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1. Introduction

A Regression Discontinuity (RD) Design is a powerful and

widely applicable identification strategy.

Often access to, or incentives for participation in, a service

or program is assigned based on transparent rules with crite-

ria based on clear cutoff values, rather than on discretion of

administrators.

Comparisons of individuals that are similar but on different sides

of the cutoff point can be credible estimates of causal effects

for a specific subpopulation.

Good for internal validity, not much external validity.
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2. Basics

Two potential outcomes Yi(0) and Yi(1),

causal effect Yi(1) − Yi(0),

binary treatment indicator Wi, covariate Xi,

and the observed outcome equal to:

Yi = Yi (Wi) =

{
Yi(0) if Wi = 0,
Yi(1) if Wi = 1.

(1)

At Xi = c incentives to participate change.

Two cases, Sharp Regression Discontinuity:

Wi = 1{Xi ≥ c}. (SRD)

and Fuzzy Regression Discontinuity Design:

lim
x↓c Pr(Wi = 1|Xi = x) �= lim

x↑c Pr(Wi = 1|Xi = x), (FRD)
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Sharp Regression Discontinuity

Example (Lee, 2007)

What is effect of incumbency on election outcomes? (More

specifically, what is the probability of a Democrat winning the

next election given that the last election was won by a Demo-

crat?)

Compare election outcomes in cases where previous election

was very close.
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SRD

Key assumption:

E[Y (0)|X = x] and E[Y (1)|X = x] are continuous in x.

Under this assumption,

τSRD = lim
x↓c

E[Yi|Xi = x]− lim
x↑c

E[Yi|Xi = x]. (FRD estimand)

The estimand is the difference of two regression functions at

a point.

Extrapolation is unavoidable.
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Fuzzy Regression Discontinuity

Examples (VanderKlaauw, 2002)

What is effect of financial aid offer on acceptance of college

admission.

College admissions office puts applicants in a few categories

based on numerical score.

Financial aid offer is highly correlated with category.

Compare individuals close to cutoff score.
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FRD

What do we look at in the FRD case: ratio of discontinuities

in regression function of outcome and treatment:

τFRD =
limx↓c E[Yi|Xi = x] − limx↑c E[Yi|Xi = x]

limx↓c E[Wi|Xi = x] − limx↑c E[Wi|Xi = x]
.

(FRD Estimand)
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Interpretation of FRD (Hahn, Todd, VanderKlaauw)

Let Wi(x) be potential treatment status given cutoff point x,

for x in some small neigborhood around c (which requires that

the cutoff point is at least in principle manipulable)

Wi(x) is non-increasing in x at x = c.

A complier is a unit such that

lim
x↓Xi

Wi(x) = 0, and lim
x↑Xi

Wi(x) = 1.

Then

limx↓c E[Yi|Xi = x] − limx↑c E[Yi|Xi = x]

limx↓c E[Wi|Xi = x] − limx↑c E[Wi|Xi = x]

= E[Yi(1)− Yi(0)|unit i is a complier and Xi = c].
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External Validity

The estimatand has little external validity. It is at best valid

for a population defined by the cutoff value c, and by the sub-

population that is affected at that value.
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FRD versus Unconfoundedness

Unconfoundedness:

Yi(0), Yi(1) ⊥⊥ Wi

∣∣∣∣∣ Xi. (unconfoundedness)

Under this assumption:

E[Yi(1)− Yi(0)|Xi = x] =

E[Yi|Wi = 1, Xi = c] − E[Yi|Wi = 0, Xi = c].

This approach does not exploit the jump in the probability of
assignment at the discontinuity point. Instead it assumes that
differences between treated and control units with Xi = c have
a causal interpretation.

Unconfoundedness is fundamentally based on units being com-
parable if their covariates are similar. This is not an attractive
assumption in the current setting where the probability of re-
ceiving the treatment is discontinuous in the covariate.
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3. Graphical Analyses

A. Plot regression function E[Yi|Xi = x]

B. Plot regression functions E[Zi|Xi = x] for covariates that

do not enter the assignment rule Zi

C. Plot density fX(x).

In all cases use estimators that do not smooth around the

cutoff value. For example, for binwidth h define bins [bk−1, bk],

where bk = c − (K0 − k + 1) · h, and average outcomes within

bins.
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4. Local Linear Regression

We are interested in the value of a regression function at the
boundary of the support. Standard kernel regression

̂μl(c) =
N∑

i|c−h<Xi<c

Yi

/ N∑
i|c−h<Xi<c

1 (2)

does not work well for that case (slower convergence rates)

