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1. Introduction

Standard normal asymptotic approximation to sampling distri-
bution of IV, TSLS, and LIML estimators relies on non-zero
correlation between instruments and endogenous regressors.

If correlation is close to zero, these approximations are not
accurate even in fairly large samples.

In the just identified case TSLS/LIML confidence intervals will
still be fairly wide in most cases, even if not valid, unless degree
of endogeneity is very high. If concerned with this, alternative
confidence intervals are available that are valid uniformly. NoO
better estimators available.



In the case with large degree of overidentification TSLS has
poor properties: considerable bias towards OLS, and substan-
tial underestimation of standard errors.

LIML is much better in terms of bias, but its standard error is
not correct. A simple multiplicative adjustment to conventional
LIML standard errors based on Bekker asymptotics or random
effects likelihood works well.

Overall: use LIML, with Bekker-adjusted standard errors.



2.A Motivation : Angrist-Krueger

AK were interested in estimating the returns to years of edu-
cation. Their basic specification is:

l/z’:()é+5°Ei+€z‘,
where Y} is log (yearly) earnings and E; is years of education.

In an attempt to address the endogeneity problem AK exploit
variation in schooling levels that arise from differential impacts
of compulsory schooling laws by quarter of birth and use quarter
of birth as an instrument. This leads to IV estimate (using only
1st and 4th quarter data):
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2.B AK with Many Instruments

AK also present estimates based on additional instruments.
They take the basic 3 gob dummies and interact them with 50
state and 9 year of birth dummies.

Here (following Chamberlain and Imbens) we interact the single
binary instrument with state times year of birth dummies to get
500 instruments. Also including the state times year of birth
dummies as exogenous covariates leads to the following model:

Y; =XB4+¢;, E[Z;-¢]=0,

where X is the 501-dimensional vector with the 500 state/year
dummies and years of education, and Z; is the vector with 500
state/year dummies and the 500 state/year dummies multiply-
ing the indicator for the fourth quarter of birth.



The TSLS estimator for 3 is
BtsLs = 0.073 (0.008)

suggesting the extra instruments improve the standard errors
a little bit.

However, LIML estimator tells a somewhat different story,
BLimL = 0.095 (0.017)

with an increase in the standard error.



1.C Bound-Jaeger-Baker Critique

BJB suggest that despite the large (census) samples used by
AK asymptotic normal approximations may be very poor be-
cause the instruments are only very weakly correlated with the
endogenous regressor.

The most striking evidence for this is based on the following
calculation. Take the AK data and re-calculate their estimates
after replacing the actual quarter of birth dummies by random
indicators with the same marginal distribution.

In principle this means that the standard (gaussian) large sam-
ple approximations for TSLS and LIML are invalid since they
rely on non-zero correlations between the instruments and the
endogenous regressor.



Single Instr 500 Instruments

TSLS LIML

Real QOB 0.089 (0.011) 0.073 (0.008) 0.095 (0.017)

Random QOB -1.96 (18.12) 0.059 (0.009) -0.330 (0.100)

With many random instruments the results are troubling. Al-
though the instrument contains no information, the results sug-
gest that the instruments can be used to infer precisely what
the returns to education are.



1.D Simulations with a Single Instrument

10,000 artificial data sets, all of size 160,000, desighed to
mimic the AK data. In each of these data sets half the units
have quarter of birth (denoted by ;) equal to 0 and 1 respec-
tively.

vi\ ([ © 0.446 p-+/0.446 - /10.071
n; 0 )\ p-+/0.446-/10.071 10.071 |

The correlation between the reduced form residuals in the AK
data is p = 0.318.

E; =12.688 + 0.151 - Q; + n;,

l/z' — 5.892 —|— 0.014. QZ —|— V.



Now we calculate the IV estimator and its standard error, using
either the actual gob variable or a random qob variable as the
instrument.

We are interested in the size of tests of the null that coefficient
on years of education is equal to 0.089 = 0.014/0.151.

We base the test on the t-statistic. Thus we reject the null if
the ratio of the point estimate minus 0.089 and the standard
error is greater than 1.96 in absolute value.

