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1. Introduction

GMM has provided a very influential framework for estimation
since Hansen (1982). Many models and estimators fit in.

In the case with over-identification the traditional approach is
to use a two-step method with estimated weight matrix.

For this case Empirical Likelihood provides attractive alterna-
tive with higher order bias properties, and liml-like advantages
in settings with high degrees of over-identification.

The choice between various EL-type estimators is less impor-
tant than the choice between the class and two-step gmm.

Computationally the estimators are only marginally more de-
manding. Most effective seems to be to concentrate out La-
grange multipliers.



2. Generalized Method of Moments Estimation

Generic form of the GMM estimation problem: The parameter
vector 6* is a K dimensional vector, an element of ©, which is
a subset of RE. The random vector Z has dimension P, with
its support Z a subset of RY.

The moment function, v : Z X © — IR{M, IS @ kKnown vector
valued function such that

E[¥(Z,0°)] =0, and E[¢(Z,0)] # 0, for all 6§ # 6*

The researcher has available an independent and identically
distributed random sample Z1, Zo,..., ZxN. Ve are interested in
the properties of estimators for 6* in large samples.



Example I. Maximum Likelihood

If one specifies the conditional distribution of a variable Y given
another variable X as fy|X(y|x,9), the score function satisfies
these conditions for the moment function:

dln f

00
By standard likelihood theory the score function has expecta-

tion zero only at the true value of the parameter.

(Y, X,0) =

(Y|X, 0).

Interpreting maximum likelihood estimators as generalized method
of moments estimators suggests a way of deriving the covari-
ance matrix under misspecification (e.g., White, 1982), as well
as an interpretation of the estimand in that case.



Example II: Linear Instrumental Variables

Suppose one has a linear model
Y = X'0% + ¢,

with a vector of instruments Z. In that case the moment
function is

WY, X,Z2,0)=2-(Y —X'0).

The validity of Z as an instrument, together with a rank condi-
tion implies that 6* is the unique solution to E[y(Y, X, Z,0)] =
0.



Example III: A Dynamic Panel Data Model

Consider the following panel data model with fixed effects:

Yie=mn;+0- Y1+ €,

where g;; has mean zero given {Y;;_1,Y;;_o,...}. We have ob-
servations Y;; fort = 1,...,7 and + = 1,..., N, with N large
relative to T.

This is a stylized version of the type of panel data models
studied in Keane and Runkle (1992), Chamberlain (1992), and
Blundell and Bond (1998). This specific model has previously
been studied by Bond, Bowsher, and Windmeijer (2001).



One can construct moment functions by differencing and using
lags as instruments, as in Arellano and Bond (1991), and Ahn
and Schmidt, (1995):

Yit_o
Yit—3

Y1¢(Yit, ..., Y, 0) = 5 A (Yie=Yie—1—0-(Yie—1—Yie—2) ).
Y;

This leads to t — 2 moment functions for each value of t =

3,...,T, leading to a total of (T'—1)-(T —2)/2 moments, with
only a single parameter (6).

In addition, under the assumption that the initial condition is
drawn from the stationary long-run distribution, the following
additional T'— 2 moments are valid:

Yor(Yit, ., Vi1, 0) = (Vi1 — Yie2) - (Yig — 0 - Yip_1).



GMM: Estimation

In the just-identified case where M, the dimension of i, and
K, the dimension of 6 are identical, one can generally estimate
6* by solving

1 N R
0=+ > w(Z;,0gmm). (1)
i=1

Under regularity conditions solutions will be unique in large
samples and consistent for 0*. If M > K there is in general
there will be no solution to (1).

Hansen’'s solution was to minimize the quadratic form

1

N / N
Qe (®) = 1| 3 00| €| 3 v,

for some positive definite M x M symmetric matrix C (which
if M = K still leads to a § that solves the equation (1).



GMM: Large Sample Properties

Under reqgularity conditions the minimand égmm has the follow-
iINg large sample properties:

% p
Ogmm — 9*,

VN (Bgmm — 6%) -4 N(o, ("'er)~r'cacrcr)—1,

where

0 *
(200

In the just—identified case with the number of parameters K
equal to the number of moments M, the choice of weight
matrix C' is immaterial.

