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1. The Linear Model with Cluster Effects.

∙ For each group or cluster g, let

ygm,xg, zgm : m  1, . . . ,Mg be the observable

data, where Mg is the number of units in cluster g,

ygm is a scalar response, xg is a 1  K vector

containing explanatory variables that vary only at

the group level, and zgm is a 1  L vector of

covariates that vary within (as well as across)

groups.

∙ The linear model with an additive error is

ygm    xg  zgm  vgm     (1)

for m  1, . . . ,Mg, g  1, . . . ,G.

∙ Key questions: Are we primarily interested in 

or ? Does vgm contain a common group effect, as

in
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vgm  cg  ugm,m  1, . . . ,Mg,     (2)

where cg is an unobserved cluster effect and ugm is

the idiosyncratic error? Are the regressors xg, zgm

appropriately exogenous? How big are the group

sizes (Mg and number of groups G?

∙ Two kinds of sampling schemes. First, from a

large population of relatively small clusters, we

draw a large number of clusters (G), where cluster

g has Mg members. For example, sampling a large

number of families, classrooms, or firms from a

large population. This is like the panel data setup

we have covered. In the panel data setting, G is the

number of cross-sectional units and Mg is the

number of time periods for unit g.

∙ A different sampling scheme results in data sets

that also can be arranged by group, but is better
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interpreted in the context of sampling from

different populations or different strata within a

population. We stratify the population into into

G ≥ 2 nonoverlapping groups. Then, we obtain a

random sample of size Mg from each group.

Ideally, the group sizes are large in the population,

hopefully resulting in large Mg.

Large Group Asymptotics

∙ The theory with G →  and the group sizes, Mg,

fixed is well developed. How should one use these

methods? If

Evgm|xg, zgm  0     (3)

then pooled OLS estimator of ygm on

1,xg, zgm,m  1, . . . ,Mg;g  1, . . . ,G, is consistent

for  ≡ , ′, ′′ (as G →  with Mg fixed) and

G -asymptotically normal. In panel data case, (3)
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does allow for non-strictly exogenous covariates,

but only if there is no unobserved effect.

∙ Robust variance matrix is needed to account for

correlation within clusters or heteroskedasticity in

Varvgm|xg, zgm, or both. Write Wg as the

Mg  1  K  L matrix of all regressors for group

g. Then the 1  K  L  1  K  L variance

matrix estimator is

Avar̂POLS  ∑
g1

G

Wg
′Wg

−1

∑
g1

G

Wg
′ v̂gv̂g′Wg

 ∑
g1

G

Wg
′Wg

−1

    (4)

where v̂g is the Mg  1 vector of pooled OLS

residuals for group g. This asymptotic variance is

now computed routinely using “cluster” options.
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∙ If we strengthen the exogeneity assumption to

Evgm|xg,Zg  0,m  1, . . . ,Mg;g  1, . . . ,G,     (5)

where Zg is the Mg  L matrix of unit-specific

covariates, then we can use GLS. This is about the

strongest assumption we can make. As discussed in

the linear panel data notes, the random effects

approach makes enough assumptions so that the

Mg  Mg variance-covariance matrix of

vg  vg1,vg2, . . . ,vg,Mg′ has the so-called “random

effects” form,

Varvg  c2jMg′ jMg  u2IMg ,     (6)

where jMg is the Mg  1 vector of ones and IMg is

the Mg  Mg identity matrix. Plus, the usual

assumptions include the “system homoskedasticity”

assumption,
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Varvg|xg,Zg  Varvg.     (7)

∙ The random effects estimator ̂RE is

asymptotically more efficient than pooled OLS

under (5), (6), and (7) as G →  with the Mg fixed.

The RE estimates and test statistics are computed

routinely by popular software packages.

∙ Important point is often overlooked: one can, and

in many cases should, make inference completely

robust to an unknown form of Varvg|xg,Zg,

whether we have a true cluster sample or panel

data.

∙ Cluster sample example: random coefficient

model,

ygm    xg  zgmg  vgm.     (8)

By estimating a standard random effects model that
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assumes common slopes , we effectively include

zgmg −  in the idiosyncratic error; this generally

creates within-group correlation because

zgmg −  and zgpg −  will be correlated for

m ≠ p, conditional on Zg.