We repeat this for 12 different values of the reduced form
error correlation. In Table 3 we report the coverage rate and
the median and 0.10 quantile of the width of the estimated
95% confidence intervals.
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Table 3: Coverage Rates of Conv. TSLS CI by Degree of Endogeneity

I 0.0 0.4 0.6 0.8 0.9 0.95 0.99
implied OLS 0.00 0.08 0.13 0.17 0.19 0.20 0.21
Real QOB

Cov rate 0.95 0.95 0.96 0.95 0.95 0.95 0.95

Med Width 95% CI 0.09 0.08 0.07 0.06 0.05 0.05 0.05
0.10 quant Width 0.08 0.07 0.06 0.05 0.04 0.04 0.04

Random QOB

Cov rate 0.99 1.00 1.00 0.98 0.92 0.82 0.53
Med Width 95% CI 1.82 1.66 1.45 1.09 0.79 0.57 0.26
0.10 quant Width 0.55 0.51 0.42 0.33 0.24 0.17 0.08




In this example, unless the reduced form correlations are very
high, e.g., at least 0.95, with irrelevant instruments the conven-
tional confidence intervals are wide and have good coverage.

The amount of endogeneity that would be required for the
conventional confidence intervals to be misleading is higher
than one typically encounters in cross-section settings.

Put differently, although formally conventional confidence in-
tervals are not valid uniformly over the parameter space (e.g.,
Dufour, 1997), the subsets of the parameter space where re-
sults are substantively misleading may be of limited interest.

This in contrast to the case with many weak instruments where
especially TSLS can be misleading in empirically relevant set-
tings.



3.A Single Weak Instrument
Y; = Bo + 61 X; + &4,
X = mo + 1 - Zi + N

with (g;,m;) AL Z;, and jointly normal with covariance matrix X.
The reduced form for the first equation is

Y = ag + a1 - Z + v,
where the parameter of interest is 81 = «a1/m1. Let
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Standard IV estimator:

N Eit (Yi—Y) (4 - 2)

AV _
B =

Concentration parameter:

b (%) (5-7)
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Normal approximations for numerator and denominator are ac-
curate:

Vi (}V S (vi—7) (7 -7) - cOvm,Za) N0V Z).
1 =1

VN (;\Lf % <X,L~ - 7) <ZZ~ - 7) — Cov(X;, ZI)> ~N(0,V(X;-Z,)).
=1

If 71 # 0, as the sample size gets large, then the ratio will

eventually be well approximated by a normal distribution as
well.

However, if Cov(X;, Z;) ~ 0, the ratio may be better approx-

imated by a Cauchy distribution, as the ratio of two normals
centered close to zero.
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3.B Staiger-Stock Asymptotics and Uniformity

Staiger and Stock investigate the distribution of the standard
IV estimator under an alternative asymptotic approximation.

The standard asymptotics (strong instrument asymptotics in
the SS terminology) is based on fixed parameters and the sam-
ple size getting large.

In their alternative asymptotic sequence SS model w1 as a func-
tion of the sample size, w1y = ¢/v' N, so that the concentration
parameter converges to a constant:

A — 2 VI(Z).

SS then compare coverage properties of various confidence in-
tervals under this (weak instrument) asymptotic sequence.
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The importance of the SS approach is in demonstrating for
any sample size there are values of the nuisance parameters
such that the actual coverage is substantially away from the
nominal coverage.

More recently the issue has therefore been reformulated as re-
quiring confidence intervals to have asymptotically the correct
coverage probabilities uniformly in the parameter space. See
for a discussion from this perspective Mikusheva.

Note that there cannot exist estimators that are consistent for
B* uniformly in the parameter space since if m1 = 0, there are
no consistent estimators for 1. However, for testing there are
generally confidence intervals that are uniformly valid, but they
are not of the conventional form, that is, a point estimate plus
or minus a constant times a standard error.
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3.C Anderson-Rubin Confidence Intervals

Let the instrument Z;, = Z;, — Z be measured in deviations from
its mean. Then define the statistic

N
5(51)—%2 - (Y; - B1-X5) .