A=F [¢(Zi, 0V (Z;, 9*)’] and T=FE [

In that case ' is a square matrix, and because it is full rank
by assumption, I is invertible and the asymptotic covariance
matrix reduces to (I"A~1)~1 irrespective of the choice of C.
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GMM: Optimal Weight Matrix

In the overidentified case with M > K the choice of the weight
matrix C is important.

The optimal choice for C in terms of minimizing the asymptotic
variance is in this case the inverse of the covariance of the

moments, A1,

T hen:

VN (Bgmm — 0%) % N0, (F'a~1r)~—1). (2)
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This estimator is not feasible because A~! is unknown.

T he feasible solution is to obtain an initial consistent, but gen-
erally inefficient, estimate of 6* and then can estimate the
optimal weight matrix as
_ 1 N _ 17t
ATt == w2 0) (i, 0))
i=1

In the second step one estimates 6* by minimizing Q x -1 5 (0).
The resulting estimator égmm has the same first order asymp-

totic distribution as the minimand of the quadratic form with
the true, rather than estimated, optimal weight matrix, Q A -1 5 (0).

Compare to TSLS having the same asymptotic distribution as
estimator with optimal instrument.
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GMM: Specification Testing

If the number of moments exceeds the number of free param-
eters, not all average moments can be set equal to zero, and
their deviation from zero forms the basis of a test.Formally,
the test statistic is

T = Qa y(Ogmm).

Under the null hypothesis that all moments have expectation
equal to zero at the true value of the parameter the distribution
of the test statistic converges to a chi-squared distribution with
degrees of freedom equal to the number of over-identifying
restrictions, M — K.
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Interpreting Over-identified GMM as a Just-identified Mo-
ment Estimator

One can also interpret the two—step estimator for over—identified
GMM models as a just—identified GMM estimator with an aug-

mented parameter vector. Fix an arbitrary M x M postitive
definite matrix . Then:

[ A=%(z,8) )
N Cy(x, 3)
h(z,0) = h(z,0,1,A,B,N) = | & —9(z,B)v(x,6) |. (3)
r— g_lg,@, 0)

\ A~ (z, 0) )
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This interpretation emphasizes that results for just—identified
GMM estimators such as the validity of the bootstrap can di-
rectly be translated into results for over—identified GMM esti-
mators.

For example, one can use the just-identified representation to
find the covariance matrix for the over—identified GMM esti-
mator that is robust against misspecification: the appropriate
submatrix of
(E [@(X, 5*)]) L BINZ, 5 Yh(Z, 6] (E [@(z, 5*)]) g
o)) 00

estimated by averaging at the estimated values. This is the
GMM analogue of the White (1982) covariance matrix for the
maximum likelihood estimator under misspecification.
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Efficiency

Chamberlain (1987) demonstrated that Hansen's (1982) esti-
mator is efficient, not just in the class of estimators based on
minimizing the quadratic form Qy ¢(8), but in the larger class
of semiparametric estimators exploiting the full set of moment
conditions.

Chamberlain assumes that the data are discrete with finite sup-
port {\1,..., A}, and unknown probabilities w1,...,7;. The
parameters of interest are then implicitly defined as functions
of these points of support and probabilities. With only the
probabilities unknown, the Cramér-Rao variance bound is con-
ceptually straightforward to calculate.

It turns out this is equal to variance of GMM estimator with
optimal weight matrix.
15



3. Empirical Likelihood

Consider a random sample Z1,Z5,...,Zy, Of size N from some
unknown distribution. The natural choice for estimating the
dsitribution function is the empirical distribution, that puts
weight 1/N on each of the N sample points.

Suppose we also know that E[Z] = 0. The empirical distribu-
tion function with weights 1/N does not satisfy the restriction
Er[Z] =0 as EFemp[Z] = > z;/N # 0.

The idea behind empirical likelihood is to modify the weights
to ensure that the estimated distribution F does satisfy the
restriction.
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The empirical likelihood is

N N
L(my,...,ay) =] m, foro<m<1, > m=1
i=1 i=1
T he empirical likelihood estimator for the distribution function
is, given E[Z] = 0,
N N N
mgxéj1 m; subject to z;_ m; = 1, and ;:1 m; - z; = O.
Without the second restriction the «'s would be estimated to
be 1/N, but the second restriction forces them slightly away

from 1/N in a way that ensures the restriction is satisfied.

