What's New in Econometrics?

NBER, Summer 2007

Lecture 6, Tuesday, July 31st, 9.00-10.30 am Control Function and Related Methods

These notes review the control function approach to handling endogeneity in models linear in parameters, and draws comparisons with standard methods such as 2SLS. Certain nonlinear models with endogenous explanatory variables are most easily estimated using the CF method, and the recent focus on average marginal effects suggests some simple, flexible strategies. Recent advances in semiparametric and nonparametric control function method are covered, and an example for how one can apply CF methods to nonlinear panel data models is provided.

1. Linear-in-Parameters Models: IV versus Control Functions

Most models that are linear in parameters are estimated using standard IV methods – either two stage least squares (2SLS) or generalized method of moments (GMM). An alternative, the control function (CF) approach, relies on the same kinds of identification conditions. In the standard case where a endogenous explanatory variables appear linearly, the CF approach leads to the usual 2SLS estimator. But there are differences for models nonlinear in endogenous variables even if they are linear in parameters. And, for models nonlinear in parameters, the CF approach offers some distinct advantages.

Let y_1 denote the response variable, y_2 the endogenous explanatory variable (a scalar for simplicity), and **z** the 1 × *L* vector of exogenous variables (which includes unity as its first element). Consider the model

$$y_1 = \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + u_1 \tag{1.1}$$

where z_1 is a $1 \times L_1$ strict subvector of z that also includes a constant. The sense in which z is exogenous is given by the *L* orthogonality (zero covariance) conditions

$$\mathbf{E}(\mathbf{z}'u_1) = \mathbf{0}.\tag{1.2}$$

Of course, this is the same exogeneity condition we use for consistency of the 2SLS estimator, and we can consistently estimate δ_1 and α_1 by 2SLS under (1.2) and the rank condition, Assumption 2SLS.2.

Just as with 2SLS, the reduced form of y_2 – that is, the linear projection of y_2 onto the exogenous variables – plays a critical role. Write the reduced form with an error term as

$$y_2 = \mathbf{z}\mathbf{\pi}_2 + \mathbf{v}_2 \tag{1.3}$$

$$\mathbf{E}(\mathbf{z}'v_2) = \mathbf{0} \tag{1.4}$$

where π_2 is $L \times 1$. Endogeneity of y_2 arises if and only if u_1 is correlated with v_2 . Write the

linear projection of u_1 on v_2 , in error form, as

$$u_1 = \rho_1 v_2 + e_1, \tag{1.5}$$

where $\rho_1 = E(v_2u_1)/E(v_2^2)$ is the population regression coefficient. By definition, $E(v_2e_1) = 0$, and $E(\mathbf{z}'e_1) = \mathbf{0}$ because u_1 and v_2 are both uncorrelated with \mathbf{z} .

Plugging (1.5) into equation (1.1) gives

$$y_1 = \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + \rho_1 v_2 + e_1,$$
 (1.6)

where we now view v_2 as an explanatory variable in the equation. As just noted, e_1 , is uncorrelated with v_2 and z. Plus, y_2 is a linear function of z and v_2 , and so e_1 is also uncorrelated with y_2 .

Because e_1 is uncorrelated with \mathbf{z}_1 , y_2 , and v_2 , (1.6) suggests a simple procedure for consistently estimating δ_1 and α_1 (as well as ρ_1): run the OLS regression of y_1 on \mathbf{z}_1 , y_2 , and v_2 using a random sample. (Remember, OLS consistently estimates the parameters in any equation where the error term is uncorrelated with the right hand side variables.) The only problem with this suggestion is that we do not observe v_2 ; it is the error in the reduced form equation for y_2 . Nevertheless, we can write $v_2 = y_2 - \mathbf{z}\pi_2$ and, because we collect data on y_2 and \mathbf{z} , we can consistently estimate π_2 by OLS. Therefore, we can replace v_2 with \hat{v}_2 , the OLS residuals from the first-stage regression of y_2 on \mathbf{z} . Simple substitution gives

$$y_1 = \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + \rho_1 \hat{v}_2 + error, \qquad (1.7)$$

where, for each *i*, $error_i = e_{i1} + \rho_1 \mathbf{z}_i (\hat{\boldsymbol{\pi}}_2 - \boldsymbol{\pi}_2)$, which depends on the sampling error in $\hat{\boldsymbol{\pi}}_2$ unless $\rho_1 = 0$. Standard results on two-step estimation imply the OLS estimators from (1.7) will be consistent for δ_1, α_1 , and ρ_1 .

The OLS estimates from (1.7) are control function estimates. The inclusion of the residuals \hat{v}_2 "controls" for the endogeneity of y_2 in the original equation (although it does so with sampling error because $\hat{\pi}_2 \neq \pi_2$).

It is a simple exercise in the algebra of least squares to show that the OLS estimates of δ_1 and α_1 from (1.7) are *identical* to the 2SLS estimates starting from (1.1) and using z as the vector of instruments. (Standard errors from (1.7) must adjust for the generated regressor.)

It is trivial to use (1.7) to test H_0 : $\rho_1 = 0$, as the usual *t* statistic is asymptotically valid under homoskedasticity ($Var(u_1|\mathbf{z}, y_2) = \sigma_1^2$ under H_0); or use the heteroskedasticity-robust version (which does *not* account for the first-stage estimation of π_2).

Now extend the model:

$$y_1 = \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + \gamma_1 y_2^2 + u_1$$
(1.8)

$$\mathbf{E}(u_1|\mathbf{z}) = \mathbf{0}.\tag{1.9}$$

For simplicity, assume that we have a scalar, z_2 , that is not also in z_1 . Then, under (1.9) – which is stronger than (1.2), and is essentially needed to identify nonlinear models – we can use, say, z_2^2 (if z_2 is not binary) as an instrument for y_2^2 because any function of z_2 is uncorrelated with u_1 . In other words, we can apply the standard IV estimator with explanatory variables (z_1, y_2, y_2^2) and instruments (z_1, z_2, z_2^2); note that we have two endogenous explanatory variables, y_2 and y_2^2 .

What would the CF approach entail in this case? To implement the CF approach in (1.8), we obtain the conditional expectation $E(y_1|\mathbf{z}, y_2) - a$ linear projection argument no longer works because of the nonlinearity – and that requires an assumption about $E(u_1|\mathbf{z}, y_2)$. A standard assumption is

$$E(u_1|\mathbf{z}, y_2) = E(u_1|\mathbf{z}, v_2) = E(u_1|v_2) = \rho_1 v_2, \qquad (1.10)$$

where the first equality follows because y_2 and v_2 are one-to-one functions of each other (given **z**) and the second would hold if (u_1, v_2) is independent of **z** – a nontrivial restriction on the reduced form error in (1.3), not to mention the structural error u_1 .. The final assumption is linearity of the conditional expectation $E(u_1|v_2)$, which is more restrictive than simply defining a linear projection. Under (1.10),

$$E(y_1|\mathbf{z}, y_2) = \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + \gamma_1 y_2^2 + \rho_1 (y_2 - \mathbf{z} \boldsymbol{\pi}_2)$$
(1.11)
= $\mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + \gamma_1 y_2^2 + \rho_1 v_2.$

Implementing the CF approach means running the OLS regression y_1 on $z_1, y_2, y_2^2, \hat{v}_2$, where \hat{v}_2 still represents the reduced form residuals. The CF estimates are *not* the same as the 2SLS estimates using any choice of instruments for (y_2, y_2^2) .

The CF approach, while likely more efficient than a direct IV approach, is less robust. For example, it is easily seen that (1.9) and (1.10) imply that $E(y_2|z) = z\pi_2$. A linear conditional expectation for y_2 is a substantive restriction on the conditional distribution of y_2 . Therefore, the CF estimator will be inconsistent in cases where the 2SLS estimator will be consistent. On the other hand, because the CF estimator solves the endogeneity of y_2 and y_2^2 by adding the scalar \hat{v}_2 to the regression, it will generally be more precise – perhaps much more precise – than the IV estimator. (I do not know of a systematic analysis comparing the two approaches in models such as (1.8).)

Standard CF approaches impose extra assumptions even in the simple model (1.1) if we allow y_2 to have discreteness in its distribution. For example, suppose y_2 is a binary response. Then the CF approach involves estimating

$$E(y_1|\mathbf{z},y_2) = \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + E(u_1|\mathbf{z},y_2),$$

and so we must be able to estimate $E(u_1|\mathbf{z}, y_2)$. If $y_2 = 1[\mathbf{z}\boldsymbol{\delta}_2 + e_2 \ge 0]$, (u_1, e_2) is independent of \mathbf{z} , $E(u_1|e_2) = \rho_1 e_2$, and $e_2 \sim \text{Normal}(0, 1)$, then

$$E(u_1|\mathbf{z}, y_2) = E[E(u_1|\mathbf{z}, e_2)|\mathbf{z}, y_2] = \rho_1 E(v_2|\mathbf{z}, y_2)$$

= $\rho_1 [y_2 \lambda(\mathbf{z} \delta_2) - (1 - y_2) \lambda(-\mathbf{z} \delta_2)],$

where $\lambda(\cdot) = \phi(\cdot)/\Phi(\cdot)$ is the inverse Mills ratio (IMR). A simple two-step estimator is to obtain the probit estimator $\hat{\delta}_2$ and then to add the "generalized residual," $\widehat{gr}_{i2} = y_{i2}\lambda(\mathbf{z}_i\hat{\delta}_2) - (1 - y_{i2})\lambda(-\mathbf{z}_i\hat{\delta}_2)$ as a regressor:

$$y_{i1}$$
 on $\mathbf{z}_{i1}, y_{i2}, \widehat{gr}_{i2}, i = 1, \dots, N.$

Consistency of the CF estimators hinges on the model for $D(y_2|\mathbf{z})$ being correctly specified, along with linearity in $E(u_1|v_2)$ (and some sort of independence with \mathbf{z}). Of course, if we just apply 2SLS directly to (1.1), it makes no distinction among discrete, continuous, or some mixture for y_2 . 2SLS is consistent if $L(y_2|\mathbf{z}) = \mathbf{z}\pi_2$ actually depends on \mathbf{z}_2 and (1.2) holds. So, while estimating (1.1) using CF methods when y_2 is binary is somewhat popular (Stata's "treatreg" even has the option of full MLE, where (u_1, e_2) is bivariate normal), one should remember that it is less robust than standard IV approaches.

