindyck [19], for example, has questioned whether “nonlinear 

optimization [is] worth all of the computational difficulty that it entails,”' and 

Shupp [24] has stated that “the size and complexity of these models preclude 

formal optimization.”’? The results presented in this paper indicate that this view 

is not correct, even for models of up to 100 or 200 equations. The results suggest 

that it is feasible to compute optimal controls for most econometric models 

encountered in practice.* 

Historically, optimal control problems have been formulated in continuous 

time and have been looked upon as problems in choosing functions of time to 

maximize an objective function. Fairly advanced mathematical techniques are 

required to solve these problems. For discrete-time models, however, which 

include virtually all large-scale econometric models, optimal control problems 

can also be looked upon as problems in choosing variables to maximize an 

objective function. The number of variables to be determined is equal to the 

number of control variables times the number of time periods chosen for the 

problem. From this perspective, optimal control problems are straightforward 

maximization problems, and in attempting to solve problems in this way, one 

can take advantage of the recent advances that have been made in computational 

algorithms for maximizing nonlinear functions of variables. This approach, of 

treating optimal control problems as problems of maximizing a nonlinear function 

of variables, is the approach taken in this paper. 

* Department of Economics, Princeton University. | would like to thank Gregory C. Chow, 
Kenneth D. Garbade, Stephen M. Goldfeld, and Richard E. Quandt for many helpful comments. 

’ Pindyck [19], p. 388. 
2 Shupp [24], p. 94. 
3 See also Holbrook [13] for a method of controlling a nonlinear system with a quadratic objective 

function. 
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2. THE GENERAL METHOD OF SOLUTION 

Assume that the model under consideration is deterministic* and has g 

equations. Write each equation for each period of time as 

i a}. «6s 
(1) SoM PS gap, 

where y, is a vector of observations for period t on the g endogenous variables in 

the model, z, is a vector of observations for period t on the noncontrol, pre- 

determined variables in the model, x, is a vector of observations for period t on 

the control variables in the model, and «;, is a vector of nonzero parameters that 

are included in equation i for period t. The t subscripts in «;, and f;, allow for the 

possibility that some parameters and some functional forms are changing over 

time.° Lagged endogenous variables are included in the z, vector. T is the total 

number of periods to be considered in the control problem. 

The model in (1) is assumed to be such that, for each t, given values for z,, 

x,, and a, (i = 1,...,g), one can solve numerically for y,. In practice, most large- 

scale econometric models are solved each period by some version of the Seidel 

method.°® Further, one can frequently isolate each component of the y, vector on 

one side of one equation, which greatly aids in the solution of the model. If the 

model is solved for more than one period, then the solution values of the endogenous 

variables for previous periods are used, when appropriate, as values for the lagged 

endogenous variables in the z, vector. For linear models, of course, values of y, 

are merely obtained from reduced form equations. 

For a time horizon of T periods, the objective function, h, is taken to be a 

function of y,,z,, and x, (t = 1,...,T): 

(2) W = Wlys,. ss Pri 2456065273 Xy5--05¥7) 

where W, a scalar, is the value of the objective function corresponding to values 

of y,,z,,and x,(¢ = 1,..., T). 

The optimal control problem for this discrete-time, deterministic model is 

to choose values of x,,...,x7 SO as to maximize W subject to the equation- 

constraints in (1). The givens of the problem are the value of each «;,, the values 

for each period of the purely exogenous variables, and initial values for the lagged 

endogenous variables. Assume that x, is of dimension k, so that there are kT 

control values to determine. Let x be a kT-component vector denoting these 

values: x = (x,,...,X7). Now, for each value of x, one can compute a value of 

W by first solving the model in (1) for y,,..., y, and then using these values along 

with the values for z,;,...,z,7 and x to compute W in (2). The optimal control 

problem can thus be looked upon as a problem in choosing variables (the elements 

of x) to maximize an unconstrained nonlinear function. By substitution, the con- 

strained maximization problem is transformed into the problem of maximizing 

* Stochastic models are discussed in Section 7. 
5 It is assumed throughout this paper that the values of «,, and the values of the exogenous variables 

in the z, vector are known with certainty. 
© See, for example, Fromm and Klein [10], pp. 373-382. 
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an unconstrained function of the control variables: 

W’ = (x), 

where @ stands for the mapping x — x, y,,..., Yr, Z,,---,Z7 —@ W. In general it 

will not be possible to express y, explicitly in terms of z,, x,, and «;,, so that in 

general it will not be possible to write W in (2) explicitly as a function of z,, x,, 

and «;, (t = 1,..., 7). Nevertheless, given values for z, and «;, (t = 1,..., T), 

values of W can be obtained numerically for different values of x. 

There are many algorithms available for maximizing (or minimizing) non- 

linear functions of variables. Since W cannot in general be written as an explicit 

function of x, it will in general be difficult to obtain analytically the partial deriva- 

tives of h with respect to the elements of x. Therefore, in attempting to solve optimal 

control problems by treating them as problems in maximizing a nonlinear function 

of variables one will usually be required either to use algorithms that do not 

require derivatives or else to compute derivatives numericaliy. Both approaches 

have been followed for the results in Sections 4 and 5. 

Algorithms that do not require derivatives and algorithms for which deriva- 

tives are obtained numerically spend most of their time doing function evaluations. 

For the results in Sections 4 and 5, over 75 percent of the time was spent doing 

function evaluations for all algorithms tried except in two cases, where the figures 

were 52 and 53 percent. One function evaluation in the present context corresponds 

to the solution of a g-equation model for T periods (plus the rather trivial com- 

putation, once y,,..., yz are determined, of W in (2)). It is therefore quite important 

to solve a model in the most efficient way possible, since for one solution of the 

optimal control problem a model will usually be solved hundreds or thousands 

of times. Some suggestions are presented in Section 6 for efficient ways of solving 

models. 

Much of the engineering literature on optimal control is concerned with 

continuous-time models and so is not of direct concern here. Polak [20], however, 

does present a good discussion of the discrete optimal control problem in engin- 

eering.’ The discrete-time model considered by Polak differs from the standard 

econometric model considered in this paper in that his model is already in reduced 

form. In the notation of this paper, each component of y, would be written as an 

explicit function of z,, x,, and «;, for Polak’s model. The fact that the derivatives 

of y, with respect to z, and x, can be directly obtained for Polak’s model allows 

Polak to obtain fairly easily the derivatives of the objective function with respect 

to the values of the control variables. Polak also reports that the time horizon 

for the problems he is considering may be as large as 1,000 periods,* which is 

much larger than the time horizon for most problems in economics, where the 

horizon is likely to be much less than even 100 periods. The discrete optimal 

control problem in economics is thus on the one hand easier than the corresponding 

problem in engineering in that the time horizon appears to be much smaller 

and on the other hand more difficult in that analytic derivatives of the objective 

” See especially pp. 66-71. See also Athans [1] for a discussion of the linear-quadratic-Gaussian 
stochastic control problem for discrete-time models. 