Better rates are obtained by using local linear regression. First

min
αl,βl

N∑
i|c−h<Xi<c

(Yi − αl − βl · (Xi − c))2 , (3)

The value of lefthand limit μl(c) is then estimated aŝμl(c) = α̂l + β̂l · (c − c) = α̂l. (4)

Similarly for righthand side. Not much gained by using a non-
uniform kernel.
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Alternatively one can estimate the average effect directly in a

single regression,

Yi = α + β · (Xi − c) + τ · Wi + γ · (Xi − c) · Wi + εi

thus solving

min
α,β,τ,γ

N∑
i=1

1{c − h ≤ Xi ≤ c + h}

× (Yi − α − β · (Xi − c) − τ · Wi − γ · (Xi − c) · Wi)
2 ,

which will numerically yield the same estimate of τSRD.

This interpretation extends easily to the inclusion of covariates.
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Estimation for the FRD Case

Do local linear regression for both the outcome and the treat-

ment indicator, on both sides,(
α̂yl, β̂yl

)
= arg min

αyl,βyl

∑
i:c−h≤Xi<c

(
Yi − αyl − βyl · (Xi − c)

)2
,

(
α̂wl, β̂wl

)
= arg min

αwl,βwl

∑
i:c−h≤Xi<c

(Wi − αwl − βwl · (Xi − c))2 ,

and similarly (α̂yr, β̂yr) and (α̂wr, β̂wr). Then the FRD estimator

is

τ̂FRD =
τ̂y

τ̂w
=

α̂yr − α̂yl

α̂wr − α̂wl
.
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Alternatively, define the vector of covariates

Vi =

⎛⎜⎝ 1
1{Xi < c} · (Xi − c)
1{Xi ≥ c} · (Xi − c)

⎞⎟⎠ , and δ =

⎛⎜⎝ αyl
βyl
βyr

⎞⎟⎠ .

Then we can write

Yi = δ′Vi + τ · Wi + εi. (TSLS)

Then estimating τ based on the regression function (TSLS) by
Two-Stage-Least-Squares methods, using

Wi as the endogenous regressor,
the indicator 1{Xi ≥ c} as the excluded instrument
Vi as the set of exogenous variables

This is is numerically identical to τ̂FRD before (because of uni-
form kernel)

Can add other covariates in straightfoward manner.
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5. Choosing the Bandwidth (Ludwig & Miller)

We wish to take into account that (i) we are interested in the

regression function at the boundary of the support, and (ii)

that we are interested in the regression function at x = c.

Define α̂l(x), β̂l(x), α̂r(x) and β̂r(x) as the solutions to(
α̂l(x), β̂l(x)

)
= argmin

α,β

∑
j|x−h<Xj<x

(
Yj − α − β · (Xj − x)

)2
.

(
α̂r(x), β̂r(x)

)
= argmin

α,β

∑
j|x<Xj<x+h

(
Yj − α − β · (Xj − x)

)2
.

Define

μ̂(x) =

{
α̂l(x) if x < c,
α̂r(x) if x ≥ c,
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Define qX,δ,l to be δ quantile of the empirical distribution of X

for the subsample with Xi < c, and let qX,δ,r be δ quantile of

the empirical distribution of X for the subsample with Xi ≥ c.

Now we use the cross-validation criterion

CVY (h) =
∑

i:qX,δ,l≤Xi≤qX,1−δ,r

(Yi − μ̂(Xi))
2 ,

for, say δ = 1/2, with the corresponding cross-validation choice

for the binwidth

hopt
CV = argmin

h
CVY (h).
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Bandwidth for FRD Design

1. Calculate optimal bandwidth separately for both regression
functions and choose smallest.

2. Calculate optimal bandwidth only for outcome and use that
for both regression functions.

Typically the regression function for the treatment indicator
is flatter than the regression function for the outcome away
from the discontinuity point (completely flat in the SRD case).
So using same criterion would lead to larger bandwidth for
estimation of regression function for treatment indicator. In
practice it is easier to use the same bandwidth, and so to
avoid bias, use the bandwidth from criterion for SRD design or
smallest.
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6. Variance Estimation

σ2
Y l = lim

x↑c Var(Yi|Xi = x), CY Wl = lim
x↑c Cov(Yi, Wi|Xi = x),

Vτy =
4

fX(c)
·
(
σ2

Y r + σ2
Y l

)
, Vτw =

4

fX(c)
·
(
σ2

Wr + σ2
Wl

)
The asymptotic covar of

√
Nh(τ̂y − τy) and

√
Nh(τ̂w − τw) is

Cτy,τw =
4

fX(c)
· (CY Wr + CY Wl) .