How might one use the binary nature of y_2 in IV estimation? Assume $E(u_1|\mathbf{z}) = 0$ and, nominally, assume a probit model for $D(y_2|\mathbf{z})$. Obtain the fitted probabilities, $\Phi(\mathbf{z}_i\hat{\boldsymbol{\delta}}_2)$, from the first stage probit, and then use these as IVs for y_{i2} . This method is fully robust to misspecification of the probit model; the standard errors need not be adjusted for the first-stage probit (asymptotically); and it is the efficient IV estimator if $P(y_2 = 1|\mathbf{z}) = \Phi(\mathbf{z}\boldsymbol{\delta}_2)$ and $Var(u_1|\mathbf{z}) = \sigma_1^2$. But it is probably less efficient than the CF estimator if the additional assumptions needed for CF consistency hold. (Note: Using $\Phi(\mathbf{z}_i\hat{\boldsymbol{\delta}}_2)$ as an IV for y_{i2} is not the same as using $\Phi(\mathbf{z}_i\hat{\boldsymbol{\delta}}_2)$ as a regressor in place of y_{i2} .)

To summarize: except in the case where y_2 appears linearly and a linear reduced form is estimated for y_2 , the CF approach imposes extra assumptions not imposed by IV approaches. However, in more complicated models, it is hard to beat the CF approach.

2. Correlated Random Coefficient Models

Control function methods can be used for random coefficient models – that is, models where unobserved heterogeneity interacts with endogenous explanatory variables. However, in some cases, standard IV methods are more robust. To illustrate, we modify equation (1.1) as

$$y_1 = \eta_1 + \mathbf{z}_1 \boldsymbol{\delta}_1 + a_1 y_2 + u_1, \tag{2.1}$$

where \mathbf{z}_1 is $1 \times L_1$, y_2 is the endogenous explanatory variable, and a_1 , the "coefficient" on y_2 – an unobserved random variable. [It is now convenient to set apart the intercept.] We could replace δ_1 with a random vector, say \mathbf{d}_1 , and this would not affect our analysis of the IV estimator (but would slightly alter the control function estimator). Following Heckman and Vytlacil (1998), we refer to (2.1) as a **correlated random coefficient (CRC) model**.

It is convenient to write $a_1 = \alpha_1 + v_1$ where $\alpha_1 = E(a_1)$ is the object of interest. We can rewrite the equation as

$$y_1 = \eta_1 + \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + v_1 y_2 + u_1 \equiv \eta_1 + \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + e_1,$$
(2.2)

where $e_1 = v_1y_2 + u_1$. Equation (2.2) shows explicitly a constant coefficient on y_2 (which we hope to estimate) but also an interaction between the observed heterogeneity, v_1 , and y_2 . Remember, (2.2) is a population model. For a random draw, we would write $y_{i1} = \eta_1 + \mathbf{z}_{i1} \mathbf{\delta}_1 + \alpha_1 y_{i2} + v_{i1} y_{i2} + u_{i1}$, which makes it clear that $\mathbf{\delta}_1$ and α_1 are parameters to estimate and v_{i1} is specific to observation *i*.

As discussed in Wooldridge (1997, 2003), the potential problem with applying instrumental variables (2SLS) to (2.2) is that the error term $v_1y_2 + u_1$ is not necessarily uncorrelated with the instruments **z**, even if we make the assumptions

$$E(u_1|z) = E(v_1|z) = 0,$$
 (2.3)

which we maintain from here on. Generally, the term v_1y_2 can cause problems for IV estimation, but it is important to be clear about the nature of the problem. If we are allowing y_2 to be correlated with u_1 then we also want to allow y_2 and v_1 to be correlated. In other words, $E(v_1y_2) = Cov(v_1, y_2) \equiv \tau_1 \neq 0$. But a nonzero unconditional covariance is *not* a problem with applying IV to (2.2): it simply implies that the composite error term, e_1 , has (unconditional) mean τ_1 rather than a zero. As we know, a nonzero mean for e_1 means that the orginal intercept, η_1 , would be inconsistenly estimated, but this is rarely a concern.

Therefore, we can allow $Cov(v_1, y_2)$, the unconditional covariance, to be unrestricted. But the usual IV estimator is generally inconsistent if $E(v_1y_2|\mathbf{z})$ depends on \mathbf{z} . (There are still cases, which we will cover in Part IV, where the IV estimator is consistent.). Note that, because $E(v_1|z) = 0$, $E(v_1y_2|z) = Cov(v_1, y_2|z)$. Therefore, as shown in Wooldridge (2003), a sufficient condition for the IV estimator applied to (2.2) to be consistent for δ_1 and α_1 is

$$Cov(v_1, y_2|\mathbf{z}) = Cov(v_1, y_2).$$
 (2.4)

The 2SLS intercept estimator is consistent for $\eta_1 + \tau_1$. Condition (2.4) means that the conditional covariance between v_1 and y_2 is not a function of z, but the unconditional covariance is unrestricted.

Because v_1 is unobserved, we cannot generally verify (2.4). But it is easy to find situations where it holds. For example, if we write

$$y_2 = m_2(\mathbf{z}) + v_2$$
 (2.5)

and assume (v_1, v_2) is independent of \mathbf{z} (with zero mean), then (2.4) is easily seen to hold because $\operatorname{Cov}(v_1, y_2 | \mathbf{z}) = \operatorname{Cov}(v_1, v_2 | \mathbf{z})$, and the latter cannot be a function of \mathbf{z} under independence. Of course, assuming v_2 in (2.5) is independent of \mathbf{z} is a strong assumption even if we do not need to specify the mean function, $m_2(\mathbf{z})$. It is much stronger than just writing down a linear projection of y_2 on \mathbf{z} (which is no real assumption at all). As we will see in various models in Part IV, the representation (2.5) with v_2 independent of \mathbf{z} is not suitable for discrete y_2 , and generally (2.4) is not a good assumption when y_2 has discrete characteristics. Further, as discussed in Card (2001), (2.4) can be violated even if y_2 is (roughly) continuous. Wooldridge (2005a) makes some headway in relaxing (2.44) by allowing for parametric heteroskedasticity in u_1 and v_2 .

A useful extension of (1.1) is to allow observed exogenous variables to interact with y_2 . The most convenient formulation is

$$y_1 = \eta_1 + \mathbf{z}_1 \delta_1 + \alpha_1 y_2 + (\mathbf{z}_1 - \mathbf{\psi}_1) y_2 \mathbf{\gamma}_1 + v_1 y_2 + u_1$$
(2.6)

where $\Psi_1 \equiv E(\mathbf{z}_1)$ is the $1 \times L_1$ vector of population means of the exogenous variables and γ_1 is an $L_1 \times 1$ parameter vector. As we saw in Chapter 4, subtracting the mean from \mathbf{z}_1 before forming the interaction with y_2 ensures that α_1 is the average partial effect.

Estimation of (2.6) is simple if we maintain (2.4) [along with (2.3) and the appropriate rank condition]. Typically, we would replace the unknown ψ_1 with the sample averages, \bar{z}_1 , and then estimate

$$y_{i1} = \theta_1 + \mathbf{z}_{i1}\boldsymbol{\delta}_1 + \alpha_1 y_{i2} + (\mathbf{z}_{i1} - \mathbf{\bar{z}}_1)y_{i2}\boldsymbol{\gamma}_1 + error_i$$

$$(2.7)$$

by instrumental variables, ignoring the estimation error in the population mean. The only issue

is choice of instruments, which is complicated by the interaction term. One possibility is to use interactions between \mathbf{z}_{i1} and all elements of \mathbf{z}_i (including \mathbf{z}_{i1}). This results in many overidentifying restrictions, even if we just have one instrument \mathbf{z}_{i2} for \mathbf{y}_{i2} . Alternatively, we could obtain fitted values from a first stage linear regression \mathbf{y}_{i2} on \mathbf{z}_i , $\hat{\mathbf{y}}_{i2} = \mathbf{z}_i \hat{\boldsymbol{\pi}}_2$, and then use IVs $[1, \mathbf{z}_i, (\mathbf{z}_{i1} - \bar{\mathbf{z}}_1)\hat{\mathbf{y}}_{i2}]$, which results in as many overidentifying restrictions as for the model without the interaction. Importantly, the use of $(\mathbf{z}_{i1} - \bar{\mathbf{z}}_1)\hat{\mathbf{y}}_{i2}$ as IVs for $(\mathbf{z}_{i1} - \bar{\mathbf{z}}_1)\mathbf{y}_{i2}$ is asymptotically the same as using instruments $(\mathbf{z}_{i1} - \boldsymbol{\Psi}_1) \cdot (\mathbf{z}_i \boldsymbol{\pi}_2)$, where $L(y_2|\mathbf{z}) = \mathbf{z}\boldsymbol{\pi}_2$ is the linear projection. In other words, consistency of this IV procedure does not in any way restrict the nature of the distribution of y_2 given \mathbf{z} . Plus, although we have generated instruments, the assumptions sufficient for ignoring estimation of the instruments hold, and so inference is standard (perhaps made robust to heteroskedasticity, as usual).

We can just identify the parameters in (2.6) by using a further restricted set of instruments, $[1, \mathbf{z}_{i1}, \hat{y}_{i2}, (\mathbf{z}_{i1} - \mathbf{\bar{z}}_1)\hat{y}_{i2}]$. If so, it is important to use these as instruments and not as regressors. If we add the assumption. The latter procedure essentially requires a new assumption:

$$\mathbf{E}(y_2|\mathbf{z}) = \mathbf{z}\boldsymbol{\pi}_2 \tag{2.8}$$

(where z includes a constant). Under (2.3), (2.4), and (2.8), it is easy to show

$$\mathbf{E}(y_1|\mathbf{z}) = (\eta_1 + \tau_1) + \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1(\mathbf{z}\boldsymbol{\pi}_2) + (\mathbf{z}_1 - \boldsymbol{\psi}_1) \cdot (\mathbf{z}\boldsymbol{\pi}_2)\boldsymbol{\gamma}_1, \qquad (2.9)$$

which is the basis for the Heckman and Vytlacil (1998) plug-in estimator. The usual IV approach simply relaxes (2.8) and does not require adjustments to the standard errors (because it uses generated instruments, not generated regressors).