Then, under the null hypothesis that 1 = 5?, and conditional
on the instruments, the statistic vVN-S(87) has an exact normal
distribution

N
VN - S(87) ~N<o, 3 ”E-a§> .
=1
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Anderson and Rubin (1949) propose basing tests for the null
hypothesis

Ho: (1= 5?, against the alternative hypothesis H,: (1 # 5%

on this idea, through the statistic

, 0y2 —1
)= (00 e))

A confidence interval can be based on this test statistic by
inverting it:

Clghys = {B1|AR(S1) < 3.84}

This interval can be equal to the whole real line.
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3.D Anderson-Rubin with K instruments
The reduced form is
X’i — 70 + 7T€I_Z’L + e

S <5(f) is now normally distributed vector.
AR statistic with associated confidence interval:

an(o8) =5 (8) (£2:2) s(#) (1 -2)a(

Clglos = {51 |AR(B1) < X8 o5(K)}

The problem is that this confidence interval can be empty be-
cause it simultaneously tests validity of instruments.
20



3.E Kleibergen Test

Kleibergen modfies AR statistic through

N
5(89) =3 X (2R D) - (vi- 8- X)),

where 7 is the maximum likelihood estimator for w1 under the
restriction 81 = 5?. The test is then based on the statistic

N - 5(59)2 -1
k() ="gr g (0 -)=( g )

i=1

This has an approximate chi-squared distribution, and can be
used to construct a confidence interval.
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3.F Moreira’s Similar Tests

Moreira (2003) proposes a method for adjusting the critical
values that applies to a number of tests, including the Kleiber-
gen test. His idea is to focus on similar tests, test that have
the same rejection probability for all values of the nuisance pa-
rameter (the ) by adjusting critical values (instead of using
quantiles from the chi-squared distribution).

The way to adjust the critical values is to consider the distribu-
tion of a statistic such as the Kleibergen statistic conditional
on a complete sufficient statistic for the nuisance parameter.
In this setting a complete sufficient statistic is readily available
in the form of the maximum likelihood estimator under the

null, #1(3%).
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Moreira's preferred test is based on the likelihood ratio. Let
LR(8Y) =2 (L(B1, %) — L (89, 7(8D))),
be the likelihood ratio.

Then let ¢y pr(p,0.95), be the 0.95 quantile of the distribution
of LR(AY) under the null hypothesis, conditional on 7(8?) = p.
The proposed test is to reject the null hypothesis at the 5%
level if

LR (87) > cLr(7(57),0.95),

where conventional test would use critical values from a chi-
squared distribution with a single degree of freedom. T he crit-
ical values are tabulated for low values of K.

This test can then be converted to construct a 95% confidence
intervals.
23



3.G Conditioning on the First Stage

These confidence intervals are asymptotically valid irrespective
of the strength of the first stage (the value of m1). However,
they are not valid if one first inspects the first stage, and con-
ditional on the strength of that, decides to proceed.

Specifically, if in practice one first inspects the first stage, and
decide to abandon the project if the first stage F-statistic is
less than some fixed value, and otherwise proceed by calculat-
ing confidence interval, the large sample coverage probabilities
would not be the nominal ones.

Chioda and Jansson propose a confidence interval that is valid
conditional on the strength of the first stage. A caveat is that
this involves loss of information, and thus the Chioda-Jansson
confidence intervals are wider than confidence intervals that
are not valid conditional on the first stage.
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4.A Many (Weak) Instruments

In this section we discuss the case with many weak instruments.
The problem is both the bias in the standard estimators, and
the misleadingly small standard errors based on conventional
procedures, leading to poor coverage rates for standard confi-
dence intervals in many situations.

Resampling methods such as bootstrapping do not solve these
problems.

The literature has taken a number of approaches. Part of
the literature has focused on alternative confidence intervals
analogues to the single instrument case. In addition a variety
of new point estimators have been proposed.

Generally LIML still does well, but standard errors need to be
adjusted.
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4.B Bekker Asymptotics

Bekker (1995) derives large sample approximations for TSLS
and LIML based on sequences where the number of instruments
increases proportionally to the sample size.

He shows that TSLS is not consistent in that case.

