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Nonlinear Panel Data Models
These notes summarize some recent, and perhaps not-so-recent, advances in the estimation

of nonlinear panel data models. Research in the last 10 to 15 years has branched off in two
directions. In one, the focus has been on parameter estimation, possibly only up to a common
scale factor, in semiparametric models with unobserved effects (that can be arbitrarily
correlated with covariates.) Another branch has focused on estimating partial effects when
restrictions are made on the distribution of heterogeneity conditional on the history of the
covariates. These notes attempt to lay out the pros and cons of each approach, paying
particular attention to the tradeoff in assumptions and the quantities that can be estimated.
1. Basic Issues and Quantities of Interest

Most microeconomic panel data sets are best characterized as having few time periods and
(relatively) many cross section observations. Therefore, most of the discussion in these notes
assumes T is fixed in the asymptotic analysis while N is increasing. We assume random sample
in the cross section, xit,yit : t  1, . . . ,T. Take yit to be a scalar for simplicity. If we are not
concerned about traditional (contemporaneous) endogeneity, then we are typically interested in

Dyit|xit,c i     (1.1)

or some feature of this distribution, such as Eyit|xit,c i, or a conditional median. In the case of
a mean, how do we summarize the partial effects? Let mtxt,c be the mean function. If xtj is

continuous, then

jxt,c ≡
∂mtxt,c
∂xtj

,     (1.2)

or look at discrete changes. How do we account for unobserved c i? If we want to estimate
magnitudes of effects, we need to know enough about the distribution of c i so that we can
insert meaningful values for c. For example, if c  Ec i, then we can compute the partial

effect at the average (PEA),

jxt,c.     (1.3)

Of course, we need to estimate the function mt and the mean of c i. If we know more about the
distribution of c i, we can insert different quantiles, for example, or a certain number of
standard deviations from the mean.

Alternatively, we can average the partial effects across the distribution of c i:
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APExt  Ecijxt,c i.     (1.4)

The difference between (1.3) and (1.4) can be nontrivial for nonlinear mean functions. The
definition in (1.4) dates back at least to Chamberlain (1982), and is closely related to the notion
of the average structural function (ASF) (Blundell and Powell (2003)). The ASF is defined as

ASFxt  Ecimtxt,c i.     (1.5)

Assuming the derivative passes through the expectation results in (1.5), the average partial
effect. Of course, computing discrete changes gives the same result always. APEs are directly
across models, and APEs in general nonlinear models are comparable to the estimated
coefficients in a standard linear model.

Semiparametric methods, which, by construction, are silent about the distribution of c i,
unconditionally or conditional on xi1, . . . ,xiT, cannot generally deliver estimates of average
partial (marginal) effects. Instead, an index structure is usually imposed so that parameters can
be consistently estimated. So, for example, with scalar heterogeneity we might have an index
model with additive heterogeneity:

mtxt,c  Gxt  c,     (1.6)

where, say, G is strictly increasing and continuously differentiable (and, in some cases, is
known, and in others, is not). Then

jxt,c  jgxt  c,     (1.7)

where g is the derivative of G. Then estimating j means we can estimate the sign of the

partial effect, and even the relative effects of any two continuous variables. But, even if G is
specified (the more common case), the magnitude of the effect evidently cannot be estimated
without making assumptions about the distribution of ci: the size of the scale factor for a
random draw i, gxt  ci, depends on ci. Without knowing something about the distribution
of ci we cannot generally locate gxt  ci.

Returning to the general case, Altonji and Matzkin (2005) focus on what they call the local
average response (LAR) as opposed to the APE or PAE. The LAR at xt for a continuous
variable xtj is

 ∂mtxt,c∂xtj
dHtc|xt,     (1.8)

where Htc|xt denotes the cdf of Dc i|xit  xt. This is a “local” partial effect because it
averages out the heterogeneity for the slice of the population given by the vector xt. The APE,
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which by comparison could be called a “global average response,” averages out over the entire
distribution of c i. See also Florens, Heckman, Meghir, and Vytlacil (2004).

It is important to see that the definitions of partial effects does not depend on the nature of
the variables in xt (except for whether it makes sense to use the calculus approximation or use
changes). In particular, xt can include lagged dependent variables and lags of other variables,
which may or may not be strictly exogenous. Unfortunately, we cannot identify the APEs, or
even relative effects in index models, without some assumptions.
2. Exogeneity Assumptions on the Covariates

Ideally, we would only have to specify a model for Dyit|xit,c i or some feature.
Unfortunately, it is well known that specifying a full parametric model is not sufficient for
identifying either the parameters of the model or the partial effects defined in Section 1. In this
section, we consider two useful exogeneity assumptions on the covariates.

It is easiest to deal with estimation under a strict exogeneity assumption. The most useful
definition of strict exogeneity for nonlinear panel data models is

Dyit|xi1, . . . ,xiT,c i  Dyit|xit,c i,     (2.1)

which means that xir, r ≠ t, does not appear in the conditional distribution of yit once xit and c i
have been counted for. Chamberlain (1984) labeled (2.1) strict exogeneity conditional on the
unobserved (or latent) effects c i. Sometimes, a conditional mean version is sufficient:

Eyit|xi1, . . . ,xiT,c i  Eyit|xit,c i,     (2.2)

which we already saw for linear models. (In other cases a condition stated in terms of
conditional medians is more convenient.) Of course, either version of the assumption rules out
lagged dependent variables, but also other situations where there may be feedback from
idiosyncratic changes in yit to future movements in xir, r  t. But it is the assumption
underlying the most common estimation methods for nonlinear models.

More natural is a sequential exogeneity assumption (conditional on the unobserved effects)
assumption, which we can state generally as

Dyit|xi1, . . . ,xit,c i  Dyit|xit,c i     (2.3)

or, sometimes, in terms of specific features of the distribution. Assumption (2.3) allows for
lagged dependent variables and does not restrict feedback. Unfortunately, it is much more
difficult to allow, especially in nonlinear models.