8 Polak [20], p. 67. Polak does not, however, report on any actual solutions of problems of this 
sort in his book. 
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function with respect to the values of the control variables are not easy to obtain 

because of the non-reduced-form nature of most econometric models. 

3. THE COMPUTATIONAL ALGORTHIMS USED 

Three basic algorithms were used for the results in Sections 4 and 5. The first 

is the 1964 algorithm of Powell [21], which does not require any derivatives. The 

second is a gradient algorithm, which requires first derivatives. The third is the 

quadratic hill-climbing algorithm of Goldfeld, Quandt, and Trotter [12], which 

requires both first and second derivatives. The gradient algorithm that was used 

in this study is a member of the class of algorithms considered by Huang [15].° 

The algorithms within this class basically differ from each other in how the 

approximation to the inverse of the matrix of second partial derivatives is updated 

after each iteration. One member of this class is the well-known DFP variable 

metric algorithm.'® Some results using the DFP algorithm are reported below, 

but the main gradient algorithm that was used in this study is the one that updates 

by means of the “rank one correction formula.”’'' This algorithm appears to 

give the best results. Some results using one other member of the class of algorithms 

considered by Huang are also reported below. '? All three of the gradient algorithms 

considered in this study use linear searches on each iteration. 

All of the computer programs were compiled in FORTRAN-H and were 

run on an IBM 360-91 computer at Princeton University.'* All derivatives for 

the gradient and quadratic hill-climbing algorithms were computed numerically. 

For the gradient algorithms the derivatives were computed in two ways. For one 

set of runs derivatives were obtained for each iteration by computing two function 

evaluations per variable, each variable being perturbed by equal amounts around 

the value available from the previous iteration. For the other set of runs derivatives 

were obtained for each iteration by computing only one function evaluation per 

variable. The percentage amount by which variables were perturbed (0.01 percent) 

was not varied from iteration to iteration.'* Stewart [25] has proposed a more 

sophisticated way of computing numeric derivatives when using gradient 

algorithms, but his method was not tried in this study. For the quadratic hill- 

climbing algorithm first derivatives were always obtained by computing two 

function evaluations per variable, as these computations had to be made anyway 

to obtain the own second derivatives, but the cross partial derivatives were com- 

puted in two ways. For one set of runs the cross partial derivatives were obtained 

by computing four extra function evaluations per set of two variables, and for the 

other set of runs the derivatives were obtained by computing only one extra 

? See Powell [23] for an excellent summary of Huang’s theory. 
10 See Davidon [7] and Fletcher and Powell [9]. 
'! See Powell [23], p. 41. 
12 See Powell [23], equations (31) and (32), p. 41, for a presentation of this algorithm. 
3 The Powell and quadratic-hill-climbing algorithms were programmed by Stephen M. Goldfeld 

and Richard E. Quandt. The three gradient algorithms were programmed by Thomas Russell. 
‘4 Let f(a, b) be a function of two variables. Then the formulas that were used to obtain the partial 

derivative of f with respect to a for the two runs are (f(a + ¢,b) — f(a — ¢,b))/2e and (f(a + «, b) — 
f(a, b))/e, where ¢ = 0.0001a or 0.060901, whichever is larger. For all of the runs the problems were 
set up so that the solution values of the variables would be between about 0.1 and 10.0. 
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function evaluation per set of two variables.'* The reason two methods were 

used to obtain derivatives for the gradient and quadratic hill-climbing algorithms 

—one more expensive but likely to be more accurate and one less expensive but 

likely to be less accurate—was to see how sensitive the results were to the way 

in which the derivatives were obtained. Box, Davies, and Swann [5], for example, 

report that their experience is that “gradient methods employing numerical 

differentiation are (with the exception of-Stewart, 1967) usually inferior to the best 

direct search methods, and therefore not recommended.”'® The results in this 

study do not confirm this view. 

In the programs, the algorithms were taken to have converged when the 

absolute value of the difference between the value of each variable on successive 

iterations was within a prescribed tolerance level. The Powell algorithm was 

generally more sensitive to the particular tolerance level used than were the gradient 

and quadratic hill-climbing algorithms, and for the results in Section 4 two sets 

of runs were obtained using the Powell algorithm, corresponding to two different 

tolerance levels. 

Studies that have been done comparing different computational algorithms 

have tended to limit the size of the problems considered to 20 variables or less. 

This is true, for example, of the comparisons in Bard [3], Box [4], Goldfeld and 

Quandt [11], Kowalik and Osborne [16], Murtagh and Sargent [17], Pearson 

[18], and Stewart [25]. Powell [22] reports that the DFP algorithm using analytic 

derivatives has been successful for problems of size 100 and that his 1964 algorithm 

and the DFP algorithm using numeric derivatives in the manner proposed by 

Stewart have solved problems of size 20.'’ Wolfe [26] states that the upper limit 

to the size of problems that can be solved in which derivatives can be calculated 

analytically is around 100. For problems in which derivatives cannot be calculated, 

Wolfe’s diagram indicates that the upper limit is about 10.'* The results reported 

below indicate that the upper limit to the size of problems that can be solved when 

derivatives are not calculated analytically is much larger than 10 or 20. The largest 

problem solved below was of size 239, and a number of problems between size 

59 and 100 were solved. In fact, one of the main reasons why the method proposed 

in this paper appears feasible for most econometric models is the ease in which 

algorithms appear to be able to solve large problems even when analytic derivatives 

are not calculated. 

4. AN EXAMPLE USING A LINEAR MODEL WITH A QUADRATIC 

OBJECTIVE FUNCTION 

The method proposed in.Section 2 was first used to solve one of the optimal 

control problems solved by Chow [6] for his nine-equation, linear econometric 

'S Using the notation in footnote 14, the formula used for the own second derivatives is 
(f(a + e,b) — 2f(a,b) + f(a — &,b))/e?. The two formulas used for the cross partial derivatives are 
(f(a + &,b + n) —fla — &,b +n) —fla+e,b —n)+fla—¢,b —n)/4en and (f(a+e,b+n) - 
f(a,b + n) — fla + &,b) + f(a, b))/en, where n = 0.0001 or 0.000001, whichever is larger. In the second 
formula, values for f(a,b + 4) and f(a + ¢, b) are available from the own second derivative calculations. 