We can also use a control function approach if we assume

$$E(u_1|\mathbf{z}, v_2) = \rho_1 v_2, E(v_1|\mathbf{z}, v_2) = \xi_1 v_2.$$
(2.10)

Then

$$\mathbf{E}(y_1|\mathbf{z}, y_2) = \eta_1 + \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + \xi_1 v_2 y_2 + \rho_1 v_2, \qquad (2.11)$$

and this equation is estimable once we estimate π_2 . Garen's (1984) control function procedure is to first regress y_2 on z and obtain the reduced form residuals, \hat{v}_2 , and then to run the OLS regression y_1 on $1, z_1, y_2, \hat{v}_2 y_2, \hat{v}_2$. Under the maintained assumptions, Garen's method consistently estimates δ_1 and α_1 . Because the second step uses generated regressors, the standard errors should be adjusted for the estimation of π_2 in the first stage. Nevertheless, a test that y_2 is exogenous is easily obtained from the usual *F* test of H_0 : $\xi_1 = 0, \rho_1 = 0$ (or a heteroskedasticity-robust version). Under the null, no adjustment is needed for the generated standard errors.

Garen's assumptions are more restrictive than those needed for the standard IV estimator to be consistent. For one, it would be a fluke if (2.10) held without the conditional covariance $Cov(v_1, y_2|z)$ being independent of z. Plus, like HV (1998), Garen relies on a linear model for $E(y_2|z)$. Further, Garen adds the assumptions that $E(u_1|v_2)$ and $E(v_1|v_2)$ are linear functions, something not needed by the IV approach.

Of course, one can make Garen's approach less parametric by replacing the linear functions in (2.10) with unknown functions. But independence of (u_1, v_1, v_2) and z – or something very close to independence – is needed. And this assumption is not needed for the usual IV estimator,

If the assumptions needed for Garen's CF estimator to be consistent hold, it is likely more efficient than the IV estimator, although a comparison of the correct asymptotic variances is complicated. Again, there is a tradeoff between efficiency and robustness.

In the case of binary y_2 , we have what is often called the "switching regression" model. Now, the right hand side of equation (2.11) represents $E(y_1|\mathbf{z}, v_2)$ where $y_2 = 1[\mathbf{z}\delta_2 + v_2 \ge 0]$. If we assume (2.10) and that $v_2|\mathbf{z}$ is Normal(0, 1), then

$$E(y_1|\mathbf{z}, y_2) = \eta_1 + \mathbf{z}_1 \delta_1 + \alpha_1 y_2 + \rho_1 h_2(y_2, \mathbf{z} \delta_2) + \xi_1 h_2(y_2, \mathbf{z} \delta_2) y_2,$$

where

$$h_2(y_2, \mathbf{z}\boldsymbol{\delta}_2) = y_2\lambda(\mathbf{z}\boldsymbol{\delta}_2) - (1 - y_2)\lambda(-\mathbf{z}\boldsymbol{\delta}_2)$$

is the generalized residual function. The two-step estimation method is the one due to Heckman (1976).

There are two ways to embellish the model. The first is common: interact $(\mathbf{z}_1 - \boldsymbol{\mu}_1)$ with y_2 to allow different slopes for the "treated" and non-treated groups (keeping α_1 as the average treatment effect). This is common, and then the CF regression

$$y_{i1}$$
 on 1, $\mathbf{z}_{i1}\mathbf{\delta}_1 + \alpha_1 y_{i2} + (\mathbf{z}_{i1} - \mathbf{\bar{z}}_1)y_{i2}$, $h_2(y_{i2}, \mathbf{z}_i\hat{\mathbf{\delta}}_2)$, $h_2(y_{i2}, \mathbf{z}_i\hat{\mathbf{\delta}}_2)y_{i2}$

is identical to running two separate regressions, including the IMRs for $y_2 = 0$ and $y_2 = 1$. The estimate of α_1 is then the difference in the two intercepts.

An extension that is not so common – in fact, it seems not to appear in the literature – comes from allowing z_1 to also interact with heterogeneity, as in

$$y_1 = \mathbf{z}_1 \mathbf{d}_1 + a_1 y_2 + y_2 (\mathbf{z}_1 - \boldsymbol{\mu}_1) \mathbf{g}_1 + u_1.$$

Now all coefficients are heterogeneous. If we assume that $E(a_1|v_2)$, $E(\mathbf{d}_1|v_2)$, and $E(\mathbf{g}_1|v_2)$ are

linear in v_2 , then

$$E(y_1|\mathbf{z}, y_2) = \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + y_2 (\mathbf{z}_1 - \boldsymbol{\mu}_1) \boldsymbol{\xi}_1 + \rho_1 E(v_2|\mathbf{z}, y_2) + \boldsymbol{\xi}_1 E(v_2|\mathbf{z}, y_2) y_2 + \mathbf{z}_1 E(v_2|\mathbf{z}, y_2) \boldsymbol{\psi}_1 + y_2 (\mathbf{z}_1 - \boldsymbol{\mu}_1) E(v_2|\mathbf{z}, y_2) \boldsymbol{\omega}_1 = \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + \rho_1 h_2 (y_2, \mathbf{z} \boldsymbol{\delta}_2) + \boldsymbol{\xi}_1 h_2 (y_2, \mathbf{z} \boldsymbol{\delta}_2) y_2 + h_2 (y_2, \mathbf{z} \boldsymbol{\delta}_2) \mathbf{z}_1 \boldsymbol{\psi}_1 + h_2 (y_2, \mathbf{z} \boldsymbol{\delta}_2) y_2 (\mathbf{z}_1 - \boldsymbol{\mu}_1) \boldsymbol{\omega}_1$$

and the second-step estimation after the first stage probit is a regression

$$y_{i1}$$
 on 1, $\mathbf{z}_{i1}\delta_1 + \alpha_1 y_{i2} + (\mathbf{z}_{i1} - \mathbf{\bar{z}}_1)y_{i2}$, $h_2(y_{i2}, \mathbf{z}_i \hat{\delta}_2)$, $h_2(y_{i2}, \mathbf{z}_i \hat{\delta}_2)y_{i2}$,
 $h_2(y_{i2}, \mathbf{z}_i \hat{\delta}_2)\mathbf{z}_{i1}$, $h_2(y_{i2}, \mathbf{z}_i \hat{\delta}_2)y_{i2}(\mathbf{z}_{i1} - \mathbf{\bar{z}}_1)$.

across all observations *i*. It is easy use bootstrapping to obtain valid standard errors because the first-stage estimation is just a probit and the second stage is just linear regression.

If not for the term v_1y_2 , we could, in a much more robust manner, use an IV procedure (where the standard errors are easier to obtain, too). The IVs would be $[1, \mathbf{z}_{i1}, \hat{\Phi}_{i2}, (\mathbf{z}_{i1} - \mathbf{\bar{z}}_1) \cdot \hat{\Phi}_{i2}]$, and the same procedure consistently estimates the average effects whether or not there are random coefficients on \mathbf{z}_{i1} .

Interesting, the addition of the terms $h_2(y_{i2}, \mathbf{z}_i \hat{\boldsymbol{\delta}}_2) \mathbf{z}_{i1}$ and $h_2(y_{i2}, \mathbf{z}_i \hat{\boldsymbol{\delta}}_2) y_{i2}(\mathbf{z}_{i1} - \mathbf{\bar{z}}_1)$ has similarities with methods that allow $E(v_1|v_2)$ and so on to be more flexible. For example, as shown in Heckman and MaCurdy (1986), if $E(u_1|v_2) = \rho_1 v_2 + \kappa_1 (v_2^2 - 1)$, then the extra term for $y_2 = 1$ is $-\mathbf{z}_i \hat{\boldsymbol{\delta}}_2 \lambda(\mathbf{z}_i \hat{\boldsymbol{\delta}}_2)$ and there is a similar expression for $y_{i2} = 0$.

Newey (1988), in the standard switching regression framework, proposed a flexible two-step procedure that estimates δ_2 semiparametrically in the first stage – see Powell (1994) for a survey of such methods – and then uses series in $\mathbf{z}_i \hat{\boldsymbol{\delta}}_2$ in place of the usual IMR terms. He obtains valid standard errors and, in most cases, bootstrapping is valid, too.

3. Some Common Nonlinear Models and Limitations of the CF Approach

Like standard IV methods, control function approaches are more difficult to apply to nonlinear models, even relatively simple ones. Methods are available when the endogenous explanatory variables are continuous, but few if any results apply to cases with discrete y_2 .

3.1. Binary and Fractional Responses

The probit model provides a good illustration of the general approach. With a single endogenous explanatory variable, the simplest specification is

$$y_1 = 1[\mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 > u_1 \ge 0], \tag{3.1}$$

where $u_1|z \sim Normal(0, 1)$. But the analysis goes through if we replace (z_1, y_2) with any known function $g_1(z_1, y_2)$, provided we have sufficient identifying assumptions. An example is $y_1 = [\mathbf{z}_1 \mathbf{\delta}_1 + y_2 \mathbf{z}_1 \mathbf{\alpha}_1 + \gamma_1 y_2^2 + u_1 > 0]$. The nonlinearity in y_2 is not itself a problem (unless we inappropriately try to mimic 2SLS – more on this later).

The Blundell-Smith (1986) and Rivers-Vuong (1988) approach is to make a homoskedastic-normal assumption on the reduced form for y_2 ,

$$y_2 = \mathbf{z}\pi_2 + v_2, \ v_2 |\mathbf{z} \sim \text{Normal}(0, \tau_2^2).$$
 (3.2)

A key point is that the RV approach essentially requires

$$(u_1, v_2)$$
 independent of **z**; (3.3)

as we will see in the next section, semiparametric and nonparametric CF methods also rely on (3.3), or at least something close to it..

If we assume

$$(u_1, v_2)$$
 ~Bivariate Normal (3.4)

with $\rho_1 = Corr(u_1, v_2)$, then we can proceed with MLE based on $f(y_1, y_2|\mathbf{z})$. A simpler two-step approach, which is convenient for testing H_0 : $\rho_1 = 0$ (y_2 is exogenous) is also available, and works if we replace the normality assumption in (3.2), the independence assumption in (3.3), and joint normality in (3.4) with

$$D(u_1|v_2, \mathbf{z}) = \text{Normal}(\theta_1 v_2, 1 - \rho_1^2), \qquad (3.5)$$

where $\theta_1 = \rho_1/\tau_2$ is the regression coefficient. That we can relax the assumptions to some degree using a two-step CF approach has implications for less parametric approaches. Certainly we can relax the homoskedasticity and linear expectation in (3.3) without much additional work, as discussed in Wooldridge (2005a).

Under the weaker assumption (3.5) we can write

$$P(y_1 = 1 | \mathbf{z}, y_2) = \Phi(\mathbf{z}_1 \delta_{\rho 1} + \alpha_{\rho 1} y_2 + \theta_{\rho 1} v_2)$$
(3.6)

where each coefficient is multiplied by $(1 - \rho_1^2)^{-1/2}$.