Neither (2.2) nor (2.3) allows for contemporaneous endogeneity of one or more elements of
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xit, where, say, xitj is correlated with unobserved, time-varying unobservables that affect yit, or

where xitj is simultaneously determined along with yit. This will be covered in later notes on

control function methods.
3. Conditional Independence Assumption

In some cases – certainly traditionally – a conditional independence assumption is
imposed. We can write the condition generally as

Dyi1, . . . ,yiT|xi,c i 
t1

T

Dyit|xi,c i.     (3.1)

This assumption is only useful in the context of the strict exogeneity assumption (2.1), in
which case we can write

Dyi1, . . . ,yiT|xi,c i 
t1

T

Dyit|xit,c i.     (3.2)

In a parametric context, the conditional independence assumption therefore reduces our task to
specifying a model for Dyit|xit,c i, and then determining how to treat the unobserved
heterogeneity, c i. In random effects and CRE frameworks, conditional independence plays a
critical role in being able to estimate the parameters in distribution the of c i. We could get by
with less restrictive assumptions by parameterizing the dependence, but that increases
computational burden. As it turns out, conditional independence plays no role in estimating
APEs for a broad class of models. (That is, we do not need to place restrictions on
Dyi1, . . . ,yiT|xi,c i.  Before we can study estimation, we must discuss the critical issue of the
dependence between c i and xi.
4. Assumptions about the Unobserved Heterogeneity

The modern approach to panel data analysis with micro data treats the unobserved
heterogeneity as random draws along with the observed data, and that is the view taken here.
Nevertheless, there are still reasons one might treat them as parameters to estimate, and we
allow for that in our discussion.

Random Effects
For general nonlinear models, what we call the “random effects” assumption is

independence between c i and xi  xi1, . . . ,xiT:

Dc i|xi1, . . . ,xiT  Dc i.     (4.1)
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If we combine this assumption with a model for mtxt,c, then the APEs are actually
nonparametrically identified. (And, in fact, we do not need to assume strict or sequential
exogeneity to use a pooled estimation method, or to use just a single time period.) In fact, if
Eyit|xit,c i  mtxit,c i and Dc i|xit  Dc i, then the APEs are obtained from

rtxt ≡ Eyit|xit  xt.     (4.2)

(The argument is a simple application of the law of interated expectations; it is discussed in
detail in Wooldridge (2005a).) In principle, Eyit|xit can be estimated nonparametrically, and
we only need a single time period to identify the partial effects for that time period.

In some leading cases (for example random effects probit and Tobit with heterogeneity
normally distributed), if we want to obtain partial effects for different values of c, we must
assume more: the strict exogeneity assumption (2.1), the conditional independence assumption
(3.1), and the random effects assumption (4.1) with a parametric distribution for Dc i are
typically sufficient. We postpone this discussion because it takes us into the realm of
specifying parametric models.

Correlated Random Effects
A “correlated random effects” framework allows dependence between c i and xi, but the

dependence in restricted in some way. In a parametric setting, we specify a distribution for
Dc i|xi1, . . . ,xiT, as in Mundlak (1978), Chamberlain (1982), and many subsequent authors.
For many models, including probit and Tobit, one can allow Dc i|xi1, . . . ,xiT to depend in a
“nonexchangeable” manner on the time series of the covariates; Chamberlain’s random effects
probit model does this. But the distributional assumptions that lead to simple estimation –
namely, homoskedastic normal with a linear conditional mean — are restrictive. But it is aslo
possible to assume

Dci|xi  Dci|x̄i     (4.3)

without specifying Dci|x̄i or restricting any feature of this distribution. We will see in the
next section that (4.3) is very powerful.

We can go further. For example, suppose that we think the heterogeneity c i is correlated
with features of the covariates other than just the time average. Altonji and Matzkin (2005)
allow for x̄i in equation (4.3) to be replaced by other functions of xit : t  1, . . . ,T, such as
sample variances and covariance. These are examples of “exchangeable” functions of
xit : t  1, . . . ,T – that is, statistics whose value is the same regardless of the ordering of the
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xit. Non-exchangeable functions can be used, too. For example, we might think that c i is
correlated with individual-specific trends, and so we obtain wi as the intercept and slope from
the unit-specific regressions xit on 1, t, t  1, . . . ,T (for T ≥ 3); we can also add the error
variance from this individual specific regression if we have sufficient time periods. Then, the
condition becomes

Dci|xi  Dci|wi.     (4.4)

Practically, we need to specify wi and then establish that there is enough variation in
xit : t  1, . . . ,T separate from wi; this will be clear in the next section.

Fixed Effects
Unfortunately, the label “fixed effects” is used in different ways by different researchers

(and, sometimes, by the same researcher). The traditional view was that a fixed effects
framework meant c i, i  1, . . . ,N were treated as parameters to estimate. This view is still
around, and, when researchers say they estimated a nonlinear panel data model by “fixed
effects,” they sometimes mean the c i were treated as parameters to estimate along with other
parameters (whose dimension does not change with N). As is well known, except in special
cases, estimation of the c i generally introduces an “incidental parameters” problem. (More on
this later when we discuss estimation methods, and partial effects.) Subject to computational
feasilibity, the approach that treats the c i as parameters is widely applicable.