'® Box, Davies, and Swann [5], p. 32. 
‘7 Powell [22], p. 95 
‘8 Wolfe [36], pp. xi-xii. It should be noted, however, that it is not clear from Wolfe’s notes whether 

for these particular figures Wolfe is also including problems in which there are inequality constraints. 
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model. The model has two control variables. Chow solved various 10-period 

optimal control problems corresponding to different quadratic objective functions 

(to be minimized). The problem chosen to solve in this study is the second problem 

in Table 3 of Chow [6]. Two control variables and ten periods means that there 

are 20 variables to be determined. The initial values for the 20 variables were 

chosen to be zero, although in practice one could obviously choose better initial 

values than these. The results of solving this problem are presented in the first 

row of Table 1. Two runs for the Powell algorithm are reported, one which used 

a tolerance level of 0.0005 and one which used a tolerance level of 0.00001. Two 

runs each for the gradient and quadratic hill-climbing algorithm are also reported, 

corresponding to the two ways of computing derivatives. The latter two algorithms 

used a tolerance level of 0.00001. 

Powell’s no-derivative algorithm required 1687 function evaluations to attain 

the optimum using a tolerance level of 0.0005 and 2,633 function evaluations using 

a tolerance level of 0.00001. The*value of the objective function at the stopping 

point was smaller for the smaller tolerance level, but only by a very small amount. 

The corresponding variable values for the two runs agreed to three significant 

digits, with the largest difference being 0.00015 (0.70272 vs. 0.70287). The gradient 

algorithm required 614 function evaluations to attain the optimum using one 

function evaluation per derivative per variable and 1,033 function evaluations 

using two. The value of the objective function at the stopping point was smaller 

for the second run, but again by only a very small amount. The corresponding 

variable values for these two runs also agreed to three significant digits. The 

quadratic hill-climbing algorithm required 929 function evaluations to attain the 

optimum using one function evaluation per cross derivative and 3,209 function 

evaluations using four. For these two runs the values of the objective function at 

the stopping point were the same. The time per function evaluation for the Chow- 

model, 10-period problem was 0.0018 of a second. The optimum obtained for 

this problem was the same as Chow had obtained. 

The optimal control problem for the Chow model was next made progressively 

larger by increasing the time horizon. The largest problem considered was a time 

horizon of 50 periods, which meant that there were 100 variables to estimate. 

The results for 40, 60, 80, and 100 variables are presented in rows 2 through 5 in 

Table 1 respectively. For the various problems the gradient algorithm clearly 

dominated Powell’s in terms of speed of convergence. The use of the smaller 

tolerance level for the Powell algorithm increased the number of function evalua- 

tions considerably, and the values of the objective functions at the stopping points 

were only slightly larger for the lerger tolerance level. Likewise, for the gradient 

algorithm the values of the objective functions at the stopping points were only 

slightly larger for the runs using one function evaluation per derivative. For the 

quadratic hill-climbing algorithm no accuracy at all was lost using one function 

evaluation per cross derivative. The quadratic hill-climbing algorithm was not 

tried after 40 parameters, although the use of the algorithm for problems of, say, 

size 100 is not completely out of the question. Using the less expensive way of 

obtaining cross derivatives, it requires 0.5N? + 1.5N function evaluations to 

compute the vector of first derivatives and the matrix of second partial derivatives 

per iteration (where N is the number of variables). If four iterations are required 
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to attain convergence, then roughly 20,600 function evaluations would be required 

to solve the 100-variable problem. 

Adding extra periods for the Chow model in general had little effect on the 

optimal variable values of previous periods, so that, for example, the answer to 

the 60-variable problem was close to the answer to the 80- or 100-variable problem 

for the first 60 variables. In view of this, the answer to smaller problems should 

be a good starting point for larger problems, and so to test this, the answer to the 

60-variable problem was used as a starting point for the first 60 variables of the 

80-variable problem. Starting points for the other 20 variables were obtained by 

letting the values of the two control variables grow by 6 and 5 percent respectively, 

these figures being obtained by observing how the control variables were growing 

in the answer to the 60-variable problem. The results of this test are presented 

in row 6 of Table 1. For the gradient algorithm the number of function evaluations 

was cut by about a factor of 3 (from 4,432 to 1,396 and from 8,517 to 2,842), a 

substantial savings. For the Powell algorithm the number of function evaluations 

was cut from 10,960 to 6,253 using the larger tolerance level and from 15,371 to 

6,253 using the smaller tolerance level. In both cases for the Powell algorithm, a 

slightly smaller value of the objective function was obtained by starting the variable 

values from zero. 

As a final test using the Chow model, two other gradient algorithms were 

tried for the 60-variable problem. The results are reported in rows 7 and 8 of 

Table 1. Neither algorithm worked as well as the rank one algorithm. The DFP 

algorithm required about 1,554 more function evaluations than did the rank-one 

algorithm for the run using one function evaluation per derivative. For the run 

using two function evaluations per derivative, the DFP algorithm did not quite 

attain the optimum. 

5. AN EXAMPLE USING A NONLINEAR MODEL WITH A NON QUADRATIC 

OBJECTIVE FUNCTION 

The method of Section 2 was next used to solve a more complicated optimal 

control problem. The model used was the Fair model [8], less the monthly housing 

starts sector. The model used consists of 19 equations, is nonlinear, has lags of 

up to eighth order, and was estimated under the assumption of first-order serial 

correlation of most of the error terms.'? The initial period was taken to be 1962III 

and the horizon for the various runs was either 10, 20, 25, or 60 quarters. The 

number of control variables was varied between one and four. Government 

spending was always taken to be a control variable. The other three variables 

that were sometimes used as control variables were the level of consumer sentiment, 

plant and equipment investment expectations, and nonfarm quarterly housing 

starts. These latter three variables are clearly not variables under the direct control 

of the government, but for purposes of illustrating the method of solution, there 

is no harm in treating them as if they were. The objective function was deliberately 

chosen to be non-quadratic in the variables of the model. The objective function 

'® The coefficients were taken from Table 11-4 in [8]. 
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(to be minimized) was: 

: CD 2 

s dans ¥{ 10(gpp,)? + 10/UR, — 0.0307 + oy - 0034} 

CN, . CS, 2 
+ GNP, ~ 0275) + | GNP, ~ 0251] 