This leads to

7 =1/(L+t-2) wheret solves S 4 s =0,
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EL: The General Case

More generally, in the over-identified case a major focus is on
obtaining point estimates through the following estimator for
0.

N

N N
max Y Inm, subjectto d m =1, Y m-9¥(z,0) =0.
=1 i=1 i=1

This is equivalent, to first order asymptotics, to the two-step
GMM estimator.

For many purposes the empirical likelihood has the same prop-
erties as a parametric likelihood function. (Qin and Lawless,
1994; Imbens, 1997; Kitamura and Stutzer, 1997).

18



EL: Cressie-Read Discrepancy Statistics

Define
A
1 N D;
I\(p,q) = D (—Z> —1].
/\-(1+/\>§1 “\a
and solve
N N
mien I\(t/N,w) subjectto ) m =1, and > m;-¢(z;,60) =0.
dr i=1 i=1

The precise way in which the notion “as close as possible” is
implemented is reflected in the choice of metric through .

Empirical Likelihood is special case with A\ =—— 0.
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EL: Generalized Empirical Likelihood

Smith (1997), Newey and Smith (1994) considers a more gen-
eral class of estimators. For a given function ¢g(-), normalized
so that it satisfied g(0) = 1, ¢’(0) = 1, consider the saddle
point problem

N

max mtin > g(t'y(z;,0)).
i=1

T his representation is attractive from a computational perspec-

tive, as it reduces the dimension of the optimization problem

to M + K rather than a constrained optimization problem of

dimension K + N with M 4+ 1 restrictions.

There is a direct link between the t parameter in the GEL
representation and the Lagrange multipliers in the Cressie-Read
representation. NS show how to choose ¢g(-) for a given
so that the corresponding GEL and Cressie-Read estimators
agree.

20



EL: Special cases, Continuously Updating Estimator
A= —2.

T his case was originally proposed by Hansen, Heaton and Yaron
(1996) as the solution to

' [{ N -1 N
|y X G 0G) | X 0|
where the GMM objective function is minimized over the 6 in
the weight matrix as well as the 6 in the average moments.

1

Newey and Smith (2004) pointed out that this estimator fits
in the Cressie-Read class.
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EL: Special cases, Exponential Tilting Estimator
A — —1.

The second case is the exponential tilting estimator with A —
—1 (Imbens, Spady and Johnson, 1998), whose objective func-
tion is equal to the empirical likelihood objective funtion with
the role of w and /N reversed.

It can also be written as

N N N
mien Y milnm; subjectto > m =1, and ) m-¢(z;,60) =0.
™Y =1 i=1 i=1
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Comparison of GEL Estimators
Little known in general.

EL (A = 0) has higher order bias properties (NS), but implicit
probabilities can get large.

CUE (A = —2) tends to have more outliers

ET (A= —1) computationally stable.
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Testing

Likelihood Ratio test:
N

LR=2-(L(t/N)—L(®)), where L(r)= ) Inm.
i=1

1 [N ! N
WALD = ~ {Z ¢(zi,§)] A1 {Z ¢(2¢,§)] :
1=1 1=1

where A is some estimate of the covariance matrix of the
moments.

Lagrange Multiplier test, based on estimated lagrange multi-
pliers ¢

LM =t Af.
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4. Computational Issues

In principle the EL estimator has many parameters (7; and 6),
which could lead to computational difficulties.

Solving the First Order Conditions the first order conditions
does not work well.

Imbens, Spady and Johnson suggest penalty function approaches
which work better, but not great.

25



Concentrating out the Lagrange Multipliers

Mittelhammer, Judge and Schoenberg (2001) suggest concen-
trating out both probabilities and Lagrange multipliers and then
maximizing over 6 without any constraints. This appears to
work well.

Concentrating out the probabilities w; can be done analytically.

Although it is not in general possible to solve for the Lagrange
multipliers ¢t analytically for given 0 it is easy to numerically
solve for t. E.g., in the exponential tilting case, solve

N
min Z exp(t'y(z;, 0)).