The RV two-step approach is

(i) OLS of y_2 on **z**, to obtain the residuals, \hat{v}_2 .

(ii) Probit of y_1 on $\mathbf{z}_1, y_2, \hat{v}_2$ to estimate the scaled coefficients.

The original coefficients, which appear in the partial effects, are easily obtained from the set of two-step estimates:

Imbens/Wooldridge, Lecture Notes 6, Summer '07

$$\hat{\boldsymbol{\beta}}_{1} = \hat{\boldsymbol{\beta}}_{\rho 1} / (1 + \hat{\theta}_{\rho 1}^{2} \hat{\tau}_{2}^{2})^{1/2}, \qquad (3.7)$$

where $\hat{\theta}_{\rho 1}$ is the coeffcient on \hat{v}_2 and $\hat{\tau}_2^2$ is the usual error variance estimator from the first step OLS, and $\hat{\beta}_{\rho 1}$ includes $\hat{\delta}_{\rho 1}$ and $\hat{\alpha}_{\rho 1}$. Standard errors can be obtained from the delta method of bootstrapping. Of course, they are computed directly from MLE. Partial effects are based on $\Phi(\mathbf{x}_1\hat{\boldsymbol{\beta}}_1)$ where $\mathbf{x}_1 = (\mathbf{z}_1, y_2)$. Hopefully it is clear that nothing changes if $\mathbf{x}_1 = \mathbf{g}_1(\mathbf{z}_1, y_2)$ expect how one computes the partial effects.

A simple *t* test on \hat{v}_2 is valid to test H_0 : $\rho_1 = 0$.

A different way to obtain partial effects is to use the average structural function approach, which leads to $E_{\nu_2}[\Phi(\mathbf{x}_1\boldsymbol{\beta}_{\rho_1})]$. Notice this holds under (3.5) without joint normality. A consistent, \sqrt{N} -asymptotically normal estimator is

$$\widehat{\mathrm{ASF}}(\mathbf{z}_1, y_2) = N^{-1} \sum_{i=1}^{N} \Phi(\mathbf{x}_1 \hat{\boldsymbol{\beta}}_{\rho 1} + \hat{\theta}_{\rho 1} \hat{v}_{i2}), \qquad (3.8)$$

that is, we average out the reduced form residuals, \hat{v}_{i2} . This formulation is useful for more complicated models.

Given that the probit structural model is essentially arbitrary, one might be so bold as to specify models for $P(y_1 = 1 | \mathbf{z}_1, y_2, v_2)$ directly. For example, we can add polynomials in v_2 or even interact v_2 with elements of \mathbf{x}_1 side a probit or logit function. We return to this in the next section.

The two-step CF approach easily extends to fractional responses. Now, we start with an omitted variables formulation in the conditional mean:

$$E(y_1|\mathbf{z}, y_2, q_1) = E(y_1|\mathbf{z}_1, y_2, q_1) = \Phi(\mathbf{x}_1\boldsymbol{\beta}_1 + q_1), \tag{3.9}$$

where \mathbf{x}_1 is a function of (\mathbf{z}_1, y_2) and q_1 contains unobservables. As usual, we need some exclusion restrictions, embodied by omitting \mathbf{z}_2 from \mathbf{x}_1 . The specification in equation (3.9) allows for responses at the corners, zero and one, and y_1 may take on any values in between. Under the assumption that

$$D(q_1|v_2, \mathbf{z}) \sim \text{Normal}(\theta_1 v_2, \eta_1^2)$$
(3.10)

Given (3.9) and (3.10), it can be shown, using the mixing property of the normal distribution, that

$$E(y_1|\mathbf{z}, y_2, v_2) = \Phi(\mathbf{x}_1 \boldsymbol{\beta}_{n1} + \theta_{n1} v_2), \qquad (3.11)$$

where the index " η " denotes coefficients multiplied by $(1 + \eta_1^2)^{-1/2}$. Because the Bernoulli log likelihood is in the linear exponential family, maximizing it consistently estimates the parameters of a correctly specified mean; naturally, the same is true for two-step estimation. That is, the *same* two-step method can be used in the binary and fractional cases. Of course, the variance associated with the Bernoulli distribution is generally incorrect. In addition to correcting for the first-stage estimates, a robust sandwich estimator should be computed to account for the fact that $D(y_1|\mathbf{z}, y_2)$ is not Bernoulli. The best way to compute partial effects is to use (3.8), with the slight notational change that the implicit scaling in the coefficients is different. By using (3.8), we can directly use the scaled coefficients estimated in the second stage – a feature common across CF methods for nonlinear models. The bootstrap that reestimates the first and second stages for each iteration is an easy way to obtain standard errors. Of course, having estimates of the parameters up to a common scale allows us to determine signs of the partial effects in (3.9) as well as relative partial effects on the continuous explanatory variables.

Wooldridge (2005) describes some simple ways to make the analysis starting from (3.9) more flexible, including allowing $Var(q_1|v_2)$ to be heteroskedastic. We can also use strictly monotonic transformations of y_2 in the reduced form, say $h_2(y_2)$, regardless of how y_2 appears in the structural model: the key is that y_2 can be written as a function of (\mathbf{z}, v_2) . The extension to multivariate \mathbf{y}_2 is straightforward with sufficient instruments provide the elements of \mathbf{y}_2 , or strictly monotonic functions of them, have reduced forms with additive errors that are effectively indendent of \mathbf{z} . (This assumption rules out applications to y_2 that are discrete (binary, multinomial, or count)or have a discrete component (corner solution).

The control function approach has some decided advantages over another two-step approach – one that appears to mimic the 2SLS estimation of the linear model. Rather than conditioning on v_2 along with **z** (and therefore y_2) to obtain

 $P(y_1 = 1 | \mathbf{z}, v_2) = P(y_1 = 1 | \mathbf{z}, y_2, v_2)$, we can obtain $P(y_1 = 1 | \mathbf{z})$. To find the latter probability, we plug in the reduced form for y_2 to get $y_1 = 1[\mathbf{z}_1 \delta_1 + \alpha_1(\mathbf{z}\delta_2) + \alpha_1 v_2 + u_1 > 0]$. Because $\alpha_1 v_2 + u_1$ is independent of \mathbf{z} and (u_1, v_2) has a bivariate normal distribution, $P(y_1 = 1 | \mathbf{z}) = \Phi\{[\mathbf{z}_1 \delta_1 + \alpha_1(\mathbf{z}\delta_2)]/\omega_1\}$ where

 $\omega_1^2 \equiv \text{Var}(\alpha_1 v_2 + u_1) = \alpha_1^2 \tau_2^2 + 1 + 2\alpha_1 \text{Cov}(v_2, u_1)$. (A two-step procedure now proceeds by using the same first-step OLS regression – in this case, to get the fitted values, $\hat{y}_{i2} = \mathbf{z}_i \hat{\mathbf{\delta}}_2 -$ now followed by a probit of y_{i1} on $\mathbf{z}_{i1}, \hat{y}_{i2}$. It is easily seen that this method estimates the

coefficients up to the common scale factor $1/\omega_1$, which can be any positive value (unlike in the CF case, where we know the scale factor is greater than unity).

One danger with plugging in fitted values for y_2 is that one might be tempted to plug \hat{y}_2 into nonlinear functions, say y_2^2 or $y_2 z_1$. This does not result in consistent estimation of the scaled parameters or the partial effects. If we believe y_2 has a linear RF with additive normal error independent of z, the addition of \hat{v}_2 solves the endogeneity problem regardless of how y_2 appears. Plugging in fitted values for y_2 only works in the case where the model is linear in y_2 . Plus, the CF approach makes it much easier to test the null that for endogeneity of y_2 as well as compute APEs.

In standard index models such as (3.9), or, if you prefer, (3.1), the use of control functions to estimate the (scaled) parameters and the APEs produces no surprises. However, one must take care when, say, we allow for random slopes in nonlinear models. For example, suppose we propose a random coefficient model

$$E(y_1|\mathbf{z}, y_2, \mathbf{c}_1) = E(y_1|\mathbf{z}_1, y_2, \mathbf{c}_1) = \Phi(\mathbf{z}_1 \mathbf{\delta}_1 + a_1 y_2 + q_1), \qquad (3.12)$$

where a_1 is random with mean a_1 and q_1 again has mean of zero. If we want the partial effect of y_2 , evaluated at the mean of heterogeneity, we have

$$\alpha_1 \phi(\mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2), \tag{3.13}$$

where $\phi(\cdot)$ is the standard normal pdf, and this equation is obtained by differentiating (3.12) with respect to y_2 and then plugging in $a_1 = \alpha_1$ and $q_1 = 0$. Suppose we write $a_1 = \alpha_1 + d_1$ and assume that (d_1, q_1) is bivariate normal with mean zero. Then, for given (\mathbf{z}_1, y_2) , the average structural function can be shown to be

$$E_{(d_1,q_1)}[\Phi(\mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1y_2 + d_1y_2 + q_1)] = \Phi[(\mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1y_2)/(\sigma_q^2 + 2\sigma_{dq}y_2 + \sigma_d^2y_2^2)^{1/2}], \quad (3.14)$$

where $\sigma_q^2 = Var(q_1)$, $\sigma_d^2 = Var(d_1)$, and $\sigma_{dq} = Cov(d_1, q_1)$. The average partial effect with respect to, say, y_2 , is the derivative of this function with respect to y_2 . While this partial effect depends on α_1 , it is messier than (3.13) and need not even have the same sign as α_1 . Wooldridge (2005) discusses related issues in the context of probit models with exogenous variables and heteroskedasticity. In one example, he shows that, depending on whether heteroskedasticity in the probit is due to heteroskedasticity in $Var(u_1|\mathbf{x}_1)$, where u_1 is the latent error, or random slopes, the APEs are completely different in general. The same is true here: the APE when the coefficient on y_2 is random is generally very different from the APE obtained if we maintain $a_1 = \alpha_1$ but $Var(q_1|v_2)$ is heteroskedastic. In the latter case, the APE is a positive multiple of α_1 .

Incidentally, we can estimate the APE in (3.14) fairly generally. A parametric approach is to assume joint normality of (d_1, q_1, v_2) (and independence with **z**). Then, with a normalization restriction, it can be shown that

$$E(y_1|\mathbf{z}, v_2) = \Phi[(\mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1y_2 + \theta_1v_2 + \psi_1y_2v_2)/(1 + \eta_1y_2 + \lambda_1y_2^2)^{1/2}], \qquad (3.15)$$

which can be estimated by inserting \hat{v}_2 for v_2 and using nonlinear least squares or Bernoulli QMLE. (The latter is often called "heteroskedastic probit" when y_1 is binary.) This procedure can be viewed as an extension to Garen's method for linear models with correlated random coefficients.