IP, 2 IH, 2 
+ lant _ 0.01} + feta _ 0038] \ 

where gpp, is the rate of growth (at an annual rate) of the private output deflator, 

UR, is the unemployment rate, and the five ratios are the ratios of durable con- 

sumption, non-durable consumption, service consumption, plant and equipment 

investment, and housing investment to gross national product respectively. The 

slashes around UR, — 0.030 denote the fact that /UR, — 0.030/ was taken to be 

equal to UR, — 0.030 if UR, => 0.030 and zero otherwise. In other words, welfare 

was not improved for an unemployment rate below 0.030, but it was not decreased 

either, as a straight quadratic function would imply. The objective function is 

non-quadratic in this respect, as well as in targeting ratios of the various com- 

ponents of GNP to GNP itself. The rate of inflation and the unemployment rate 

were weighted ten times more heavily in the objective function than were the 

ratios. It should be noted that the welfare function is not differentiable at 

UR, = 0.030. In the present case, however, the optimum values of UR, were always 

greater than 0.030, and the lack of differentiability at UR, = 0.030 did not appear 

to be a problem for the algorithms for which numeric derivatives had to be com- 

puted. In general, if the lack of differentiability of either the model or the welfare 

function appears to be important (as it might be, for example, for models in which 

capacity ceilings play an important role), then algorithms that do not require the 

computation of derivatives may be better choices than those that do. 

The results for the various runs using the Fair model are presented in Table 2. 

The second control variable, the level of consumer sentiment, does not enter the 

model currently, but only with lags of one or more periods, so when this variable 

was used as a control variable, the number of values of this variable to be deter- 

mined was one less than the number of periods. Except for lines 7 and 8, historic 

values were used as starting points for the values of the control variables. Again, 

two runs each for the gradient and quadratic hill-climbing algorithms are reported. 

corresponding to the two ways of computing derivatives. The tolerance level used 

for these two algorithms was 0.00005. The tolerance level used for the Powell 

algorithms was 0.000005. 

From the results in Table 2, it can be seen that the gradient algorithm worked 

better than Powell’s. The number of function evaluations was usually less for the 

gradient algorithm, and for the problems of greater than 20 variables the Powell 

algorithm did not quite attain the optima that the gradient algorithm did. For 

the 39- through 99-variable problems, the largest differences between the variable 

values computed by the Powell algorithm and the corresponding variable values 

computed by the gradient algorithm were 26, 8, 34, and 88 percent respectively. 

An even smaller tolerance level was tried for some of the runs using the Powell 

143 



‘o
ne
ap
en
b 

jo
u 

st 
uo

No
uN

y 
au
Rj
ja
m 

‘s
uO

Te
Nb

e 
9y
) 

JO
 

SO
W 

UI
 

SI
I)

 
10
11
9 

DY
) 

JO
 

UO
T]
 

‘W
YM

IO
F]

e 
S1
j9
W 

sq
eu

RA
 

d4
q 

= 
wo

Ip
eH

, 
-B

]9
11

09
 

[1
19

8 
JO
ps
O-
)s
1y
 

‘
9
p
 

YI
YS

I9
 

0}
 

dn
 

jo
 

sB
xy

 
! ze
oU
lU
OU
 

‘s
uO

NE
Nb

e 
6]
 

:j
op

ow
 

se
y 

‘$
00

00
’ 

SB
M 

Bu
Iq
ui
tj
o-
[j
1}
{ 

Pu
e 

JU
II

Pe
IH

 
Jo
y 

[2
A]

 
Do

UR
IZ

IO
] 

‘9
SI

MJ
OY

IO
 

Sa
Ny
eA
 

[B
dI
O}
SI
Y 

sn
jd
 

p 
O} 

Jo
ms

UY
 

,
 

*$
00

00
0°

0 
SB
M 

[J
2M

Og
 

1O
J 

J2
A2

] 
BO
UR
IZ
IO
]L
 

‘9
SI
MI
OY
IO
 

So
Nj
eA
 

pu
ss

) 
sn

jd
 

g 
0}
 

Jo
Ms

SU
Y 

, 
"I 

QB
] 

29
5 

‘I
p 

‘od
 

[e
z]
 

Jo
mo

g 
ut
 

(z
¢)
 

pu
e 

(1
¢)

 
su
on
en
bs
 

ui
 

pa
jy
us
sa
id
 

Wy
 

WO
sT

y 
= 

ju
sI
pe
sy
H 

:S
10

N 

46
08
00
7'
0 

pO
18

87
91

0 
se

 
LL

Lb
 

Ss
t 

‘ye
a 

—-
 

SO
L8

87
91

°0
 

Soe
 

SC
E 

CS
S 

Sr
10

0 
“Is

ty 
6S

 
07
 

€ 
Ol
+ 

46
08

00
7°

0 
pO

18
87

91
0 

8€
 

«6
8h
 

=
 

86
 

EL
 

ye
a 

a9
 

90
18

87
91

0 
be

 
SO

ez
 

ZI
SE

 
Sr
10
0 

ys
Iy
 

6S
 

0z
 

£ 
6«

 
01

88
79

10
 

69
1P
ET
9I
0 

LL
 

8€
6L
71
 

«S
96
1 

ou
 

OL
IP
ET
II
O 

18
 

LO
L 

O9
OI
T 

86
86
79
10
 

v 
S1

97
 

11
6€
 

8r
10
0 

q 
6L
 

07
 

v 
8 

08
0€
20
8°
0 

ou
 

ou
 

8S
6S
88
85
 

0 
po
l 

19
9'
S7
 

IS
 

68
II

 
ou
 

6f
r0
0 

e 
67

 
09
 

v 
L 

ss
0s
eo
r 

0 
O¢
Ol
1S
07
0 

$6
 

=
 

«LE
9'6

I 
«=
 

EL
 

OB
E 

‘Te
a 

ou
 

ZE
OT
IS
O7
0 

$6
 

«6«
I8t

0I 
=6
Le
 

PO
T 

§=
— 

S$
 

66
79
07
'0
 

vl
 

T7S
'ZI

 
«O
W 

IE
ZT

 
«=
 

TS
TO

O 
=
 

BS
TY
 

66
 

Sz
 

v 
9 

L6
08

00
7°

0 
69

IP
ET

II
O 

LL
 

LO
ST
 

«6
97
 

L6
1 

‘ye
a 

ou
 

OL
IP
ET
II
0 

o8
 

pi
gl
L 

78
 

EI
I 

vS
Z0
S7
91
'0
 

SI
 

€I
sO
l 

O7
9S

T 
sr

l0
0 

‘Is
tYy

 
6L
 

07
 

v 
S 

46
08
00
7°
0 

v0
18
87
91
°0
 

8€
 

L8
Lb
 

 P
8E
L 

‘ye
a 

ou
 

SO
I8
87
91
0 

S€
 

we
et
 

7B
SE
 

11
20
67
91
0 

Ol
 

O8
s'