∙ If we are only interested in estimating , the

“fixed effects” (FE) or “within” estimator is

attractive. The within transformation subtracts off

group averages from the dependent variable and

explanatory variables:

ygm − ȳg  zgm − z̄g  ugm − ūg,     (9)

and this equation is estimated by pooled OLS. (Of

course, the xg get swept away by the within-group

demeaning.) Often important to allow Varug|Zg

to have an arbitrary form, including within-group

correlation and heteroskedasticity. Certainly should
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for panel data (serial correlation), but also for

cluster sampling. In linear panel data notes, we saw

that FE can consistently estimate the average effect

in the random coefficient case. But

zgm − z̄gg −  appears in the error term. A fully

robust variance matrix estimator is

Avar̂FE  ∑
g1

G

Z̈g′ Z̈g

−1

∑
g1

G

Z̈g′ ûgûg′ Z̈g

 ∑
g1

G

Z̈g′ Z̈g

−1

,

    (10)

where Z̈g is the matrix of within-group deviations

from means and ûg is the Mg  1 vector of fixed

effects residuals. This estimator is justified with

large-G asymptotics.

Should we Use the “Large” G Formulas with
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“Large” Mg?

∙What if one applies robust inference in scenarios

where the fixed Mg, G →  asymptotic analysis not

realistic? Hansen (2007) has recently derived

properties of the cluster-robust variance matrix and

related test statistics under various scenarios that

help us more fully understand the properties of

cluster robust inference across different data

configurations.

∙ First consider how his results apply to true cluster

samples. Hansen (2007, Theorem 2) shows that,

with G and Mg both getting large, the usual

inference based on (1.4) is valid with arbitrary

correlation among the errors, vgm, within each

group. Because we usually think of vgm as

including the group effect cg, this means that, with
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large group sizes, we can obtain valid inference

using the cluster-robust variance matrix, provided

that G is also large. So, for example, if we have a

sample of G  100 schools and roughly Mg  100

students per school, and we use pooled OLS

leaving the school effects in the error term, we

should expect the inference to have roughly the

correct size. Probably we leave the school effects in

the error term because we are interested in a

school-specific explanatory variable, perhaps

indicating a policy change.

∙ Unfortunately, pooled OLS with cluster effects

when G is small and group sizes are large fall

outside Hansen’s theoretical findings. Generally,

we should not expect good properties of the

cluster-robust inference with small groups and very
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large group sizes when cluster effects are left in the

error term.

As an example, suppose that G  10 hospitals have

been sampled with several hundred patients per

hospital. If the explanatory variable of interest is

exogenous and varies only at the hospital level, it is

tempting to use pooled OLS with cluster-robust

inference. But we have no theoretical justification

for doing so, and reasons to expect it will not work

well. In the next section we discuss other

approaches available with small G and large Mg.

∙ If the explanatory variables of interest vary

within group, FE is attractive for a couple of

reasons. The first advantage is the usal one about

allowing cg to be arbitrarily correlated with the zgm.

The second advantage is that, with largeMg, we
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can treat the cg as parameters to estimate – because

we can estimate them precisely – and then assume

that the observations are independent across m (as

well as g). This means that the usual inference is

valid, perhaps with adjustment for

heteroskedasticity. The fixed G, large Mg

asymptotic results in Theorem 4 of Hansen (2007)

for cluster-robust inference apply in this case. But

using cluster-robust inference is likely to be very

costly in this situation: the cluster-robust variance

matrix actually converges to a random variable, and

t statistics based on the adjusted version of (10) –

multiplied by G/G − 1 – have an asymptotic tG−1

distribution. Therefore, while the usual or

heteroskedasticity-robust inference can be based on

the standard normal distribution, the cluster-robust
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inference is based on the tG−1 distribution (and the

cluster-robust standard errors may be larger than

the usual standard errors).

∙ For panel data applications, Hansen’s (2007)

results, particularly Theorem 3, imply that

cluster-robust inference for the fixed effects

estimator should work well when the cross section

(N) and time series (T) dimensions are similar and

not too small. If full time effects are allowed in

addition to unit-specific fixed effects – as they

often should – then the asymptotics must be with N

and T both getting large. In this case, any serial

dependence in the idiosyncratic errors is assumed

to be weakly dependent. The similulations in

Bertrand, Duflo, and Mullainathan (2004) and

Hansen (2007) verify that the fully robust
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cluster-robust variance matrix works well.

∙ There is some scope for applying the fully robust

variance matrix estimator when N is small relative

to T when unit-specific fixed effects are included.

But allowing time effects causes problems in this

case. Really want “large” N and T to allow for a full

set of time and unit-specific effects.

2. Estimation with a Small Number of Groups

and Large Group Sizes

∙When G is small and each Mg is large, thinking

of sampling from different strata in a population, or

even different populations, makes more sense.