Estimation, inference, and interpretation would be especially straightforward (the latter possibly using the bootstrap) if we squint and pretend the term $(1 + \varphi_1 y_2 + \lambda_1 y_2^2)^{1/2}$ is not present. Then, estimation would simply be Bernoulli QMLE of y_{i1} on \mathbf{z}_{i1} , y_{i2} , \hat{v}_{i2} , and $y_{i2}\hat{v}_{i2}$, which means that we just add the interaction to the usual Rivers-Vuong procedure. The APE for y_2 would be estimated by taking the derivative with respect to y_2 and averaging out \hat{v}_{i2} , as usual:

$$N^{-1} \sum_{i=1}^{N} (\hat{\alpha}_{1} + \hat{\psi}_{1} \hat{v}_{i2}) \cdot \phi(\mathbf{z}_{1} \hat{\mathbf{\delta}}_{1} + \hat{\alpha}_{1} y_{2} + \hat{\theta}_{1} \hat{v}_{i2} + \hat{\psi}_{1} y_{2} \hat{v}_{i2}), \qquad (3.16)$$

and evaluating this at chosen values for (\mathbf{z}_1, y_2) (or using further averaging across the sample values). This simplification cannot be reconciled with (3.9), but it is in the spirit of adding flexibility to a standard approach and treating functional forms as approximations. As a practical matter, we can compare this with the APEs obtained from the standard Rivers-Vuong approach, and a simple test of the null hypothesis that the coefficient on y_2 is constant is $H_0: \psi_1 = 0$ (which should account for the first step estimation of $\hat{\pi}_2$). The null hypothesis that y_2 is exogenous is the joint test $H_0: \theta_1 = 0, \psi_1 = 0$, and in this case no adjustment is needed for the first-stage estimation. And why stop here? If we, add, say, y_2^2 to the structural model, we might add \hat{v}_2^2 to the estimating equation as well. It would be very difficult to relate parameters estimated from the CF method to parameters in an underlying structural model; indeed, it would be difficult to find a structural model given rise to this particular CF approach. But if the object of interest are the average partial effects, the focus on flexible models for $E(y_1|\mathbf{z}_1, y_2, v_2)$ can be liberating (or disturbing, depending on one's point of view about "structural" parameters).

Lewbel (2000) has made some progress in estimating parameters up to scale in the model $y_1 = 1[\mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + u_1 > 0]$, where y_2 might be correlated with u_1 and \mathbf{z}_1 is a $1 \times L_1$ vector of exogenous variables. Lewbel's (2000) general approach applies to this situation as well. Let z be the vector of all exogenous variables uncorrelated with u_1 . Then Lewbel requires a continuous element of z_1 with nonzero coefficient – say the last element, z_{L_1} – that does not appear in $D(u_1|y_2, z)$. (Clearly, y_2 cannot play the role of the variable excluded from $D(u_1|v_2, z)$ if y_2 is thought to be endogenous.) When might Lewbel's exclusion restriction hold? Sufficient is $y_2 = g_2(\mathbf{z}_2) + v_2$, where (u_1, v_2) is independent of \mathbf{z} and \mathbf{z}_2 does not contain z_{L_1} . But this means that we have imposed an exclusion restriction on the reduced form of y_2 , something usually discouraged in parametric contexts. Randomization of z_{L_1} does not make its exclusion from the reduced form of y_2 legitimate; in fact, one often hopes that an instrument for y_2 is effectively randomized, which means that z_{L_1} does not appear in the structural equation but does appear in the reduced form of y_2 – the opposite of Lewbel's assumption. Lewbel's assumption on the "special" regressor is suited to cases where a quantity that only affects the response is randomized. A randomly generated project cost presented to interviewees in a willingness-to-pay study is one possibility.

Returning to the probit response function in (3.9), we can understand the limits of the CF approach for estimating nonlinear models with discreted EEVs. The Rivers-Vuong approach, and its extension to fractional responses, cannot be expected to produce consistent estimates of the parameters or APEs for discrete y_2 . The problem is that we cannot write

$$y_2 = \mathbf{z}\pi_2 + v_2$$

 $D(v_2|\mathbf{z}) = D(v_2) = \text{Normal}(0, \tau_2^2).$ (3.17)

In other words, unlike when we estimate a linear structural equation, the reduced form in the RV approach is not just a linear projection – far from it. In the extreme we have completely specified $D(y_2|\mathbf{z})$ as homoskedastic normal, which is clearly violated if y_2 is a binary or count variable, or a corner solution (commonly called a "censored" variable). Unfortunately, even just assuming independence between v_2 and \mathbf{z} rules out discrete y_2 , an assumption that plays an important role even in fully nonparametric approaches. The bottom line is that there are no known two-step estimation methods that allow one to estimate a probit model or fractional probit model with discrete y_2 , even if we make strong distributional assumptions. And, there are some poor strategies that still linger. For example, suppose y_1 and y_2 are both binary, (3.1) holds, and

$$y_2 = 1[\mathbf{z}\delta_2 + v_2 \ge 0] \tag{3.18}$$

and we maintain joint normality of (u_1, v_2) – now both with unit variances – and, of course, independence between the errors and \mathbf{z} . Because $D(y_2|\mathbf{z})$ follows a standard probit, it is tempting to try to mimic 2SLS as follows: (i) Do probit of y_2 on \mathbf{z} and get the fitted probabilities, $\hat{\Phi}_2 = \Phi(\mathbf{z}\hat{\delta}_2)$. (ii) Do probit of y_1 on $\mathbf{z}_1, \hat{\Phi}_2$, that is, just replace y_2 with $\hat{\Phi}_2$. This does not work, as it requires believing that the expected value passes through nonlinear functions. Some have called prodedures like this a "forbidden regression." We could find $E(y_1|\mathbf{z}, y_2)$ as a function of the structural and reduced form parameters, insert the first-stage estimates of the RF parameters, and then use binary response estimation in the second stage. But the estimator is not probit with the fitted probabilities plugged in for y_2 .Currently, the only strategy we have is maximum likelihood estimation based on $f(y_1|y_2, \mathbf{z})f(y_2|\mathbf{z})$. (The lack of options that allow some robustness to distributional assumptions on y_2 helps explain why some authors, notably Angrist (2001), have promoted the notion of just using linear probability models estimated by 2SLS. This strategy seems to provide good estimates of the average treatment effect in many applications.)

An issue that comes up occasionally is whether "bivariate" probit software be used to estimate the probit model with a binary endogenous variable. In fact, the answer is yes, and the endogenous variables can appear in any way in the model, particularly interacted with exogenous variables. The key is that the likelihood function is constructed from $f(y_1|y_2, \mathbf{x}_1)f_2(y_2|\mathbf{x}_2)$, and so its form does not change if \mathbf{x}_1 includes y_2 . (Of course, one should have at least one exclusion restriction in the case \mathbf{x}_1 does depend on y_2 .) MLE, of course, has all of its desirable properties, and the parameter estimates needed to compute APEs are provided directly.

If y_1 is a fractional response satisfying (3.9), y_2 follows (3.18), and (q_1, v_2) are jointly normal and independent of z, a two-step method based on $E(y_1|z, y_2)$ is possible; the expectation is not in closed form, and estimation cannot proceed by simply adding a control function to a Bernoulli QMLE. But it should not be difficult to implement. Full MLE for a fractional response is more difficult than for a binary response, particularly if y_1 takes on values at the endpoints with positive probability.

An essentially parallel discussion holds for ordered probit response models, where y_1 takes on the ordered values $\{0, 1, \dots, J\}$. The RV procedure, and its extensions, applies immediately. In computing partial effects on the response probabilities, we simply average out the reduced for residuals, as in equation (3.8). The comments about the forbidden regression are immediately applicable, too: one cannot simply insert, say, fitted probabilities for the binary EEV y_2 into an ordered probit model for y_1 and hope for consistent estimates of anything of interest.

Likewise, methods for Tobit models when y_1 is a corner solution, such as labor supply or charitable contributions, are analyzed in a similar fashion. If y_2 is a continuous variable, CF methods for consistent estimation can be obtained, at least under the assumptions used in the RV setup. Blundell and Smith (1986) and Wooldridge (2002, Chapter 16) contain treatments. The embellishments described above, such as letting $D(u_1|v_2)$ be a flexible normal distribution, carry over immediately to Tobit case, as do the cautions in looking for simple two-step methods when $D(y_2|\mathbf{z})$ is discrete.

3.2. Multinomial Responses

Allowing endogenous explanatory variables (EEVs) in multinomial response models is notoriously difficult, even for continuous endogenous variables. There are two basic reasons. First, multinomial probit (MNP), which mixes well well a reduced form normality assumption for $D(y_2|\mathbf{z})$, is still computationally difficult for even a moderate number of choices. Apparently, no one has undertaken a systematic treatment of MNP with EEVs, including how to obtain partial effects.

The multinomial logit (MNL), and its extensions, such as nested logit, is much simpler computationally with lots of alternatives. Unfortunately, the normal distribution does not mix well with the extreme value distribution, and so, if we begin with a structural MNL model (or conditional logit), the estimating equations obtained from a CF approach are difficult to obtain, and MLE is very difficult, too, even if we assume a normal distribution in the reduced form(s).

Recently, some authors have suggested taking a practical approach to allowing at least continuous EEVs in multinomial response. The suggestions for binary and fractional responses in the previous subsection – namely, use probit, or even logit, with flexible functions of both the observed variables and the reduced form residuals – is in this spirit.

Again it is convenient to model the source of endogeneity as an omitted variable. Let y_1 be the (unordered) multinomial response taking values $\{0, 1, ..., J\}$, let **z** be the vector of endogenous variables, and let y_2 be a vector of endogenous variables. If r_1 represents omitted factors that the researcher would like to control for, then the structural model consists of specifications for the response probabilities

$$P(y_1 = j | \mathbf{z}_1, \mathbf{y}_2, r_1), j = 0, 1, \dots, J.$$
(3.20)

The average partial effects, as usual, are obtained by averaging out the unobserved heterogeneity, r_1 . Assume that y_2 follows the linear reduced form

$$\mathbf{y}_2 = \mathbf{z} \mathbf{\Pi}_2 + \mathbf{v}_2. \tag{3.21}$$

Typically, at least as a first attempt, we would assume a convenient joint distribution for (r_1, \mathbf{v}_2) , such as multivariate normal and independent of \mathbf{z} . This approach has been applied when the response probabilities, conditional on r_1 , have the conditional logit form. For example, Villas-Boas and Winer (1999) apply this approach to modeling brand choice, where prices are allowed to correlated with unobserved tastes that affect brand choice. In implementing the CF approach, the problem in starting with a multinomial or conditional logit model for (3.zz) is computational. Nevertheless, estimation is possible, particular if one uses simulation methods of estimation briefly mentioned in the previous subsection.