s 
9E

b8
 

8r
10

0 
= IsI
Yy 

6S
 

07
 

€ 
v 

46
08

00
7°

0 
£6
9E
LE
91
°0
 

v 
9L
VZ
I 

7S
'8

61
 

£6
9E
LE
9T
 

0 
we
 

0
 

OS
LT

 
OE

 
OP

 
“pe

a 
£6

9E
LE

9T
'O

 
v 

v8
7E

 
97
'¢
9 

S6
9E
LE
91
0 

6c
 

=«I
LE'

l 
£8
07
 

96
08

91
0 

or
 

ce
le

 
=
 

O
B
 

8r
10

0 
“Is

IYy
 

6£
 

02
 

ra
 

€ 
=
 

L6
08

00
7'

0 
TS
OL
ZH
9T
‘O
 

v 
60

7°
€ 

91
7s

 
ZS
OL
7P
9I
0 

cl.
 

22
5 

IL
'8
 

‘TB
A 

on
 

TS
OL

ZP
9I

'O
 

v 
67
6 

SP
sl
 

£S
OL
7P
91
°0
 

Il
 

= LO
E 

8L
P 

£E
IL
7v
9l
 

0 
ra

 
| 

it
~ 

w
e
 

8r
10

0 
= 

IS
Iy
 

07
 

07
 

I 
4 

Lo
vi
so
lo
 

Lv
0L
16
9L
0°
0 

v 
60

8 
tr

9 
8v

0L
16

9L
00

 
8 

St
 

08
'1
 

‘Te
a 

Lv
0L

16
94

0°
0 

v 
69

7 
t€
T 

©
 

| 
8P
0L
16
9L
00
 

6 
£9
1 

se
l 

£$
0L
16
91
.0
°0
 

a 
€z
I'
l 

OB
 

72
00

0 
|“
 

ISI
Y 

ol
 

01
 

I 
1 

e 
— 

— 
e
s
 

S
e
 

6c
t 

g
e
 

ff
 

0
6
 

(C
RE
 

CU
TE
 

CG
E 

O
U
G
l
l
C
O
E
C
U
C
G
E
O
O
 

O
U
 

O
O
F
 

BS
 

8
 

£
2
 

8
2
 

4 
m
S
 

2
 

#
2
 

& 
nS
 

£2
, 

8
2
 

4 
a
 

> 
é
s
 

F
S
 

j
e
 

S
t
 

(
o
e
 

S
e
 

o
e
 

o
e
 

oa
. 

o
R
 

ee
 

Be
 

o
e
 

e
e
 

oo
 

n
O
 

8 
S 

L 
8 

ry
 

+ 
8 

S 
- 

ry
 

2
 

a 
.& 

3 
r
e
 

; 
e 

: 
e 

. 
e 

bo
 

5 
& 

& 
3 

=}
 

- 
Ss

 
a 

S 
2
2
 

é
 

. 
$
 

a 
eg
 

5 
= 

¥ 

Su
iq

ui
t{

D-
I1

!H
 

ju
sI

pe
sy

 
[]

2M
Od

 

WAGOP AV] YOs SLTNSAY 

t 
ATEVL 



algorithm (0.0000001 vs. 0.000005) to see if this resulted in a smaller value of the 

objective function, but the results were not improved using the smaller tolerance 

levels. For the gradient algorithm the use of the less expensive way of obtaining 

derivatives resulted in virtually no loss in accuracy for any of the runs. For the 

quadratic hill-climbing algorithm the use of the less expensive way of computing 

cross partial derivatives resulted in no loss in accuracy at all and, of course, 

substantial savings on cost. For the problem of 4 control variables and 25 periods 

(99 variables), the gradient algorithm using the less expensive way of computing 

derivatives required 10,181 function evaluations and took about 3.4 minutes to 

attain the optimum. 

When the 79-variable problem was started from the answer to the 59-variable 

problem plus historical values otherwise (line 8), the speed of convergence was 

only slightly increased for the gradient algorithm. The number of function evalua- 

tions fell from 7,314 to 7,047 for the one run and from 12,807 to 12,793 for the 
other. The number of function evaluations fell substantially for the Powell 

algorithm, but the optimum was still not attained. 

When the other two gradient algorithms were tried for the 59-variable 

problem (lines 9 and 10), the results were virtually the same as for the rank one 

algorithm. For this problem there is nothing to choose among the three algorithms. 

The largest problem tried for the Fair model was four control variables and 

60 periods (1962III—-1977II) for a total of 239 variables. The answer to the 99- 

variable problem was used as a starting point plus historical or extrapolated 

values otherwise. Only the gradient algorithm using the less expensive way of 

obtaining derivatives was tried for this problem. The program was allowed to 

run for approximately 20 minutes. At the end of 20 minutes and 104 iterations, 

the value of the objective function was changing only in the eighth decimal place 

between iterations and the largest difference between any corresponding parameter 

values on the last two iterations was 0.0007. The value of the objective function at 

the starting point was 0.80730797 and the value after 104 iterations was 0.58885958. 

The starting point turned out to be fairly far away from the stopping point, with 

unemployment rates of about 7 percent near the end of the horizon compared 

with the stopping-point values of around 5 percent. The stopping-point values 

for the 239-variable problem appeared to be in line with what would be expected 

from observing the answers to the smaller problems. The Powell algorithm was 

started from the values attained by the gradient algorithm on the 53rd iteration 

(an objective-function value of 0.58890611) to see if it would go anywhere. A 

tolerance level of 0.000005 was used. The algorithm went one iteration, lowered 

the objective function to 0.58890571, and stopped (the convergence criterion 

having been met for all parameters), a clear failure in view of the value obtained 

by the gradient algorithm. One other result is also of interest to note here. The 

gradient algorithm was also started from the values attained on the 53rd iteration. 