The “fixed effects” label can mean that Dc i|xi is unrestricted. Even in that case, there are
different approaches to estimation of parameters. One is to specify a joint distribution
Dyi1, . . . ,yit|xi,c i such that a sufficient statistic, say si, can be found such that

Dyi1, . . . ,yit|xi,c i, si  Dyi1, . . . ,yit|xi, si,     (4.5)

and where the latter distribution still depends on the parameters of interest in a way that
identifies them. In most cases, the conditional independence assumption (3.1) is maintained,
although one CMLE is known to have robustness properties: the so-called “fixed effects”
Poisson estimator. We cover that later on.
5. Nonparametric Identification of Average Partial and Local
Average Effects

Before considering identification and estimation of parameters in parametric models, it is
useful to ask which quantities, if any, are identified without imposing parametric assumptions.
Not surprisingly, there are no known results on nonparametric identificiation of partial effects
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evaluated at specific values of c, such as c – except, of course, when the partial effects do not

depend on c. Interestingly, identification can fail even under a full set of strong parametric
assumptions. For example, in the probit model

Py  1|x,c  x  c,     (5.1)

where x is 1  K an includes unity, the partial effect for a continuous variable xj is simply

jx  c. The partial effect at the mean of c is simply jx. Suppose we assume that c|x

~Normal0,c2. Then it is easy to show that

Py  1|x  x/1  c21/2,     (5.2)

which means that only the scaled parameter vector c ≡ /1  c21/2 is identified. Therefore,

jx, is evidently unidentified. (The fact that probit of y on x estimates c has been called

the “attenuation bias” that results from omitted variables in the context of probit, even when
the omitted variable is independent of the covariates and normally distributed. As mentioned
earlier more generally, the average partial effects are obtained directly from Py  1|x, and, in
fact, are given by cjxc. As discussed in Wooldridge (2002, Chapter 15), cjxc can be

larger or smaller in magnitude than the PEA jx: |cj|≤ |j| but xc ≥ x. 

A related example is due to Hahn (2001), and is related to the nonidentification restuls of
Chamberlain (1993). Suppose that xit is a binary indicator (for example, a policy variable).
Consider the unobserved effects probit model

Pyit  1|xi,ci  xit  ci,     (5.3)

As discussed by Hahn,  is not known to be identified in this model, even under conditional
serial independence assumption and the random effects assumption Dci|xi  Dci. But the
average partial effect, which in this case is an average treatment effect, is simply
 ≡ E  ci − Eci. By the general result cited earlier,  is consistently estimated (in
fact, unbiasedly estimated) by using a difference of means for the treated and untreated groups,
for either time period. In fact, as discussed in Wooldridge (2005a), identification of the APE
holds if we replace  with an unknown function G and allow Dci|xi  Dci|x̄i. But the
parameters are still not identified.

To summarize: the APE is identified for any function G whether or not the conditional
serial independence holds, even if we add separate year intercepts. But  is not identified under
the strongest set of assumptions. This simple example suggests that perhaps our focus on
parameters is wrong-headed.
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We can establish identification of average partial effects much more generally. Assume
only that the strict exogeneity assumption (2.1) holds along with Dci|xi  Dci|x̄i. These
two assumptions are sufficient to identify the APEs. To see why, note that the average
structural function at time t can be written as

ASFtxt  Ecimtxt,c i  E x̄iEmtxt,c i|x̄i ≡ E x̄irtxt, x̄i,     (5.4)

where rtxt, x̄i ≡ Ertxt,c i|x̄i. It follows that, given an estimator r̂t,  of the function
rt, , the ASF can be estimated as

ASFtxt ≡ N−1∑
i1

N

r̂txt, x̄i,     (5.5)

and then we can take derivatives or changes with respect to the entries in xt. Notice that (5.4)
holds without the strict exogeneity assumption (2.1) or the assumption Dci|xi  Dci|x̄i.
However, these assumptions come into play in our ability to estimate rt, . If we combine
(21) and (4.3) we have

Eyit|xi  EEyit|xi,c i|xi  Emtxit,c i|xi  mtxit,cdFc|xi
 mtxit,cdFc|x̄i  rtxit, x̄i,     (5.6)

where Fc|xi denotes the cdf of Dc i|xi (which can be a discrete, continuous, or mixed
distribution), the second equality follows from (2.1), the fourth equality follows from
assumption (4.3), and the last equality folllows from the definition of rt,  Of course,
because Eyit|xi depends only on xit, x̄i, we must have

Eyit|xit, x̄i  rtxit, x̄i.     (5.7)

Further, xit : t  1, . . . ,T is assumed to have time variation, and so xit and x̄i can be used as
separate regressors even in a fully nonparametric setting.

Altonji and Matskin (2005).use this idea more generally, and focus on estimating the local
average response. Wooldridge (2005a) used Dc i|xi  Dc i|x̄i generally in the case xit is
discrete, in which case a full nonparametric analysis is easy. When

Dc i|xi  Dc i|wi     (5.8)

for wi a function of xi, Altonji and Matzkin (2005) show that the LAR can be obtained as

 ∂rtxt,w∂xtj
dKtw|xt,     (5.9)
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where rxt,w  Eyit|xit  xt,wi  w and Ktw|xt is the cdf of Dwi|xit  xt. Altonji and
Matskin demonstrate how to estimate the LAR based on nonparametric estimation of
Eyit|xit,wi followed by “local” averaging, that is, averaging ∂ryit|xt,wi/∂xtj over

observations i with xit “close” to xt.
This analysis demonstrates that APEs are nonparametrically identified under the

conditional mean version of strict exogeneity, (2.1), and (5.8), at least for time-varying
covariates if wi is restricted in some way. In fact, we can identify the APEs for a single time
period with just one year of data on y. We only need to obtain x̄i and, in effect, include it as a
control. Of course, efficiency would be gained by assuming some stationarity across t and
using a pooled method.
6. Dynamic Models

General models with only sequentially exogenous variables are difficult to deal with.
Arellano and Carrasco (2003) consider probit models. Wooldridge (2000) suggests a strategy
the requires modeling the dynamic distribution of the variables that are not strictly exogenous.
Much more is known about models with lagged dependent variables and otherwise strictly
exogenous variables. So, we start with a model for

Dyit|zit,yi,t−1, . . . ,zi1,yi0,c i, t  1, . . . ,T,     (6.1)

which we assume also is Dyit|zi,yi,t−1, . . . ,yi1,yi0,c i where zi is the entire history

zit : t  1, . . . ,T. This is the sense in which the zit are strictly exogenous.
Suppose this model depends only on zit,yi,t−1,c i, so ftyt|zt,yt−1,c;. The joint density of

yi1, . . . ,yiT given yi0,zi,c i is


t1

T

ftyt|zt,yt−1,c;.     (6.2)

