NBER Working Papers by Juan Moreno Cruz

Contact and additional information for this authorAll NBER papers and publicationsNBER Working Papers only

Working Papers

September 2015Climate Tipping Points and Solar Geoengineering
with Garth Heutel, Soheil Shayegh: w21589
We study optimal climate policy when climate tipping points and solar geoengineering are present. Solar geoengineering reduces temperatures without reducing greenhouse gas emissions. Climate tipping points are irreversible and uncertain events that cause large damages. We analyze three different rules related to the availability of solar geoengineering: a ban, using solar geoengineering as insurance against the risk of tipping points, or using solar geoengineering only as remediation in the aftermath of a tipping point. We model three distinct types of tipping points: two that alter the climate system and one that yields a direct economic cost. Using an analytic model, we find that an optimal policy, which minimizes expected losses from the tipping point, includes both emissions reductions...
July 2015Solar Geoengineering, Uncertainty, and the Price of Carbon
with Garth Heutel, Soheil Shayegh: w21355
We consider the socially optimal use of solar geoengineering to manage climate change. Solar geoengineering can reduce damages from atmospheric greenhouse gas concentrations, potentially more cheaply than reducing emissions. If so, optimal policy includes less abatement than recommended by models that ignore solar geoengineering, and the price of carbon is lower. Solar geoengineering reduces temperature but does not reduce atmospheric or ocean carbon concentrations, and that carbon may cause damages apart from temperature increases. Finally, uncertainty over climate change and solar geoengineering alters the optimal deployment of solar geoengineering. We explore these issues with an analytical model and a numerical simulation. The price of carbon is 30%-45% lower than the price recommended...
March 2013A Spatial Approach to Energy Economics
with M. Scott Taylor: w18908
We develop a spatial model of energy exploitation where energy sources are differentiated by their geographic location and energy density. The spatial setting creates a scaling law that magnifies the importance of differences across energy sources. As a result, renewable sources twice as dense, provide eight times the supply; and all new non-renewable resource plays must first boom and then bust. For both renewable and non-renewable energy sources we link the size of exploitation zones and energy supplies to energy density, and provide empirical measures of key model attributes using data on solar, wind, biomass, and fossil fuel energy sources. Non-renewable sources are four or five orders of magnitude more dense than renewables, implying that the most salient feature of the last 200 y...
July 2012Back to the Future of Green Powered Economies
with M. Scott Taylor: w18236
The purpose of this paper is to introduce the concept of power density [Watts/m²] into economics. By introducing an explicit spatial structure into a simple general equilibrium model we are able to show how the power density of available energy resources determines the extent of energy exploitation, the density of urban agglomerations, and the peak level of income per capita. Using a simple Malthusian model to sort population across geographic space we demonstrate how the density of available energy supplies creates density in energy demands by agglomerating economic activity. We label this result the density-creates-density hypothesis and evaluate it using data from pre and post fossil-fuel England from 1086 to 1801.

Contact and additional information for this authorAll NBER papers and publicationsNBER Working Papers only

NBER Videos

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email:

Contact Us