A tolerance level of 0.00005 was used. The algorithm went one iteration, lowered 

the objective function to 0.58890575, and stopped (the convergence criterion having 

been met), also a clear failure. By starting the gradient algorithm over on the 53rd 

iteration, one lost the approximation to the inverse of the matrix of second partial 

derivatives that had been developed over 53 iterations, which in the present case 

was obviously quite important. A similar result occurred when experimenting 
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with the 99-variable problem. These results suggest that if one contemplates having 

to restart the gradient algorithm for one reason or another (like running out of time 

on the computer), one ought to save the latest approximation to the inverse of 

the matrix of second partial derivatives to be used when the algorithm is restarted. 

The results also suggest, oddly enough, that when using the gradient algorithm 

one ought not to start the algorithm too close to the (presumed) optimum for fear 

that the algorithm will get stuck before it has a chance to build up a good approxi- 

mation to the inverse of the matrix of second partial derivatives. 

The answers to the problems for the Fair model were characterized by a 

large value of government spending in the first period (compared with the historical 

value) and large values near the end of the time horizon. In the model employment 

responds faster to government spending than does the price level, and so the 

relatively large values of government spending for the last few periods of the 

horizon are taking advantage of this fact and lowering the unemployment rate 

without having too much effect on the price level.?° The large value of spending in 

the first period is apparently designed to lower the unemployment rate quickly 

from its relatively high historic level. Excluding beginning and ending effects, the 

particular objective function used resulted in an unemployment rate of about 

5.0 percent and an annual rate of inflation of about 2.2 percent. The IP,/GNP, 

and 1H,/GNP, ratios were met almost exactly when plant and equipment invest- 

ment expectations and housing starts were used as control variables, as would be 

expected. The three consumption ratios were not met as exactly when consumer 

sentiment was used as a control variable since in this case there was, in effect, 

only one main control variable influencing three ratios. 

In Table 3 are presented estimates for each run in Tables | and 2 of the per- 

centage of time that was spent doing function evaluations. The estimates were 

obtained by multiplying the time per function evaluation by the number of function 

evaluations and dividing this figure by the total time for the job. For the Fair 

model abnormal exits sometimes occurred from the function-evaluation program 

(before all of the computations were performed), which causes some of the per- 

centages for the Fair model in Table 3 to be too high. Abnormal exits occur when 

variable values imply that the logarithm of a negative number should be taken. 

The estimates in Table 3 are also subject to error for reasons that have to do with 

the way that computation time in the computer is estimated. In general, the 

percentages are quite high in Table 3, indicating the importance of writing efficient 

programs for evaluating functions. 

6. AN EVALUATION OF THE PRACTICAL USEFULNESS OF THE METHOD 

The results in Sections 4 and 5 are very encouraging as to the feasibility of 

using the method proposed in Section 2 even for large-scale models. For a 20- 

period problem the 19-equation Fair model takes 0.0148 of a second per function 

evaluation on the IBM 360-91 computer. The Fair model can be solved without 

2° To avoid undesirable end-point effects in practice, one can always extend the horizon a few 
periods beyond the actual horizon of interest. For the Fair model it appeared that the horizon should 
be lengthened by about 5 quarters. Because of the end-point effects, the last few answers to the 99-variable 
problem for each control variable were not used as starting points for the 239-variable problem. 
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TABLE 3 

ESTIMATES OF PERCENTAGE OF TIME SPENT DOING FUNCTION EVALUATIONS 

From Table 1 

Powell Gradient Hill-Climbing 

Row (1) (2) (1). (2) (1) (2) 

1 93 97 83 95 52 82 
2 93 95 83 93 53 79 
3 94 90 83 91 -- oa 
4 90 92 87 90 _- -- 
5 97 95 86 91 - - 
6 98 98 78 94 acs a 
7 — —- 86 93 ~ _ 
8 — — 87 92 _- - 

From Table 2 

Powell Gradient Hill-Climbing 

Row (1) (2) (1) (2) 

l 96 87 90 83 91 
2 97 95 97 89 91 
3 97 97 101 77 91 
4 98 - 97 96 — — 
5 100 95 96 — - 
6 100 90 92 oH -- 
7 — 95 — — - 
8 99 94 96 _ _ 
9 — 97 96 -- - 

10 — 97 97 — — 

the use of the Seidel method since the nonlinear part of the model is recursive. 

If a 100-equation model could be solved in the same way, it should take only 

about five times longer to solve this model than it takes to solve the Fair model 

since the number of computations per equation is not likely to vary much from 

model to model. Econometric models tend to be larger because of more equations 

and not because of more variables per equation. If the Seidel method must be 

used to solve a model and if for each iteration for each period the entire model 

must be passed through, then the cost per solution of the model is increased in 

proportion to the number of iterations that are required to solve the model each 

period. If, for example, it takes five iterations to solve a 100-equation model each 

period, it should take about 25 times longer to solve this model than it takes to 

solve the Fair model. Since algorithms that do not require derivatives or for which 

derivatives are computed numerically spend most of their time doing function 

evaluations, the total time that it takes to solve a control problem for a 100- 

equation model that requires five iterations per solution of the model should be 

about 25 times greater for the same problem than the corresponding time in Table 2 

for the Fair model. A 20-period problem with one control variable should thus 

take about 2.0 minutes using the gradient algorithm and the less expensive way 
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of obtaining derivatives (25 x 4.78 seconds). A 20-period problem with two 

control variables should take about 8.7 minutes (25 x 20.83 seconds). The problem 

of four control variables and 25 periods should take about 85.2 minutes(25 x 204.47 

seconds). 

Although the times just mentioned are not completely out of the range of 

practicality, it is possible that in practice the times can be substantially cut down. 

First, good starting points can be quite important, and significant time may be 

saved by first solving a small problem (say one control variable), using the answer 

to this problem as a starting point for a somewhat larger problem (say two control 

variables), and so on, building up to the largest problem that one wants to consider. 

Also, once one has solved a particular optimal control problem once, the answer 

to this problem may be a good starting point for a slightly different problem (say, 

a slight change in the objective function). In other words, it may not be too costly 

to experiment with different objective functions or a slightly different specification 

of the model once one solution to a particular problem has been obtained. It may 

also be the case that from a welfare point of view or from the point of view of 

feasibility one wants to keep the control variables within certain bounds. This 

can be done by including control variables in the objective function and penalizing 

deviations of the values of the control variables from target values. If this is done, 

one has a natural starting point for the control variables—the target values—and 

this may significantly increase the speed of convergence of the algorithm being used, 

in addition perhaps to decreasing the likelihood that the algorithm goes to a local 

but not the global optimum. 