The problem with using this for estimation is the presence of c i along with the initial condition,
yi0. Approaches: (i) Treat the c i as parameters to estimate (incidental parameters problem,

although recent research has attempted to reduce the asymptotic bias in the partial effects). (ii)
Try to estimate the parameters without specifying conditional or unconditional distributions for
ci. (Available in some special cases covered below, but other restrictions are needed. And,
generally, cannot estimate partial effects.). (iii) Find or, more practically, approximate
Dyi0|c i, zi and then model Dc i|zi. After integrating out ci we obtain the density for

Dyi0,yi1, . . . ,yiT|zi and we can use MLE (conditional on zi), (iv) Model Dc i|yi0,zi. After
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integrating out ci we obtain the density for Dyi1, . . . ,yiT|yi0,zi, and we can use MLE

(conditional on yi0,zi). As shown by Wooldridge (2005b), in some leading cases – probit,

ordered probit, Tobit, Poisson regression – there is a density hc|y0,z that mixes with the

density fy1, . . . ,yT|y0,z,c to produce a log-likelihood that is in a common family and carried

out by standard software.
If mtxt,c, is the mean function Eyt|xt,c for a scalar yt, then average partial effects are

easy to obtain. The average structural function is

ASFxt  Ecimtxt,c i,  E mtxt,c,hc|yi0,zi,dc |yi0,zi .     (6.3)

The term inside the brackets, say rtxt,yi0, zi,, is available, at least in principle, because
mt and h have been specified. Often, they have simple forms, in fact. Generally, it can be
simulated. In any case, ASFxt, is consistently estimated by

ASFxt  N−1∑
t1

T

rtxt,yi0,zi, ̂, ̂.

Partial derivatives and differences with respect to elements of xt (which, remember, can
include yt−1) can be computed. With large N and small T, the panel data bootstrap can be used
for standard errors and inference.
7. Applications to Specific Models

We now turn to some common parametric models and highlight the difference between
estimation partial effects at different values of the heterogeneity and estimating average partial
effects. An analysis of Tobit models follows in a very similar way to those in the following
two sections. See Wooldridge (2002, Chapter 16) and Honoré and Hu (2004).
7.1 Binary and “Fractional” Response Models

We start with the standard specification for the unobserved effects (UE) probit model,
which is

Pyit  1|xit,ci  xit  ci, t  1, . . . ,T,     (7.1)

where xit does not contain an overall intercept but would usually include time dummies. We
cannot identify  or the APEs without further assumptions. The traditional RE probit models
imposes a strong set of assumptions: strict exogeneity, conditional serial independence, and
independence between ci and xi with ci ~Normalc,c2. Under these assumptions,  and the
parameters in the distribution of ci are identified and are consistently estimated by full MLE
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(conditional on xi.
We can relax independence between ci and xi using the Chamberlain-Mundlak device

under conditional normality:

ci    x̄i  ai,ai|xi ~Normal0,a2,     (7.2)

where the time average is often used to save on degrees of freedom. We can relax (7.2) and
allow Chamberlain’s (1980) more flexible device:

ci    xi  ai    xi11 . . .xiTT  ai     (7.3)

Even when the r seem to be very different, the Mundlak restriction can deliver similar

estimates of the other parameters and the APEs. (In the linear case, they both produce the usual
FE estimator of . 

If we still assume conditional serial independence then all parameters are identified. We

can estimate the mean of ci as ̂c  ̂  N−1∑ i1
N x̄i ̂ and the variance as

̂c2 ≡ ̂
′ N−1∑ i1

N x̄i′x̄i ̂  ̂a2. Of course, ci is not generally normally distributed unless x̄i is.

The approximation might get better as T gets large. In any case, we can plug in values of c that
are a certain number of estimated standard deviations from ̂c, say ̂c  ̂c.

The APEs are identified from the ASF, which is consistently estimated as

ASFxt  N−1∑
i1

N

xt̂a  ̂a  x̄îa     (7.4)

where, for example, ̂a  ̂/1  ̂a21/2. The derivatives or changes of ASFxt with respect to

elements of xt can be compared with fixed effects estimates from a linear model. Often, if we
also average out across xit, the linear FE estimates are similar to the averaged effects.

As we discussed generally in Section 5, the APEs are defined without the conditional serial

independence assumption. Without Dyi1, . . . ,yiT|xi,ci 
t1

T

Dyit|xit,ci, we can still estimate

the scaled parameters because

Pyit  1|xi  xita  a  x̄ia,     (7.5)

and so pooled probit consistently estimates the scaled parametes. (Time dummies have been
supressed for simplicity.) Now we have direct estimates of a, a, and a, and we insert those

directly into (7.4).
Using pooled probit can be inefficient for estimating the scaled parameters, whereas the
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full MLE is efficient but not (evidently) robust to violation of the conditional serial
independence assumption. It is possible to estimate the parameters more efficiently than pooled
probit that is still consistent under the same set of assumptions. One possibility is minimum
distance estimation. That is, estimate a separate models for each t, and then impose the
restrictions using minimum distance methods. (This can be done with or without the Mundlak
device.)

A different approach is to apply the so called “generalized estimating equations” (GEE)
approach. Briefly, GEE applied to panel data is essentially weighted multivariate nonlinear
least squares (WMNLS) with explicit recognition that the weighting matrix might not be the
inverse of the conditional variance matrix. In most nonlinear panel data models, obtaining the
actual matrix Varyi|xi is difficult, if not impossible, because integrating out the heterogeneity

does not deliver a closed form. The GEE approach uses Varyit|xi implied by the specific
distribution – in the probit case, we have the correct conditional variances,

Varyit|xi  xita  a  x̄ia1 − xita  a  x̄ia ≡ vit.     (7.6)

The “working” correlation matrix oftenusually specified as “exchangeable,”

Correit,eis|xi “  ”,     (7.7)

where eit  yit − xita  a  x̄iavit
1/2 is the standardized error. Or, each pair t, s is

allowed to have its own correlation but which is assumed to be independent of xi
(“unstructured”). The conditional correlation Correit,eis|xi is not constant, but that is the
working assumption. The hope is to improve efficiency over the pooled probit estimator while
maintaining the robustness of the pooled estimator. (The full RE probit estimator is not robust
to serial dependence.) A robust sandwich matrix is easily computed provided the conditional
mean function (in this case, response probability) is correctly specified.