A much simpler control function approach is obtained if we skip the step of modeling $P(y_1 = j | \mathbf{z}_1, \mathbf{y}_2, r_1)$ and jump directly to convenient models for $P(y_1 = j | \mathbf{z}_{i1}, \mathbf{y}_2, \mathbf{v}_2) = P(y_1 = j | \mathbf{z}, \mathbf{y}_2)$. Villas-Boas (2005) and Petrin and Train (2006) are proponents of this solution. The idea is that any parametric model for $P(y_1 = j | \mathbf{z}_1, \mathbf{y}_2, r_1)$ is essentially arbitrary, so, if we can recover quantities of interest directly from $P(y_1 = j | \mathbf{z}_1, \mathbf{y}_2, \mathbf{v}_2)$, why not specify these probabilities directly? If we assume that $D(r_1 | \mathbf{z}, \mathbf{y}_2) = D(r_1 | \mathbf{v}_2)$, and that $P(y_1 = j | \mathbf{z}_1, \mathbf{y}_2, \mathbf{v}_2)$ can be obtained from $P(y_1 = j | \mathbf{z}_1, \mathbf{y}_2, r_1)$ by integrating the latter with respect to $D(r_1 | \mathbf{v}_2)$ then we can estimate the APEs directly from $P(y_1 = j | \mathbf{z}_1, \mathbf{y}_2, \mathbf{v}_2)$ be averaging out across the reduced form residuals, as in previous cases.

Once we have selected a model for $P(y_1 = j | \mathbf{z}_1, \mathbf{y}_2, \mathbf{v}_2)$, which could be multinomial logit, conditional logit, or nested logit, we can apply a simple two-step procedure. First, estimate the reduced form for \mathbf{y}_{i2} and obtain the residuals, $\hat{\mathbf{v}}_{i2} = \mathbf{y}_{i2} - \mathbf{z}_i \hat{\mathbf{\Pi}}_2$. (Alternatively, we can use strictly monotonic transformations of the elements of \mathbf{y}_{i2} .) Then, we estimate a multinomial response model with explanatory variables $\mathbf{z}_{i1}, \mathbf{y}_{i2}$, and $\hat{\mathbf{v}}_{i2}$. As always with control function approaches, we need enough exclusion restrictions in \mathbf{z}_{i1} to identify the parameters and APEs. We can include nonlinear functions of $(\mathbf{z}_{i1}, \mathbf{y}_{i2}, \hat{\mathbf{v}}_{i2})$, including quadratics and interactions for more flexibility.

Given estimates of the probabilities $p_j(\mathbf{z}_1, \mathbf{y}_2, \mathbf{v}_2)$, we can estimate the average partial effects on the structural probabilities by estimating the average structural function:

$$\widehat{\mathrm{ASF}}(\mathbf{z}_1, \mathbf{y}_2) = N^{-1} \sum_{i=1}^N p_i(\mathbf{z}_1, \mathbf{y}_2, \mathbf{\hat{v}}_{i2}).$$
(3.22)

Then, we can take derivatives or changes of $\widehat{ASF}(\mathbf{z}_1, \mathbf{y}_2)$ with respect to elements of $(\mathbf{z}_1, \mathbf{y}_2)$, as usual. While the delta method can be used to obtain analytical standard errors, the bootstrap is simpler and feasible if one uses, say, conditional logit.

In an application to choice of television service, Petrin and Train (2006) find the CF approach gives remarkably similar parameter estimates to the approach proposed by Berry, Pakes, and Levinsohn (1995), which we touch on in the cluster sample notes.

3.3. Exponential Models

Exponential models represent a middle ground between linear models and discrete response models: to allow for EEVs in an exponential model, we need to impose more assumptions than needed for standard linear models but fewer assumptions than discrete response models. Both IV approaches and CF approaches are available for exponential models, the latter having been worked out for continuous and binary EEVs. With a single EEV, write

$$E(y_1|\mathbf{z}, y_2, r_1) = \exp(\mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + r_1), \qquad (3.23)$$

where r_1 is the omitted variable. (Extensions to general nonlinear functions of (z_1, y_2) are immediate; we just add those functions with linear coefficients to (3.23). Leading cases are polynomials and interactions.) Suppose first that y_2 has a standard linear reduced form with an additive, independent error:

$$y_2 = \mathbf{z}\mathbf{\pi}_2 + v_2 \tag{3.24}$$

$$D(r_1, v_2 | \mathbf{z}) = D(r_1, v_2), \tag{3.25}$$

so that (r_1, v_2) is independent of **z**. Then

$$E(y_1|\mathbf{z}, y_2) = E(y_1|\mathbf{z}, v_2) = E[\exp(r_1)|v_2]\exp(\mathbf{z}_1\mathbf{\delta}_1 + \alpha_1 y_2).$$
(3.26)

If (r_1, v_2) are jointly normal, then $E[\exp(r_1)|v_2] = \exp(\theta_1 v_2)$, where we set the intercept to zero, assuming \mathbf{z}_1 includes an intercept. This assumption can hold more generally, too. Then

$$E(y_1|\mathbf{z}, y_2) = E(y_1|\mathbf{z}, v_2) = \exp(\mathbf{z}_1 \delta_1 + \alpha_1 y_2 + \theta_1 v_2), \qquad (3.27)$$

and this expectation immediately suggest a two-step estimation procedure. The first step, as before, is to estimate the reduced form for y_2 and obtain the residuals. Then, include \hat{v}_2 , along with z_1 and y_2 , in nonlinear regression or, especially if y_1 is a count variable, in a Poisson QMLE analysis. Like NLS, it requires only (3.27) to hold. A *t* test of H₀ : $\theta_1 = 0$ is valid as a test that y_2 is exogenous. Average partial effects on the mean are obtained from

$$\left[N^{-1}\sum_{i=1}^{N}\exp(\hat{\theta}_{1}\hat{v}_{i2})\right]\exp(\mathbf{z}_{1}\hat{\mathbf{\delta}}_{1}+\hat{\alpha}_{1}y_{2})$$

Proportionate effects on the expected value, that is elasticities and semi-elasticities, the expected value do not depend on the scale factor out front.

Like in the binary case, we can use a random coefficient model to suggest more flexible CF methods. For example, if we start with

$$E(y_1|\mathbf{z}, y_2, a_1, r_1) = \exp(\mathbf{z}_1 \boldsymbol{\delta}_1 + a_1 y_2 + r_1)$$

$$= \exp(\mathbf{z}_1 \boldsymbol{\delta}_1 + a_1 y_2 + d_1 y_2 + r_1)$$
(3.28)

and assume trivariate normality of (d_1, r_1, v_2) (and independence from **z**), then it can be shown that

$$E(y_1|\mathbf{z}, v_2) = \exp(\mathbf{z}_1 \delta_1 + \alpha_1 y_2 + \theta_1 v_2 + \psi_1 y_2 v_2 + (\sigma_r^2 + 2\sigma_{dr} y_2 + \sigma_d^2 y_2^2)/2).$$
(3.29)

Therefore, the estimating equation involves a quadratic in y_2 and an interaction between y_2 and v_2 . Notice that the term $(\sigma_r^2 + 2\sigma_{dr}y_2 + \sigma_d^2y_2^2)/2$ is present even if y_2 is exogenous, that is, $\theta_1 = \psi_1 = 0$. If $\sigma_{dr} = Cov(d_1, r_1) \neq 0$ then (3.29) does not even identify $\alpha_1 = E(\alpha_1)$ (we would have to use higher-order moments, such as a variance assumption). But (3.29) *does* identify the average structural function (and, therefore, APEs). We just absorb σ_r^2 into the intercept, combine the linear terms in y_2 , and add the quadratic in y_2 . So, we would estimate

$$E(y_1|\mathbf{z}, v_2) = \exp(\mathbf{z}_1 \boldsymbol{\delta}_1 + \rho_1 y_2 + \theta_1 v_2 + \psi_1 y_2 v_2 + \eta_1 y_2^2)$$
(3.30)

using a two-step QMLE. The ASF is more complicated, and estimated as

$$\widehat{ASF}(\mathbf{z}_1, y_2) = \left[N^{-1} \sum_{i=1}^{N} \exp(\mathbf{z}_1 \hat{\mathbf{\delta}}_1 + \hat{\rho}_1 y_2 + \hat{\theta}_1 \hat{v}_{i2} + \hat{\psi}_1 y_2 \hat{v}_{i2} + \hat{\eta}_1 y_2^2) \right], \quad (3.31)$$

which, as in the probit example, implies that the APE with respect to y_2 need not have the same sign as α_1 .

Our inability to estimate α_1 even in this very parametric setting is just one example of how delicate identification of parameters in standard index models is. Natural extensions to models with random slopes general cause even the mean heterogeneity (α_1 above) to be unidentified. Again, it must be emphasized that the loss of identification holds even if y_2 is assumed exogenous.

If y_2 is a binary model following a probit, then a CF approach due to Terza (1998) can be used. We return to the model in (3.23) where, for simplicity, we assume y_2 is not interacted with elements of z_1 ; the extension is immediate. We can no longer assume (3.24) and (3.25). Instead, replace (3.24)

$$y_2 = 1[\mathbf{z}\pi_2 + v_2 > 0] \tag{3.32}$$

and still adopt (3.25). In fact, we assume (r_1, v_2) is jointly normal. To implement a CF approach, we need to find

$$E(y_1|\mathbf{z}, y_2) = E[E(y_1|\mathbf{z}, y_2)|\mathbf{z}, y_2]$$

= exp($\mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2$) $E[exp(\eta_1 + \theta_1 y_2)|\mathbf{z}, y_2]$
= exp($\mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2$) $h(y_2, \mathbf{z} \mathbf{\pi}_2, \theta_1)$, (3.34)

where we absorb η_1 into the intercept in z_1 without changing notation and

$$h(y_2, \mathbf{z}\pi_2, \theta_1) = \exp(\theta_1^2/2) \{ y_2 \Phi(\theta_1 + \mathbf{z}\pi_2) / \Phi(\mathbf{z}\pi_2) + (1 - y_2) [1 - \Phi(\theta_1 + \mathbf{z}\pi_2)] / [1 - \Phi(\mathbf{z}\pi_2)] \},$$
(3.35)

as shown by Terza (1998). Now, π_2 is estimated by a first-stage probit, and then NLS or, say, Poisson QMLE can be applied to the mean function

$$\exp(\mathbf{z}_1\boldsymbol{\delta}_1 + \boldsymbol{\alpha}_1\boldsymbol{y}_2)h(\boldsymbol{y}_2, \mathbf{z}\hat{\boldsymbol{\pi}}_2, \boldsymbol{\theta}_1). \tag{3.36}$$

As usual, unless $\theta_1 = 0$, one must account for the estimation error in the first step when obtaining inference in the second. Terza (1998) contains analytical formulas, or one may use the bootstrap.