A second way in which much time might be saved by models that need to be 

solved by the Seidel method is by choosing good initial values of the endogenous 

variables to begin the solution of the model each period. Since most algorithms 

perturb the variables (in the presence case, the values of the control variables) only 

a slight amount between function evaluations, particularly when derivatives are 

being computed, a good choice for the initial values of the endogenous variables 

is likely to be the solution values obtained in the process of computing the previous 

function evaluation. It is possible that this choice can cut the number of iterations 

needed per solution of the model per period to two or three, which would greatly 

save on cost. 

A third way in which time can be saved is to write the program that does 

function evaluations in such a way that no computations are performed other 

than those that are absolutely needed in going from values of the control variables 

to the value of the cbjective function. For example, any sets of calculations using 

exogenous variables that are not changed as a result of changes in the values 

of the control variables should not be done in the function-evaluation prog- 

ram, but only once before the solution of the optimal control problem begins. 

This kind of efficient programming was not done for the results in Tables 1 

and 2. 

If for a 100-equation model one could, by following the above suggestions, 

cut the number of iterations using the Seidel method to an average of 2.5 and 

could further cut the time per function evaluation by 25 percent, then the times 

quoted above (2.0, 8.7, and 85.2 minutes) would be cut to 0.75, 3.3, and 32.0 

minutes respectively. These times may be further cut by a factor of 2 or more 
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by better choices of initial parameter values than those used for the results iri 
Table 2.7' 

In terms of the size of the problems that the method proposed in this paper 

can handle, there is an obvious tradeoff between the size of the model, the number 

of control variables, and the length of the decision horizon. It is hard to establish 

any precise rules as to what problems are practical to solve and what are not 

because no two models and problems are the same. Furthermore, for some 

problems one algorithm may work best and for others another may work best. 

Each person must to some extent determine for oneself through experimentation 

the practical limits to the size of problems that one can solve. Nevertheless, the 

results in this study can give some indication of the likely cost of various problems. 

One important question in this regard is how rapidly the number of function 

evaluations increases as the number of variables to be estimated increases. From 

the results in Tables 1 and 2 one can compute the extra number of function 

evaluations required per additional variable (AFE/AN, where FE is the number 

of function evaluations and N is the number of variables) and observe how this 

quantity varies as the total number of variables varies. These computations are 

presented in Table 4. For the quadratic hill-climbing algorithm, AFE/AN clearly 

increases as N increases since the number of function evaluations required to 

compute first and second derivatives per iteration increases as the square of N. 

From the results for the Chow model there is only a slight tendency for AFE/AN 

to increase as N increases for the Powell and gradient algorithms. From the results 

for the Fair model there is somewhat more of a tendency in this direction for the 

two algorithms, but this tendency is far from being uniform. In general, the results 

in Table 4 indicate that there is only a slight tendency for AFE/AN to increase as 

N increases for the Powell and gradient algorithms. 

The time required per function evaluation should be roughly proportional 

to the number of periods times the number of equations in the model times the 

number of Seidel iterations required to solve the model. The time required to 

solve a control problem is roughly equal to the time required per function evalua- 

tion times the number of function evaluations. If the number of function evaluations 

varies only in proportion to the number of variables (AFE/AN not increasing 

as N increases), then the time required to solve a control problem should be 

roughly proportional to the square of the number of periods times the number of 

control variables times the number of equations times the number of Seidel 

iterations. In this case, if the number of Seidel iterations required to solve a model 

does not increase as the number of equations of the model increases, then the time 

2! Albert Ando has communicated to the author a “conservative” estimate that for the solution 
of the 200-equation FMP model it takes about 0.00500 of a second per iteration per period on an IBM 
370-165 computer. This figure compares with 0.00072 for the solution of the 19-equation Fair model 
(divide 0.0072 in Table 2 by 10). Since the FMP model has 10.5 times more equations than the Fair 
model, one would expect the time per iteration per period to be about 10.5 times greater for the FMP 
model. The figure supplied by Ando indicates that the time is only 6.9 times greater. Ando’s results 
thus suggest that the times cited in the text above may be too conservative. It should also be noted 
that Ando’s resuits are for a program that was not written with optimal control problems in mind. 

The FMP model usually takes between 10 and 15 iterations to solve per period using the Seidel 
method. However, the values used as initial values for the endogenous variables are the solution values 
of the previous quarter, and, as suggested above, in an optimal-control context one should be able to 
do much better than this. 
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TABLE 4 

VALuES OF AFE/AN 

From Table 1 

Powell Gradient Hill-Climbing 

N AN (1) (2) (1) (2) (1) (2) 

20 20 84.4 141.6 30.7 $1.7 46.5 160.5 
40 20 153.3 216.8 48.1 91.1 126.1 480.1 
60 20 153.4 214.5 68.5 130.6 — — 
80 20 157.0 238.1 74.4 152.6 — — 
100 20 196.2 236.1 71.1 132.0 — — 

From Table 2 

Gradient Hill-Climbing 

N AN Powell (1) (2) (1) (2) 

10 10 112.3 16.3 22.5 26.9 80.9 
20 10 102.9 14.4 34.8 66.0 240.0 
39 19 §2.1 56.0 114.9 123.9 471.9 
59 20 121.9 48.7 101.6 — — 
79 20 246.7 248.5 401.0 — — 
99 20 115.5 143.4 341.2 — — 

239 140 7 110.6* —- — — 

N = number of variables. FE = number of function evaluations. 
* The 239-variable run was started from a more accurate point than the others and was terminated 

at a tolerance level of only .0007 versus .00005 for the others. 

required to solve a contro! problem should increase only in proportion to the 

increase in the number of equations. Otherwise, the time will increase more than 

in proportion to the increase in the number of equations.?* The time required to 

solve a control problem is proportional to the square of the number of periods 

because an increase in the number of periods increases both the number of variables 

and the time required per function evaluation. If the number of function evaluations 

increases more than in proportion to the number of variables, then the time required 

to solve a control problem will increase more than in proportion to the increase 

in the square of the number of periods times the number of control variables. 

Barring further results, some tentative conclusions can be drawn from the 

results in this study as to the size of problems that it appears feasible to solve 

using the method discussed in Section 2. For models of 2+out 20 equations, it 

appears quite practical to solve problems in which the product of the number of 

control variables and the number of periods is greater than 100. For models of 

about 100 equations, a product of 100 is probably within the range of practicality. 