Because the Bernoulli log-likelihood is in the linear exponential family (LEF), exactly the
same methods can be applied if 0 ≤ yit ≤ 1 – that is, yit is a “fractional” response – but where
the model is for the conditional mean: Eyit|xit,ci  xit  ci. Pooled “probit” or minimum
distance estimation or GEE can be used. Now, however, we must make inference robust to
Varyit|xit, x̄i not having the probit form. (There are cases where Varyit|xit, x̄i is proportional
to (7.6), and so it still makes sense to use the probit quasi-log-likelihood. Pooled nonlinear
regression is another possibility or weighted multivariate nonlinear regression are also possible
and a special case of GEE.)
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A more radical suggestion, but in the spirit of Altonji and Matzkin (2005) and Wooldridge
(2005a), is to just use a flexible model for Eyit|xit, x̄idirectly. For example, if yit is binary, or
a fractional response, 0 ≤ yit ≤ 1, we might just specify a flexible parametric model, such as

Eyit|xit, x̄i  t  xit  x̄i  x̄i ⊗ x̄i  xit ⊗ x̄i,     (7.8)

or the “heteroskedastic probit” model

Eyit|xit, x̄i  t  xit  x̄iexp−x̄i.     (7.9)

If we write either of these functions as rtxt, x̄ then the average structural function is estimated

as ASFtxt ≡ N−1∑ i1
N r̂txt, x̄i, where the “^” indicates that we have substituted in the

parameter estimates. We can let all parameters depend on t, or we can estimate the parameters
separately for each t and then use minimum distance estimation to impose the parameter
restrictions. The justification for using, say, (7.8) is that we are interested in the average partial
effects, and how parameters appear is really not the issue. Even though (7.8) cannot be derived
from Eyit|xit,ci  xit  ci or any other standard model, there is nothing sacred about this
formulation. In fact, it is fairly simplistic. We can view (7.8) as the approximation to the true
Eyit|xit, x̄i obtained after integrating ci out of the unknown function mxt,ci. (We could
formalize this process by using series estimation, as in Newey (1988), where the number of
terms is allowed to grow with N.) This is the same argument used by, say, Angrist (2001) in
justifying linear models for limited dependent variables when the focus on primarily on
average effects.

The argument is essentially unchanged if we replace x̄i with other statistics wi. For
example, we might run, for each i, the regression xit on 1, t, t  1, . . . ,T and use the intercept
and slope (on the time trend) as the elements of wi. Or, we can use sample variances and
covariances for each i, along with the sample mean. Or, we can use initial values and average
growth rates. The key condition is Dc i|xi  Dc i|wi, and then we need sufficient variation
in xit : t  1, . . . ,T not explained by wi for identification. (Naturally, as we expand wi, the
number of time periods required generally increases.)

Of course, once we just view (7.8) as an approximation, we can are justified in using the
logistic function, say

Eyit|xit, x̄i  t  xit  x̄i  x̄i ⊗ x̄i  xit ⊗ x̄i,     (7.10)

where z  expz/1  expz, which, again, can be applied to binary or fractional
responses. The focus on partial effects that average out the heterogeneity can be liberating in
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that it means the step of specifying Eyit|xit,c i is largely superfluous, and, in fact, can get in
the way of pursuing a suitably flexible analysis. On the other hand, if we start with, say, a
“structural” model such as Pyi1  1|xi,c i  ai  xitbi, which is a heterogeneous index
model, then we cannot derive equations such as (7.8) or (7.9), even under the strong
assumption that c i is independent of xi and multivariate normal. If we imposed the
Chamberlain device for the elements of c i we can get expressions “close” to a combination of
(7.8) and (7.9). Whether one is willing to simply estimate relative simple models such as (7.8)
in order to estimate APEs depends on one’s taste for bypassing more traditional formulations.

If we start with the logit formulation

Pyit  1|xit,ci  xit  ci,     (7.11)

then we can estimate the parameters,  without restricting Dci|xi in any way, but we must
add the conditional independence assumption. (No one has been able to show that, unlike in
the linear model, or the Poisson model covered below, that the MLE that conditions on the

number of successes ni  ∑ t1
T yit is robust to serial dependence. It appears not to be. Plus, the

binary nature of yit appears to be critical, so the conditional MLE cannot be applied to
fractional responses even under serial independence.) Because we have not restricted Dci|xi
in any way, it appears that we cannot estimate average partial effects. As commonly happens in
nonlinear models, if we relax assumptions about the distribution of heterogeneity, we lose the
ability to estimate partial effects. We can estimate the effects of the covariates on the log-odds
ratio, and relative partial effects of continuous variables. But for partial effects themselves, we
do not have sensible values to plug in for c, and we cannot average across its distribution.

The following table summarizes the features of various approaches to estimating binary
response unobserved effects models.
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Model, Estimation Method Pyit 1|xit,ci Restricts Dci |xi? Idiosyncratic Serial PEs APEs?

Bounded in (0,1)? Dependence? at Eci?

RE Probit, MLE Yes Yes (indep, normal) No Yes Yes

RE Probit, Pooled MLE Yes Yes (indep, normal) Yes No Yes

RE Probit, GEE Yes Yes (indep, normal) Yes No Yes

CRE Probit, MLE Yes Yes (lin. mean, normal) No Yes Yes

CRE Probit, Pooled MLE Yes Yes (lin. mean, normal) Yes No Yes

CRE Probit, GEE Yes Yes (lin. mean, normal) Yes No Yes

LPM, Within No No Yes Yes Yes

FE Logit, MLE Yes No No No No

As an example, we apply several of the methods to women’s labor force participation data,
used by Chay and Hyslop (2001), where the data are for five time periods spaced four months
apart. The results are summarized in the following table. The standard errors for the APEs
were obtained with 500 bootstrap replications. The time-varying explanatory variables are log
of husband’s income and number of children, along with a full set of time period dummies.
(The time-constant variables race, education, and age are also included in columns (2), (3), and
(4).)