In the exponential case, an alternative to either of the control function approaches just presented is available – and, it produces consistent estimators regardless of the nature of y_2 . Write $\mathbf{x}_1 = \mathbf{g}_1(\mathbf{z}_1, \mathbf{y}_2)$ as any function of exogenous and endogenous variables. If we start with

$$E(\mathbf{y}_1|\mathbf{z},\mathbf{y}_2,r_1) = \exp(\mathbf{x}_1\boldsymbol{\beta}_1 + r_1)$$
(3.37)

then we can use a transformation due to Mullahy (1997) to consistently estimate β_1 by method of moments. By definition, and assuming only that $y_1 \ge 0$, we can write

$$y_1 = \exp(\mathbf{x}_1 \boldsymbol{\beta}_1 + r_1) a_1$$

= $\exp(\mathbf{x}_1 \boldsymbol{\beta}_1) \exp(r_1) a_1, \ E(a_1 | \mathbf{z}, \mathbf{y}_2, r_1) = 1.$

If r_1 is independent of **z** then

$$E[\exp(-\mathbf{x}_1\boldsymbol{\beta}_1)y_1|\mathbf{z}] = E[\exp(r_1)|\mathbf{z}] = E[\exp(r_1)] = 1, \qquad (3.38)$$

where the last equality is just a normalization that defines the intercept in β_1 . Therefore, we have conditional moment conditions

$$E[\exp(-\mathbf{x}_1\boldsymbol{\beta}_1)y_1 - 1|\mathbf{z}] = 0, \qquad (3.39)$$

which depends on the unknown parameters β_1 and observable data. Any function of z can be used as instruments in a nonlinear GMM procedure. An important issue in implementing the procedure is choosing instruments. See Mullahy (1997) for further discussion.

4. Semiparametric and Nonparametric Approaches

Blundell and Powell (2004) show how to relax distributional assumptions on (u_1, v_2) in the model model $y_1 = 1[\mathbf{x}_1 \boldsymbol{\beta}_1 + u_1 > 0]$, where \mathbf{x}_1 can be any function of (\mathbf{z}_1, y_2) . The key assumption is that y_2 can be written as $y_2 = g_2(\mathbf{z}) + v_2$, where (u_1, v_2) is independent of \mathbf{z} . The independence of the additive error v_2 and \mathbf{z} pretty much rules out discreteness in y_2 , even though $g_2(\cdot)$ can be left unspecified. Under the independence assumption,

$$P(y_1 = 1 | \mathbf{z}, v_2) = E(y_1 | \mathbf{z}, v_2) = H(\mathbf{x}_1 \boldsymbol{\beta}_1, v_2)$$
(4.1)

for some (generally unknown) function $H(\cdot, \cdot)$. The average structural function is just $ASF(\mathbf{z}_1, y_2) = E_{v_{i2}}[H(\mathbf{x}_1\boldsymbol{\beta}_1, v_{i2})]$. We can estimate H and $\boldsymbol{\beta}_1$ quite generally by first estimating the function $g_2(\cdot)$ and then obtaining residuals $\hat{v}_{i2} = y_{i2} - \hat{g}_2(\mathbf{z}_i)$. Blundell and Powell (2004) show how to estimate H and $\boldsymbol{\beta}_1$ (up to scaled) and $G(\cdot)$, the distribution of u_1 . The ASF is obtained from $G(\mathbf{x}_1\boldsymbol{\beta}_1)$. We can also estimate the ASF by averaging out the reduced form residuals,

$$\widehat{\mathrm{ASF}}(\mathbf{z}_1, y_2) = N^{-1} \sum_{i=1}^{N} \widehat{H}(\mathbf{x}_1 \hat{\boldsymbol{\beta}}_1, \hat{v}_{i2}); \qquad (4.2)$$

derivatives and changes can be computed with respect to elements of (\mathbf{z}_1, y_2) .

Blundell and Powell (2003) allow $P(y_1 = 1 | \mathbf{z}, y_2)$ to have the general form $H(\mathbf{z}_1, y_2, v_2)$, and then the second-step estimation is entirely nonparametric. They also allow $\hat{g}_2(\cdot)$ to be fully nonparametric. But parametric approximations in each stage might produce good estimates of the APEs. For example, y_{i2} can be regressed on flexible functions of \mathbf{z}_i to obtain \hat{v}_{i2} . Then, one can estimate probit or logit models in the second stage that include functions of \mathbf{z}_1 , y_2 , and \hat{v}_2 in a flexible way – for example, with levels, quadratics, interactions, and maybe even higher-order polynomials of each. Then, one simply averages out \hat{v}_{i2} , as in equation (4.2). Valid standard errors and test statistics can be obtained by bootstrapping or by using the delta method.

In certain cases, an even more parametric approach suggests itself. Suppose we have the exponential regression

$$E(y_1|\mathbf{z}, y_2, r_1) = \exp(\mathbf{x}_1 \boldsymbol{\beta}_1 + r_1), \tag{4.3}$$

where r_1 is the unobservable. If $y_2 = \mathbf{g}_2(\mathbf{z})\mathbf{\pi}_2 + v_2$ and (r_1, v_2) is independent of \mathbf{z} , then

$$E(y_1|\mathbf{z}_1, y_2, v_2) = h_2(v_2) \exp(\mathbf{x}_1 \boldsymbol{\beta}_1), \qquad (4.4)$$

where now $h_2(\cdot)$ is an unknown function. It can be approximated using series, say, and, of course, first-stage residuals \hat{v}_2 replace v_2 .

Blundell and Powell (2003) consider a very general setup, which starts with $y_1 = g_1(\mathbf{z}_1, \mathbf{y}_2, u_1)$, and then discuss estimation of the ASF, given by

$$ASF_{1}(\mathbf{z}_{1},\mathbf{y}_{2}) = \int g_{1}(\mathbf{z}_{1},\mathbf{y}_{2},u_{1})dF_{1}(u_{1}), \qquad (4.5)$$

where F_1 is the distribution of u_1 . The key restrictions are that y_2 can be written as

$$\mathbf{y}_2 = \mathbf{g}_2(\mathbf{z}) + \mathbf{v}_2, \tag{4.6}$$

where (u_1, \mathbf{v}_2) is independent of \mathbf{z} . The additive, independent reduced form errors in (4.6) effectively rule out applications to discrete \mathbf{y}_2 . Conceptually, Blundell and Powell's method is straightforward, as it is a nonparametric extension of parametric approaches. First, estimate \mathbf{g}_2 nonparametrically (which, in fact, may be done via a flexible parametric model, or kernel estimators). Obtain the residuals $\hat{\mathbf{v}}_{i2} = \mathbf{y}_{i2} - \hat{\mathbf{g}}_2(\mathbf{z}_i)$. Next, estimate $E(y_1|\mathbf{z}_1, \mathbf{y}_2, \mathbf{v}_2) = h_1(\mathbf{z}_1, \mathbf{y}_2, \mathbf{v}_2)$ using nonparametrics, where $\hat{\mathbf{v}}_{i2}$ replaces \mathbf{v}_2 . Identification of

 h_1 holds quite generally, provided we have sufficient exclusion restrictions (elements in **z** not in **z**₁). BP discuss some potential pitfalls. Once we have \hat{h}_1 , we can consistently estimate the ASF. For given $\mathbf{x}_1^o = (\mathbf{z}_1^o, \mathbf{y}_2^o)$, the ASF can always be written, using iterated expectations, as

$$E_{\mathbf{v}_2}\{E[g_1(\mathbf{x}_1^o, u_1)|\mathbf{v}_2]\}$$

Under the assumption that (u_1, \mathbf{v}_2) is independent of \mathbf{z} , $E[g_1(\mathbf{x}_1^o, u_1)|\mathbf{v}_2] = h_1(\mathbf{x}_1^o, \mathbf{v}_2)$ – that is, the regression function of y_1 on $(\mathbf{x}_1, \mathbf{v}_2)$. Therefore, a consistent estimate of the ASF is

$$N^{-1} \sum_{i=1}^{N} \hat{h}_{1}(\mathbf{x}_{1}, \hat{\mathbf{v}}_{i2}).$$
(4.7)

While semiparametric and parametric methods when y_2 (or, more generally, a vector \mathbf{y}_2) are continuous – actually, have a reduced form with an additive, independent error – they do not currently help us with discrete EEVs.

With univariate y_2 , it possible to relax the additivity of v_2 in the reduced form equation under monotonicity assumptions. Like Blundell and Powell (2003), Imbens and Newey (2006) consider the triangular system, but without additivity in the reduced form of y_2 :

$$y_1 = g_1(\mathbf{z}_1, y_2, \mathbf{u}_1),$$
 (4.8)

where \mathbf{u}_1 is a vector heterogeneity (whose dimension may not even be known)

$$y_2 = g_2(\mathbf{z}, e_2),$$
 (4.9)

where $g_2(\mathbf{z}, \cdot)$ is strictly monotonic. This assumption rules out discrete y_2 but allows some interaction between the unobserved heterogeneity in y_2 and the exogenous variables. As one special case, Imbens and Newey show that, if (\mathbf{u}_1, e_2) is assumed to be independent of \mathbf{z} , then a valid control function to be used in a second stage is $v_2 \equiv F_{y_2|\mathbf{z}}(y_2, \mathbf{z})$, where $F_{y_2|\mathbf{z}}$ is the conditional distribution of y_2 given \mathbf{z} . Imbens and Newey described identification of various quantities of interest, including the quantile structural function. When u_1 is a scalar and monotonically increasing in u_1 , the QSF is

$$QSF_{\tau}(\mathbf{x}_1) = g_1(\mathbf{x}_1, \operatorname{Quant}_{\tau}(u_1)), \qquad (4.10)$$

where $\text{Quant}_{\tau}(u_1)$ is the τ^{th} of u_1 . We consider quantile methods in more detail in the quantile methods notes.