For models of about 200 equations, a product of 60 may be close to the limit of 

practicality. The use of good starting points and efficient programming may, of 

course, greatly extend even these limits. Since most econometric models do not 

22 If the objective function to be maximized becomes less well behaved as the number of equations 
increases, this should also cause the time required to solve a control problem to increase more than 
in proportion to the increase in the number of equations. Without further experimentation using other 
models it is not clear how sensitive the shape of the objective function is likely to be to the number of 
equations in the model. 
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exceed 200 equations and since the number of control variables in any one model 

can usually be kept under, say, five without seriously restricting the problem, the 

method considered in this paper should be able to handle most problems of interest 

to policy makers who use econometric models in their decision-making process. 

It should also be noted that the method considered in this paper requires relatively 

little human effort. All one has to do is write a program to solve the model and com- 

pute the objective function. No derivatives are required, no analytic approxima- 

tions have to be made, and the model does not have to be set up in any special form. 

The results in Tables 1 and 2 indicate that the gradient algorithm using the 

less expensive way of obtaining derivatives is the most efficient. Slightly more 

accuracy may be obtained by using the more expensive way of obtaining derivatives 

or by using the quadratic hill-climbing algorithm, but in general this increased 

accuracy is not likely to be worth the cost. For the quadratic hill-climbing algorithm 

no accuracy was gained using the more expensive way of computing cross partial 

derivatives, and so this way is not recommended. The Powell algorithm was 

generally more expensive than the gradient algorithm, and for the Fair model it 

had a tendency to get close to but not quite to the optimum. The results in the 

two tables do, of course, indicate that quite large problems can be solved even 

when derivatives are obtained numerically. In practice, it may be desirable, after 

having attained an answer from one algorithm, to start another algorithm from 

this answer to be more certain that the true optimum has been attained. The 

quadratic hill-climbing algorithm, while being the most expensive for large 

problems, is likely to be the most robust to attaining the true optimum. 

7. STOCHASTIC MODELS 

In the case of a linear model with additive error terms and a quadratic objective 

function it is well known that solving the deterministic control problem derived 

by setting the error terms to their expected values will provide the optimal first- 

period control values for the stochastic, closed-loop, feedback control problem. 

Therefore, if one solves the deterministic control problem each period, after 

observations on the state of the system for the previous period become available, 

one will over time make the same decisions regarding the current values of the 

control variables (i.e., the values of the control variables that the decision maker 

actually sets) as would be made by one who had solved the stochastic, closed-loop, 

feedback control problem explicitly in terms of feedback equations. To this extent, 

feedback equations need not be obtained, and one can concentrate on solving 

deterministic control problems as considered in the previous sections of this 

paper.?* For most economic applications sufficient time is usually available to 

recompute the entire sequence of optimal controls each period. 

For nonlinear models the first-period certainty-equivalence property does not 

hold. One procedure that might be followed in this situation is merely to treat 

the nonlinear-model case in the same way as one would treat the linear-model case, 

i.e., setting error terms to their expected values, and solve the deterministic control 

23 Knowledge of feedback equations for a particular model may aid one in understanding the 
dynamic properties and other characteristics of the model, and for this reason it may be useful to 
compute feedback equations even though they are not actually needed for the solution of the optimal 
control problem. 
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problem each period. This procedure is probably the one most often used in practice 

for solving nonlinear models, although Howrey and Kelejian [14] have shown that 

solving a nonlinear model by setting the error terms equal to their expected values 

is not equivalent to solving the reduced-form equations of the model. 

For a nonlinear model the mean values of the endogenous variables can be 

obtained by means of stochastic simulation. A number of drawings from the joint 

probability distribution of the error terms can be taken, and for each drawing one 

can obtain by solving the model a set of values for the endogenous variables. 

The mean value for each endogenous variable can then be computed as the 

average of the values obtained from solving the model for the various drawings. 

Using the procedure of stochastic simulation, it may be possible for relatively 

small problems to obtain optimal open-loop controls for nonlinear, stochastic 

models in a manner similar to that done above for nonlinear, deterministic models. 

Say the aim were to maximize the expected value of the objective function. For 

each choice of control values, orie could compute by means of stochastic simulation 

the mean value of W. The computed mean value of W would be the value returned 

to the maximization algorithm, and the algorithm would be used in the usual 

way in an attempt to find that set of control values for which the mean value of 

W were at a maximum. Each function evaluation in the stochastic case would 

correspond to an entire stochastic simulation. If, for example, 50 drawings from 

the joint probability distribution of the error terms were needed to obtain an 

adequate approximation to the expected value of W, then approximately 50 

times more time would be needed per function evaluation for the stochastic 

problem then for the deterministic problem. Even though the cost is high for the 

stochastic probiem, it may be feasible for small problems to carry out the above 

suggestion. If one did carry out the above suggestion and found the optimum and 

if one recomputed the entire sequence of optimal controls each period, one would 

over time make the same decisions regarding the current values of the control 

variables as would be made by one who had solved the stochastic, open-loop, 

feedback control problem explicitly in terms of feedback equations. 

For the control problem for nonlinear, stochastic models, Athans [1], [2] has 

suggested first solving the deterministic control problem (the deterministic problem 

being obtained by setting the error terms equal to their expected values) and then 

linearizing around the deterministic-control paths to obtain linear feedback 

equations around the paths. The aim is over time to keep the actual paths close to 

the deterministic-control paths. While Athans’ suggestion may be useful for 

engineering applications, where reoptimization each period may not be feasible, 

the suggestion is likely to be of less use for economic applications. If sufficient time 

is available to reoptimize each period, then it is much more straightforward just to 

solve the deterministic control problem each period.** The results in this paper 
24 These remarks should not be interpreted as meaning that Athans would necessarily disagree 

with them. For example, Athans [1], p. 449, has stated : “It should be stressed that trends in stochastic 
control research by engineers has been greatly infiuenced by two factors : (a) a need to minimize on-line 
computations, and (b) the requirements in many aerospace applications that the control system be 
realized by analog hardware. 

In economic applications these requirements are not present, since the time period between 
decisions does allow for extensive digital computer calculations. Thus, one does have the luxury of 
examining more sophistjcated decision and control algorithms, which however have increased com- 
putational! requirements.” 
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certainly indicate that it is feasible to reoptimize each period when, say, the’ 

period is a month or a quarter. The procedure of reoptimizing each period is also 

somewhat more appealing on intuitive grounds than Athans’ procedure. If 

stochastic simulation is ruled out, then both procedures are based on the incorrect 

practice of setting error terms equal to their expected values. If one follows Athans’ 

procedure, however, further approximations have to be made that do not have to 

be made if one reoptimizes each period. 

Princeton University 
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