15



Imbens/Wooldridge, Lecture Notes 4, Summer ’07

(1) (2) (3) (4) (5)

Model Linear Probit CRE Probit CRE Probit FE Logit

Estimation Method Fixed Effects Pooled MLE Pooled MLE MLE MLE

Coefficient Coefficient APE Coefficient APE Coefficient APE Coefficient

kids −. 0389 −. 199 −. 0660 −. 117 −. 0389 −. 317 −. 0403 −. 644

. 0092 . 015 . 0048 . 027 . 0085 . 062 . 0104 . 125

lhinc −. 0089 −. 211 −. 0701 −. 029 −. 0095 −. 078 −. 0099 −. 184

. 0046 . 024 . 0079 (. 014 . 0048 . 041 . 0055 . 083

kids — — — −. 086 — −. 210 — —

— — — . 031 — . 071 — —

lhinc — — — −. 250 — −. 646 — —

— — — . 035 — . 079 — —

1  ̂a
2−1/2 — — — . 387 —

Log Likelihood — −16, 556. 67 −16, 516. 44 −8, 990. 09 −2, 003. 42

Number of Women 5,663 5,663 5,663 5,663 1,055

Generally, CMLE approaches are fragile to changes in the specification. For example, a
natural extension is

Pyit  1|xit,c i  ai  xitbi,     (7.12)

where bi is a vector of heterogeneous slopes with  ≡ Ebi; let  ≡ Eai. This extension of
the standard unobserved effects logit model raises several issues. First, what do we want to
estimate? Perhaps the partial effects at the mean values of the heterogeneity. But the APEs, or
local average effects, are probably of more interest.

Nothing seems to be known about what the logit CMLE would estimate if applied to
(7.12), where we assume   bi. On the other hand, if, say, Dc i|xi  Dc i|x̄i, a flexible

binary response model with covariates xit, x̄i (and allowing sufficiently for changes over
time) identifies the APEs – without the conditional serial independence assumption. The same
is true of the extension to time-varying factor loads, Pyit  1|xit,c i  t  xit   tci.

There are methods that allow estimation, up to scale, of the coefficients without even
specifying the distribution of uit in

yit  1xit  ci  uit ≥ 0.     (7.13)

under strict exogeneity.conditional on ci. Arellano and Honoré (2001) survey methods,

16



Imbens/Wooldridge, Lecture Notes 4, Summer ’07

including variations on Manski’s maximum score estimator.
Estimation of parameters and APEs is much more difficult even in simple dynamic models.

Consider

Pyit  1|zi,yi,t−1, . . . ,yi0,ci  Pyit  1|zit,yi,t−1,ci, t  1, . . . ,T,

which combines correct dynamic specification with strict exogeneity of zit. For a dynamic
probit model

Pyit  1|zit,yi,t−1,ci  zit  yi,t−1  ci.     (7.14)

Treating the ci as parameters to estimate causes inconsistency in  and  (although there is
recent work by Woutersen and Fernández-Val that shows how to make the asymptotic bias of
order 1/T2; see the next section). A simple analysis is available if we specify

ci|zi,yi0  Normal  0yi0  zi,a2     (7.15)

Then

Pyit  1|zi,yi,t−1, . . . ,yi0,ai  zit  yi,t−1    0yi0  zi  ai,     (7.16)

where ai ≡ ci −  − 0yi0 − zi. Because ai is independent of yi0,zi, it turns out we can use
standard random effects probit software, with explanatory variables 1,zit,yi,t−1,yi0,zi in time
period t. Easily get the average partial effects, too:

ASFzt,yt−1  N−1∑
i1

N

zt̂a  ̂ayt−1  ̂a  ̂a0yi0  zîa,     (7.17)

and take differences or derivatives with respect to elements of zt,yt−1. As before, the
coefficients are multiplied by 1  ̂a2−1/2. Of course, both the structural model and model for
Dci|yi0,zi can be made more flexible (such as including interactions, or letting Varci|zi,yi0
be heteroskedastic).

We apply this method to the Chay and Hyslop data and estimate a model for
Plfpit  1|kidsit, lhincit, lfpi,t−1,ci, where one lag of labor force participation is assumed to
suffice for the dynamics and kidsit, lhincit : t  1, . . . ,T is assumed to be strictly
exogenous conditional on ci. Also, we include the time-constant variables educ, black, age,
and age2 and a full set of time-period dummies. (We start with five periods and lose one with
the lag. Therefore, we estimate the model using four years of data.) We include among the
regressors the initial value, lfpi0, kidsi1 through kidsi4, and lhinci1 through lhinci4. Estimating
the model by RE probit gives ̂  1.541 se  . 067, and so, even after controlling for
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unobserved heterogeneity, there is strong evidence of state dependence. But to obtain the size
of the effect, we compute the APE for lfpt−1. The calculation involves averaging

zit̂a  ̂a  ̂a0yi0  zîa − zit̂a  ̂a0yi0  zîa across all t and i; we must be sure to

scale the original coefficients by 1  ̂a2−1/2, where, in this application, ̂a2  1.103. The APE
estimated from this method is about .259. In other words, averaged across all women and all
time periods, the probability of being in the labor force at time t is about .26 higher if the
women was in the labor force at time t − 1 than if she was not. This estimate controls for
unobserved heterogeneity, number of young children, husband’s income, and the woman’s
education, race, and age.