5. Methods for Panel Data

We can combine methods for handling correlated random effects models with control function methods to estimate certain nonlinear panel data models with unobserved heterogeneity and EEVs. Here we provide as an illustration a parametric approach used by Papke and Wooldridge (2007), which applies to binary and fractional responses. The manipulations are routine but point to more flexible ways of estimating the average marginal effects. It is important to remember that we currently have no way of estimating, say, unobserved effects models for fractional response variables, either with or without endogenous explanatory variables. Even the approaches that treat the unobserved effects as parameters – and use large T approximations – to not allow endogenous regressors. Plus, recall from the nonlinear panel data notes that most results are for the case where the data are assumed independent across time. Jackknife approaches further assume homogeneity across time.

We write the model with time-constant unobserved heterogeneity, c_{i1} , and time-varying unobservables, v_{it1} , as

$$E(y_{it1}|y_{it2}, \mathbf{z}_i, c_{i1}, v_{it1}) = E(y_{it1}|y_{it2}, \mathbf{z}_{it1}, c_{i1}, v_{it1}) = \Phi(\alpha_1 y_{it2} + \mathbf{z}_{it1} \delta_1 + c_{i1} + v_{it1}).$$
(5.1)

Thus, there are two kinds of potential omitted variables. We allow the heterogeneity, c_{i1} , to be correlated with y_{it2} and \mathbf{z}_i , where $\mathbf{z}_i = (\mathbf{z}_{i1}, \dots, \mathbf{z}_{iT})$ is the vector of strictly exogenous variables (conditional on c_{i1}). The time-varying omitted variable is uncorrelated with \mathbf{z}_i – strict exogeneity – but may be correlated with y_{it2} . As an example, y_{it1} is a female labor force participation indicator and y_{it2} is other sources of income. Or, y_{it1} is a test pass rate, and the school leve, and y_{it2} is a measure of spending per student.

When we write $\mathbf{z}_{it} = (\mathbf{z}_{it1}, \mathbf{z}_{it2})$, we are assuming \mathbf{z}_{it2} can be excluded from the "structural" equation (4.1). This is the same as the requirement for fixed effects two stage least squares estimation of a linear model.

To proceed, we first model the heterogeneity using a Chamberlain-Mundlak approach:

$$c_{i1} = \psi_1 + \bar{\mathbf{z}}_i \boldsymbol{\xi}_1 + a_{i1}, a_{i1} | \mathbf{z}_i \sim \text{Normal}(0, \sigma_{a_1}^2).$$
(5.2)

We could allow the elements of \mathbf{z}_i to appear with separate coefficients, too. Note that only exogenous variables are included in $\mathbf{\bar{z}}_i$. Plugging into (5.1) we have

$$E(y_{it1}|y_{it2}, \mathbf{z}_i, a_{i1}, v_{it1}) = \Phi(\alpha_1 y_{it2} + \mathbf{z}_{it1} \mathbf{\delta}_1 + \psi_1 + \mathbf{\bar{z}}_i \mathbf{\xi}_1 + a_{i1} + v_{it1})$$

= $\Phi(\alpha_1 y_{it2} + \mathbf{z}_{it1} \mathbf{\delta}_1 + \psi_1 + \mathbf{\bar{z}}_i \mathbf{\xi}_1 + r_{it1}).$ (5.3)

Next, we assume a linear reduced form for y_{it2} :

$$y_{it2} = \psi_2 + \mathbf{z}_{it}\delta_2 + \bar{\mathbf{z}}_i\boldsymbol{\xi}_2 + v_{it2}, t = 1, \dots, T,$$
(5.4)

where, if necessary, we can allow the coefficients in (5.4) to depend on *t*. The addition of the time average of the strictly exogenous variables in (5.4) follows from the Mundlak (1978) device. The nature of endogeneity of y_{it2} is through correlation between $r_{it1} = a_{i1} + v_{it1}$ and the reduced form error, v_{it2} . Thus, y_{it2} is allowed to be correlated with unobserved heterogeneity and the time-varying omitted factor. We also assume that r_{it1} given v_{it2} is conditionally normal, which we write as

$$r_{it1} = \eta_1 v_{it2} + e_{it1}, \tag{5.5}$$

$$e_{it1}|(\mathbf{z}_i, v_{it2}) \sim \text{Normal}(0, \sigma_{e_1}^2), t = 1, \dots, T.$$
 (5.6)

Because e_{it1} is independent of (\mathbf{z}_i, v_{it2}) , it is also independent of y_{it2} . Using a standard mixing property of the normal distribution,

$$E(y_{it1}|\mathbf{z}_{i}, y_{it2}, v_{it2}) = \Phi(\alpha_{e1}y_{it2} + \mathbf{z}_{it1}\boldsymbol{\delta}_{e1} + \psi_{e1} + \mathbf{\bar{z}}_{i}\boldsymbol{\xi}_{e1} + \eta_{e1}v_{it2})$$
(5.7)

where the "e" subscript denotes division by $(1 + \sigma_{e_1}^2)^{1/2}$. This equation is the basis for CF estimation.

The assumptions used to obtain (5.7) would not hold for y_{it2} having discreteness or substantively limited range in its distribution. It is straightfoward to include powers of v_{it2} in (5.7) to allow greater flexibility. Following Wooldridge (2005) for the cross-sectional case, we could even model r_{it1} given v_{it2} as a heteroskedastic normal.

In deciding on estimators of the parameters in (5.7), we must note that the explanatory variables, while contemporaneous exogenous by construction, are not usually strictly exogenous. In particular, we allow y_{is2} to be correlated with v_{it1} for $t \neq s$. Therefore, generalized estimation equations, that assume strict exogeneity – see the notes on nonlinear panel data models – will not be consistent in general. We could apply method of moments procedures. A simple approach is to use use pooled nonlinear least squares or pooled quasi-MLE, using the Bernoulli log likelihood. (The latter fall under the rubric of generalized linear models.) Of course, we want to allow arbitrary serial dependence and $Var(y_{it1}|\mathbf{z}_i, y_{it2}, v_{it2})$ in obtaining inference, which means using a robust sandwich estimator.

The two step procedure is (i) Estimate the reduced form for y_{it2} (pooled across *t*, or maybe for each *t* separately; at a minimum, different time period intercepts should be allowed). Obtain the residuals, \hat{v}_{it2} for all (*i*, *t*) pairs. The estimate of δ_2 is the fixed effects estimate. (ii) Use the pooled probit QMLE of y_{it1} on y_{it2} , \mathbf{z}_{it1} , $\mathbf{\bar{z}}_i$, \hat{v}_{it2} to estimate α_{e1} , δ_{e1} , ψ_{e1} , $\boldsymbol{\xi}_{e1}$ and η_{e1} .

Because of the two-step procedure, the standard errors in the second stage should be adjusted for the first stage estimation. Alternatively, bootstrapping can be used by resampling the cross-sectional units. Conveniently, if $\eta_{e1} = 0$, the first stage estimation can be ignored, at least using first-order asymptotics. Consequently, a test for endogeneity of y_{it2} is easily obtained as an asymptotic *t* statistic on \hat{v}_{it2} ; it should be make robust to arbitrary serial correlation and misspecified variance. Adding first-stage residuals to test for endogeneity of an explanatory variables dates back to Hausman (1978). In a cross-sectional contexts, Rivers and Vuong (1988) suggested it for the probit model.

Estimates of average partial effects are based on the average structural function

$$E_{(c_{i1},v_{it1})}[\Phi(\alpha_1 y_{t2} + \mathbf{z}_{t1} \mathbf{\delta}_1 + c_{i1} + v_{it1})]$$
(5.8)

with respect to the elements of $(y_{t2}, \mathbf{z}_{t1})$. It can be shown that

$$E_{(\bar{\mathbf{z}}_{i},v_{i2})}[\Phi(\alpha_{e1}y_{t2} + \mathbf{z}_{t1}\boldsymbol{\delta}_{e1} + \psi_{e1} + \bar{\mathbf{z}}_{i}\boldsymbol{\xi}_{e1} + \eta_{e1}v_{it2})];$$
(5.9)

that is, we "integrate out" ($\bar{\mathbf{z}}_i, v_{it2}$) and then take derivatives or changes with respect to the elements of ($\mathbf{z}_{t1}y_{t2}$). Because we are not making a distributional assumption about ($\bar{\mathbf{z}}_i, v_{it2}$), we instead estimate the APEs by averaging out ($\bar{\mathbf{z}}_i, \hat{v}_{it2}$) across the sample, for a chosen *t*:

$$N^{-1} \sum_{i=1}^{N} \Phi(\hat{\alpha}_{e1} y_{t2} + \mathbf{z}_{t1} \hat{\boldsymbol{\delta}}_{e1} + \hat{\psi}_{e1} + \bar{\mathbf{z}}_{i} \hat{\boldsymbol{\xi}}_{e1} + \hat{\eta}_{e1} \hat{v}_{it2}).$$
(5.10)

APEs computed from (5.10) – typically with further averaging out across *t* and the values of y_{t2} and z_{t1} – can be compared directly with linear model estimates, particular fixed effects IV estimates.

We can use the approaches of Altonji and Matzkin (2005) and Blundell and Powell (2003) to make the analysis less parametric. For example, we might replace (5.4) with $y_{it2} = g_2(\mathbf{z}_{it}, \mathbf{\bar{z}}_i) + v_{it2}$ (or use functions in addition to $, \mathbf{\bar{z}}_i$, as in AM). Then, we could maintain

$$D(c_{i1} + v_{it1} | \mathbf{z}_i, v_{it2}) = D(c_{i1} + v_{it1} | \mathbf{\bar{z}}_i, v_{it2}).$$

In the first estimation step, \hat{v}_{it2} is obtained from a nonparametric or semiparametric pooled estimation. Then the function

$$E(y_{it1}|y_{it2},\mathbf{z}_i,v_{it2}) = h_1(\mathbf{x}_{it1}\boldsymbol{\beta}_1,\mathbf{\bar{z}}_i,v_{it2})$$

can be estimated in a second stage, with the first-stage residuals, \hat{v}_{it2} , inserted. Generally, identification holds because the v_{it2} varying over time separately from \mathbf{x}_{it1} due to time-varying exogenous instruments \mathbf{z}_{it2} . The inclusion of $\mathbf{\bar{z}}_i$ requires that we have at least one time-varying, strictly exogenous instrument for y_{it2} .

References

(To be added.)