Finally, the asymptotic distribution has the form

√
Nh · (τ̂ − τ)

d−→ N

⎛⎝0,
1

τ2
w
· Vτy +

τ2
y

τ4
w
· Vτw − 2 · τy

τ3
w
· Cτy,τw

⎞⎠ .

This asymptotic distribution is a special case of that in HTV,
using the rectangular kernel, and with h = N−δ, for 1/5 < δ <
2/5 (so that the asymptotic bias can be ignored).

Can use plug in estimators for components of variance.
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TSLS Variance for FRD Design

The second estimator for the asymptotic variance of τ̂ exploits

the interpretation of the τ̂ as a TSLS estimator.

The variance estimator is equal to the robust variance for TSLS

based on the subsample of observations with c−h ≤ Xi ≤ c+h,

using the indicator 1{Xi ≥ c} as the excluded instrument, the

treatment Wi as the endogenous regressor and the Vi as the

exogenous covariates.
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7. Concerns about Validity

Two main conceptual concerns in the application of RD de-

signs, sharp or fuzzy.

Other Changes

Possibility of other changes at the same cutoff value of the

covariate. Such changes may affect the outcome, and these

effects may be attributed erroneously to the treatment of

interest.

Manipulation of Forcing Variable

The second concern is that of manipulation of the covariate

value.
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Specification Checks

A. Discontinuities in Average Covariates

B. A Discontinuity in the Distribution of the Forcing Variable

C. Discontinuities in Avareage Outcomes at Other Values

D. Sensitivity to Bandwidth Choice

E. RD Designs with Misspecification
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7.A Discontinuities in Average Covariates

Test the null hypothesis of a zero average effect on pseudo

outcomes known not to be affected by the treatment.

Such variables includes covariates that are by definition not

affected by the treatment. Such tests are familiar from settings

with identification based on unconfoundedness assumptions.

Although not required for the validity of the design, in most

cases, the reason for the discontinuity in the probability of the

treatment does not suggest a discontinuity in the average value

of covariates. If we find such a discontinuity, it typically casts

doubt on the assumptions underlying the RD design.
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7.B A Discontinuity in the Distribution of the Forcing

Variable

McCrary (2007) suggests testing the null hypothesis of conti-

nuity of the density of the covariate that underlies the assign-

ment at the discontinuity point, against the alternative of a

jump in the density function at that point.

Again, in principle, the design does not require continuity of the

density of X at c, but a discontinuity is suggestive of violations

of the no-manipulation assumption.

If in fact individuals partly manage to manipulate the value of

X in order to be on one side of the boundary rather than the

other, one might expect to see a discontinuity in this density

at the discontinuity point.
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7.C Discontinuities in Avareage Outcomes at Other Val-

ues

Taking the subsample with Xi < c we can test for a jump in the

conditional mean of the outcome at the median of the forcing

variable.

To implement the test, use the same method for selecting the

binwidth as before. Also estimate the standard errors of the

jump and use this to test the hypothesis of a zero jump.

Repeat this using the subsample to the right of the cutoff point

with Xi ≥ c. Now estimate the jump in the regression function

and at qX,1/2,r, and test whether it is equal to zero.
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7.D Sensitivity to Bandwidth Choice

One should investigate the sensitivity of the inferences to this

choice, for example, by including results for bandwidths twice

(or four times) and half (or a quarter of) the size of the origi-

nally chosen bandwidth.

Obviously, such bandwidth choices affect both estimates and

standard errors, but if the results are critically dependent on a

particular bandwidth choice, they are clearly less credible than

if they are robust to such variation in bandwidths.
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7.E RD Designs with Misspecification

Lee and Card (2007) study the case where the forcing vari-
able variable X is discrete. In practice this is of course always
true. This implies that ultimately one relies for identification on
functional form assumptions for the regression function μ(x).

They consider a parametric specification for the regression
function that does not fully saturate the model and inter-
pret the deviation between the true conditional expectation
and the estimated regression function as random specification
error that introduces a group structure on the standard errors.

Lee and Card then show how to incorporate this group struc-
ture into the standard errors for the estimated treatment effect.
Within the local linear regression framework discussed in the
current paper one can calculate the Lee-Card standard errors
and compare them to the conventional ones.
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