It is instructive to compare the APE with the estimate of a dynamic probit model that
ignores ci. In this case, we just use pooled probit of lfpit on
1,kidsit, lhincit, lfpi,t−1educi,blacki,agei, and agei2 and include a full set of period dummies.
The coefficient on lfpi,t−1 is 2.876 (se  . 027, which is much higher than in the dynamic RE
probit model. More importantly, the APE for state dependence is about . 837, which is much
higher than when heterogeneity is controlled for. Therefore, in this example, much of the
persistence in labor force participation of married women is accounted for by the unobserved
heterogeneity. There is still some state dependence, but its value is much smaller than a simple
dynamic probit indicates.

Arellano and Carrasco (2003) use a different approach to estimate the parameters and
APEs in dynamic binary response models with only sequentially exogenous variables. Thus,
their method applies to models with lagged dependent variables, but also other models where
there made be feedback from past shocks to future covariates. (Their assumptions essentially
impose serial conditional serial independence.) Rather than impose an assumption such as
(7.15), they use a different approximation. Let vit  ci  uit be the composed error in
yit  1xit  ci  uit ≥ 0. Then, in the context of a probit model, they assume

vit|wit ~NormalEci|wit,t2     (7.18)

where wit  xit,yi,t−1,xi,t−1, . . . ,yi1xi1. The mean Eci|wit is unrestricted (although, of course,
they are linked across time by interacted expectations because wit ⊂ wi,t1, but the shape of
the distribution is assumed to be the same across t. Arellano and Carrasco discuss identification
and estimation, and extensions to models with time-varying factor loads.

Honoré and Kyriazidou (2000) extend an idea of Chamberlain’s and show how to estimate
 and  in a logit model without distributional assumptions for ci. They find conditional
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probabilities that do not depend on ci but still depend on  and . However, in the case with
four time periods, t  0,1,2, and 3, the conditioning that removes ci requires zi2  zi3. HK
show how to use a local version of this condition to consistenty estimate the parameters. The
estimator is also asymptotically normal, but converges more slowly than the usual N -rate.

The condition that zi2 − zi3 have a distribution with support around zero rules out aggregate
year dummies or even linear time trends. Plus, using only observations with zi2 − zi3 in a
neighborhood of zero results in much lost data. Finally, estimates of partial effects or average
partial effects are not available.

While semiparametric approaches can be valuable to comparing parameter estimates with
more parametric approaches, such comparisons have limitations. For example, the coefficients
on yt−1 in the dynamic logit model and the dynamic probit model are comparable only in sign;
we cannot take the derivative with respect to yt−1 because it is discrete. Because we do not
know where the evaluate the partial effects – that is, the values of c to plug in, or average out
across the distribution of ci, we cannot compare the magnitudes with CRC approaches. We can
compare the relative effects on the continuous elements in zt based on partial derivatives. But
even here, if we find a difference between semiparametric and parametric methods, is it
because aggregate time effects were excluded in the semiparametric estimation or because the
model of Dci|yi0,zi was misspecified? Currently, we have no good ways of deciding.
(Recently, Li and Zheng (2006) use Bayesian methods to estimate a dynamic Tobit model with
unobserved heterogeneity, where they distribution of unosberved heterogeneity is an infinite
mixture of normals. They find that all of the average partial effects are very similar to those
obtained from the much simpler specification in (7.15).)

Honoré and Lewbel (2002) show how to estimate  in the model

yit  1vit  xit  ci  uit ≥ 0     (7.19)

without distributional assumptions on ci  uit. The special continuous explanatory variable vit,
which need not be time varying, is assumed to appear in the equation (and its coefficient is
normalized to one). More importantly, vit is assumed to satisfy
Dci  uit|vit,xit, zi  Dci  uit|xit, zi, which is a conditional independence assumption. The
vector zi is assumed to be independent of uit in all time periods. (So, if two time periods are
used, zi could be functions of variables determined prior to the earliest time period.) The most
likely scenario is when vit is randomized and therefore independent of xit, zi,eit, where
eit  ci  uit. It seems unlikely to hold if vit is related to past outcomes on yit. The estimator
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derived by Honoré and Lewbel is N -asymptotically normal, and fairly easy to compute; it
requires estimation of the density of vit given xit, ziand then a simple IV estimation.

Honoré and Tamer (2006) have recently shown how to obtain bounds on parameters and
APEs in dynamic models, including the dynamic probit model; these are covered in the notes
on partial identification.
7.2 Count and Other Multiplicative Models

Several options are available for models with conditional means multiplicative in the
heterogeneity. The most common is

Eyit|xit,ci  ci expxit     (7.20)

where ci ≥ 0 is the unobserved effect and xit would incude a full set of year dummies in most
cases. First consider estimation under strict exogeneity (conditional on ci):

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci.     (7.21)

If we add independence between ci and xi – a random effects approach – then, using Eci  1
as a normalization,

Eyit|xi  expxit,     (7.22)

and various estimation methods can be used to account for the serial dependence in yit if
only xi is conditioned on. (Serial correlation is certainly present because of ci, but it could be
present due to idiosyncratic shocks, too.) Regardless of the actual distribution of yit, or even its
nature – other than yit ≥ 0 – the pooled Poisson quasi-MLE is consistent for  under (7.22) but
likely very inefficient; robust inference is straightforward with small T and large N.

Random effects Poisson requires that Dyit|xi,ci has a Poisson distribution with mean
(7.20), and maintains the conditional independence assumption,

Dyi1, . . . ,yiT|xi,ci 
t1

T

Dyit|xit,ci,

along with a specific distribution for ci – usually a Gamma distribution with unit mean.
Unfortunately, like RE probit, the full MLE has no known robustness properties. The Poisson
distribution needs to hold along with the other assumptions. A generalized estimating approach
is available, too. If the Poisson quasi-likelihood is used, the GEE estimator is fully robust
provided the mean is correctly specified. One can use an exchangeable, or at least constant,
working correlation matrix. See Wooldridge (2002, Chapter 19).