LIML is consistent, but the conventional LIML standard er-
rors are not valid. Bekker then provides LIML standard errors
that are valid under this asymptotic sequence. Even with rel-
atively small numbers of instruments the differences between
the Bekker and conventional asymptotics can be substantial.
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For a simple case the adjustment to the variance is multiplica-
tive.

Then one can simply multiply the standard LIML variance by

1 / —1
K/N ) a2 1 _ 1
1+1_K/N.<;<mzi) /N> ((51)9 1<ﬁ1>>

Recommended in practice

One can see from this expression why the adjustment can be
substantial even if K is small. The second factor can be large
if the instruments are weak, and the third factor can be large
if the degree of endogeneity is high. If the instruments are
strong, then Y,—1(7}Z;)?/K will diverge, and the adjustment
factor will converge to one.
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4.C Random Effects Estimators

Chamberlain and Imbens propose a random effects quasi maxi-
mum likelihood (REQML) estimator. They propose modelling

the first stage coefficients m,, for k =1,..., K, in the regression
K
X, =mno+7m1Zi+m=m0+ Y T Zix + m,
k=1

(after normalizing the instruments to have mean zero and unit
variance,) as independent draws from a normal N(uxr,02) dis-
tribution.
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Assuming also joint normality for (g;,7n;), one can derive the
likelihood function

L(ﬁoa 517 0, U, 072Ta Q)

In contrast to the likelihood function in terms of the original
parameters (8o, 81,70, 71,82), this likelihood function depends
on a small set of parameters, and a quadratic approximation
to its logarithms is more likely to be accurate.
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CI discuss some connections between the REQML estimator
and LIML and TSLS in the context of this parametric set up.
First they show that in large samples, with a large number of
instruments, the TSLS estimator corresponds to the restricted
maximum likelihood estimator where the variance of the first
stage coefficients is fixed at a large number, or 07% = 0.

— 2 .
ﬁTSLS ~ arg maxXx — L(ﬁO?/BJ.?ﬂ-O?:uﬂ'?O-TF — O, Q)
60761771-07,“71'

From a Bayesian perspective, TSLS corresponds approximately
to the posterior mode given a flat prior on all the parameters,
and thus puts a large amount of prior mass on values of the
parameter space where the instruments are jointly powerful.
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In the special case where we fix ur = 0, and €2 is known, and
the random effects specification applies to all instruments, CI
show that the REQML estimator is identical to LIML.

However, like the Bekker asymptotics, the REQML calculations
suggests that the standard LIML variance is too small: the
variance of the REQML estimator is approximately equal to
the standard LIML variance times

(8] (2))

This is similar to the Bekker adjustment if we replace 07% by
Si=1(m1 Z;)?(K -N) (keeping in mind that the instruments have
been normalized to have unit variance).

In practice the CI adjustment will be bigger than the Bekker ad-

justment because the ml estimator for o2 will take into account

noise in the estimates of the #, and so 62 < Zizl(%’lZi)Q(K-N).
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4.D Choosing the Number of Instruments

Donald and Newey (2001) consider the problem of choosing a
subset of an infinite sequence of instruments.

They assume the instruments are ordered, so that the choice
iIs the number of instruments to use.

The criterion they focus on is based on an estimable approx-
imation to the expected squared error. version of this leads
to approximately the same expected squared error as using the
infeasible criterion.

Although in its current form not straightforward to implement,
this is a very promising approach that can apply to many related
problems such as generalized method of moments settings with
many moments.
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4.E Flores’ Simulations

In one of the more extensive simulation studies Flores-LLagunes
reports results comparing TSLS, LIML, Fuller, Bias corrected
versions of TSLS, LIML and Fuller, a Jacknife version of TSLS
(Hahn, Hausman and Kuersteiner), and the REQML estimator,
in settings with 100 and 500 observations, and 5 and 30 in-
struments for the single endogenous variable. Does not include
LIML with Bekker standard errors.

He looks at median bias, median absolute error, inter decile
range, coverage rates.

He concludes that “our evidence indicates that the random-
effects quasi-maximum likelihood estimator outperforms alter-
native estimators in terms of median point estimates and cov-
erage rates.”
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