=1
T his function is strictly convex as a function of ¢, with easy-

to-calculate first and second derivatives.
26



After solving for t(8), one can solve

N
max > exp(t(0)'(z,0)).
=1

Calculating first derivatives of the concentrated objective func-
tion only requires first derivatives of the moment functions,
both directly and indirectly through the derivatives of t(6) with
respect to 6.

The function t(8) has analytic derivatives with respect to 6
equal to:

1
%( ) = — ( Z: ¢(zz,9)¢(zz,9)/eXD(t(9)/¢(zz79))

)/¢

N
( 1 oY (z;,0) exp(t(0)'y(z

3. i) XP(UO (i, 0) + (i, )10
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5. A Dynamic Panel Data Model

To get a sense of the finite sample properties of the empirical
likelihood estimators we compare two-step GMM and one of
the EL estimators (exponential tilting) in the context of a panel
data model

The model is

Yie=mn,+0 Y1+ €4,

where g;; has mean zero given {Y;;_1,Y;;_o,...}. We have ob-
servations Y;; fort=1,..., T and:=1,..., N.

28



Moments:
Yo

Y
V(i Vi, 0) = | 03 (V= Yieo =0 (Vao1— Vi 2)).
Y;
This leads to (T"—1) - (T — 2)/2 moments.

Additional T'— 2 moments:

Yor(Yit, - Y7, 0) = (Vi1 — Yie—2) - (Yig — 0 - Yip_1).

Note that the derivatives of these moments are stochastic and
potentially correlated with the moments themselves. So, po-
tentially substantial difference between estimators.

29



We report some simulations for a data generating process with
parameter values estimated on data from Abowd and Card
(1989) taken from the PSID. See also Card (1994).

This data set contains earnings data for 1434 individuals for
11 years. The individuals are selected on having positive earn-
ings in each of the eleven years, and we model their earnings
in logarithms. We focus on estimation of the autoregressive
coefficient 6.

Using the Abowd-Card data we estimate 6 and the variance of
the fixed effect and the idiosyncratic error term. The latter two
are estimated to be around 0.3. We use § = 0.5 and 6 = 0.9 in
the simulations. The first is comparable to the value estimated
from the Abowd-Card data.

30
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6 = 0.5 Number of time periods

3 4 6 7 9 11
Two-Step GMM
median bias -0.00 0.00 -0.00 -0.00 0.00 o0.00
relative median bias -0.07r 0.01 -0.06 -0.08 0.09 0.14
median absolute error 0.05 0.03 0.01 0.01 0.01 0.01
coverage rate 90% ci  0.91 0.88 0.91 0.91 0.89 0.90
covarage rate 95% ci 0.95 0.94 0.95 0.96 0.95 0.94
Exponential Tilting
median bias -0.00 -0.00 -0.00 -0.00 0.00 o0.00
relative median bias -0.04 -0.02 -0.09 -0.07 0.02 0.10
median absolute error 0.05 0.03 0.01 0.01 0.01 0.01
coverage rate 90% ci 0.90 0.87 0.90 0.92 0.90 0.91
covarage rate 95% ci  0.95 0.94 0.96 0.95 0.95 0.95
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6 =0.9 Number of time periods

3 4 6 4 9 11

Two-Step GMM

median bias -0.00 0.00 0.00 0.00 0.00 0.00
relative median bias -0.02 0.08 0.08 0.03 0.08 0.11
median absolute error 0.04 0.03 0.02 0.02 0.01 0.01
coverage rate 90% ci 0.88 0.85 0.80 0.80 0.78 0.76
covarage rate 95% ci 0.92 091 0.87 0.85 0.86 0.84
Exponential Tilting

median bias 0.00 0.00 -0.00 0.00 -0.00 0.00
relative median bias 0.04 0.09 -0.00 0.01 -0.02 0.13
median absolute error 0.05 0.03 0.02 0.02 0.01 0.01
coverage rate 90% ci 0.87 0.86 0.86 0.88 0.87 0.87
covarage rate 95% ci 0.91 0.90 0.91 0.93 0.91 0.93