A CRE model can be allowed by writing ci  exp  x̄iai where ai is independent of xi
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with unit mean. Then

Eyit|xi  exp  xit  x̄i     (7.23)

and now the same methods described above can be applied but with x̄i added as regressors.
This approach identifies average partial effects. In fact, we could use Altonji and Matzkin
(2005) and specify Eci|xi  hx̄i (say), and then estimate the semiparametric model
Eyit|xi  hx̄iexpxit. Other features of the series xit : t  1, . . . ,T, such as
individual-specific trends or sample variances, can be added to h.

An important estimator that can be used under just

Eyit|xi,ci  ci expxit     (7.24)

is the conditional MLE derived under a Poisson distributional assumption and the conditional

independence assumption. It is often called the fixed effects Poisson estimator, and, in fact, ̂
turns out to be identical to using pooled Poisson QMLE and treating the ci as parameters to
estimate. (A rare case, like the linear model, where this does not result in an incidental
parameters problem.). It is easy to obtain fully robust inference, too (although it is not
currently part of standard software, such as Stata). The fact that the quasi-likelihood is derived
for a particular, discrete distribution appears to make people queasy about using it, but it is
analogous to using the normal log-likelihood in the linear model: the resulting estimator, the
usual FE estimator, is fully robust to nonnormality, heteroskedasticity, and serial correlation.

Estimation of models under sequential exogeneity has been studied by Chamberlain (1992)
and Wooldridge (1997). In particular, they obtain moment conditions for models such as

Eyit|xit, . . . ,xi1,ci  ci expxit.     (7.25)

Under this assumption, it can be shown that

Eyit − yi,t1 expxit − xi,t1|xit, . . . ,xi1  0,     (7.26)

and, because these moment conditions depend only on observed data and the parameter vector
, GMM can be used to estimate , and fully robust inference is straightforward.

The moment conditions in (7.26) involve the differences xit − xi,t1, and we saw for the
linear model that, if elements of xit − xi,t1 are persistent, IV and GMM estimators can be badly
biased and imprecise. If we make more assumptions, models with lagged dependent variables
and other regressors that are strictly exogenous can be handled using the conditional MLE
approach in Section 6. Wooldridge (2005b) shows how a dynamic Poisson model with
conditional Gamma heterogeneity can be easily estimated.
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8. Estimating the Fixed Effects
It is well known that, except in special cases (linear and Poisson), treating the ci as

parameters to estimate leads to inconsistent estimates of the common parameters . But two
questions arise. First, are there ways to adjust the “fixed effects” estimate of  to at least
partially remove the bias? Second, could it be that estimates of the average partial effects,
based generally on

N−1∑
i1

N
∂mtxt, ̂,ĉ i

∂xtj
,     (8.1)

where mtxt,,c  Eyt|xt,c, are better behaved than the parameter estimates, and can their
bias be removed? In the unobserved effects probit model, (8.1) becomes

N−1∑
i1

N

̂jxt̂  ĉ i,     (8.2)

which is easy to compute once ̂ and the ĉ i (N of them) have been obtained.
Hahn and Newey (2004) propose both jackknife and analytical bias corrections and show

that they work well for the probit case. Generally, the jackknife procedure to remove the bias
in ̂ is simple but can be computationally intensive. The idea is this. The estimator based on T
time periods has probability limit that can be written as

T    b1/T  b2/T2  OT−3     (8.3)

for vectors b1 and b2. Now, let ̂t denote the estimator that drops time period t. Then,

assuming stability across t, the plim of ̂t is

t    b1/T − 1  b2/T − 12  OT−3.     (8.4)

It follows that

N→
plim T̂ − T − 1̂t  T  b1  b2/T − T − 1  b1  b2/T − 1  OT−3

  − b2/TT − 1  OT−3    OT−2.     (8.5)

If, for given heterogeneity ci, the data are independent and identically distributed, then (8.5)
holds for all leave-one-time-period-out estimators, so we use the average of all such estimators
in computing the panel jackknife estimator:

̃  T̂ − T − 1T−1∑
t1

T

̂t.     (8.6)
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From the argument above, theasymptotic bias of ̃ is on the order of T−2.
Unfortunately, there are some practical limitations to the jackknife procedure, as well as to

the analytical corrections derived by Hahn and Newey. First, aggregate time effects are not
allowed, and they would be very difficult to include because the analysis is with T → . (In
other words, they would introduce an incidental parameters problem in the time dimension as
well as cross section dimension.) Generally, heterogeneity in the distributions across t changes
the bias terms b1 and b2 when a time period is dropped, and so the simple transformation in
(8.5) does not remove the bias terms. Second, Hahn and Newey assume independence across t
conditional on ci. It is a traditional assumption, but in static models it is often violated, and it
must be violated in dynamic models. Plus, as noted by Hahn and Keursteiner, applying the
“leave-one-out” method to dynamic models is problematical because the b1 and b2 in (8.4)
would depend on t so, again, the transformation in (8.5) will not eliminate the b1 term.

Recently, Dhaene, Jochmans, and Thuysbaert (2006) propose a modification of the
Hahn-Newey procedure that appears promising for dynamic models. In the simplest case, in
addition to the “fixed effects” estimator using all time periods, they obtain estimators for two
subperiods: one uses the earlier time periods, one uses later time periods, and they have some
overlap (which is small as T gets large). Unfortunately, the procedure still requires stationarity
and rules out aggregate time effects.

For the probit model, Fernández-Val (2007) studies the properties of estimators and
average partial effects and allows time series dependence in the strictly exogenous regressors.
Interestingly, in the probit model with exogenous regressors under the conditional
independence assumption, the estimates of the APEs based on the “fixed” effects estimator has
bias of order T−2 in the case that there is no heterogeneity. Unfortunately, these findings do not
carry over to models with lagged dependent variables, and the bias corrections in that case are
difficult to implement (and still do not allow for time heterogeneity).

The correlated random effects estimators restrict Dci|xi in some way, although the recent
work by Altonji and Matzkin (2005) shows how those restrictions can be made reasonable. The
approach generally identifies the APEs, and even the local average effects, and does not rule
out aggregate time effects or arbitrary conditional serial dependence.
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