Alternatively, we might think that the clusters were

randomly drawn from a large population, but only a

small number were drawn. Either way, except for

the relative dimensions of G and Mg, the resulting
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data set is essentially indistinguishable from a data

set obtained by sampling clusters.

∙ The problem of proper inference when Mg is

large relative to G – the “Moulton (1990) problem”

– has been recently studied by Donald and Lang

(2007). DL treat the parameters associated with the

different groups as outcomes of random draws (so

it seems more like the second sampling

experiment). Simplest case: a single regressor that

varies only by group:

ygm    xg  cg  ugm
 g  xg  ugm.

    (11)
    (12)

Notice how (12) is written as a model with

common slope, , but intercept, g, that varies

across g. Donald and Lang focus on (11), where cg

is assumed to be independent of xg with zero mean.
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They use this formulation to highlight the problems

of applying standard inference to (11), leaving cg as

part of the error term, vgm  cg  ugm.

∙We know that standard pooled OLS inference can

be badly biased because it ignores the cluster

correlation. And Hansen’s results do not apply.

(We cannot use fixed effects here.)

∙ The DL solution is to study the OLS estimate in

the regression “between” regresssion

ȳg on 1,xg,g  1, . . . ,G,     (13)

which is identical to pooled OLS when the group

sizes are the same. Conditional on the xg, ̂ inherits

its distribution from v̄g : g  1, . . . ,G, the

within-group averages of the composite errors.

∙ If we add some strong assumptions, there is an

exact solution to the inference problem. In addition
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to assuming Mg  M for all g, assume cg|xg

~Normal0,c2 and assume

ugm|xg,cg  Normal0,u2. Then v̄g is independent

of xg and v̄g  Normal0,c2  u2/M for all g.

Because we assume independence across g, the

equation

ȳg    xg  v̄g,g  1, . . . ,G     (14)

satisfies the classical linear model assumptions. We

can use inference based on the tG−2 distribution to

test hypotheses about , provided G  2.

∙ If G is small, the requirements for a significant t

statistic using the tG−2 distribution are much more

stringent then if we use the tM1M2...MG−2

distribution – which is what we would be doing if

we use the usual pooled OLS statistics.

∙ Using (14) is not the same as using cluster-robust
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standard errors for pooled OLS. Those are not even

justified and, besides, we would use the wrong df in

the t distribution.

∙We can apply the DL method without normality

of the ugm if the group sizes are large because

Varv̄g  c2  u2/Mg so that ūg is a negligible

part of v̄g. But we still need to assume cg is

normally distributed.

∙ If zgm appears in the model, then we can use the

averaged equation

ȳg    xg  z̄g  v̄g,g  1, . . . ,G,     (15)

provided G  K  L  1. If cg is independent of

xg, z̄g with a homoskedastic normal distribution

and the group sizes are large, inference can be

carried out using the tG−K−L−1 distribution.

Regressions like (15) are reasonably common, at
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least as a check on results using disaggregated data,

but usually with larger G then just a few.

∙ If G  2, should we give up? Suppose xg is

binary, indicating treatment and control. The DL

estimate of  is the usual one: ̂  ȳ1 − ȳ0. But in

the DL setting, we cannot do inference (there are

zero df). So, the DL setting rules out the standard

comparison of means. It also rules out the typical

setup for difference-in-differences, where there

would be four groups, for the same reason.

∙ Can we still obtain inference on estimated policy

effects using randomized or quasi-randomized

interventions when the policy effects are just

identified? Not according the DL approach.

∙ Even when we can apply the approach, should

we? Suppose there G  4 groups with groups one
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and two control groups (x1  x2  0) and two

treatment groups x3  x4  1. The DL approach

would involve computing the averages for each

group, ȳg, and running the regression ȳg on 1,xg,

g  1, . . . , 4. Inference is based on the t2

distribution. The estimator ̂ in this case can be

written as

̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2.     (16)

With ̂ written as in (16), it is clearly it is

approximately normal (for almost any underlying

population distribution) provided the group sizes

Mg are moderate. The DL approach would base

inference on a t2 distribution. In effect, the DL

approach rejects the usual inference based on group

means from large sample sizes because it may not

be the case that 1  2 and 3  4.
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∙ Equation (16) hints at a different way to view the

small G, large Mg setup. We estimated two

parameters,  and , given four moments that we

can estimate with the data. The OLS estimates can

be interpreted as minimum distance estimates that

impose the restrictions 1  2   and

3  4    . If we use the 4  4 identity

matrix as the weight matrix, we get (16) and

̂  ȳ1  ȳ2/2.

∙With large group sizes, and whether or not G is

especially large, we can put the probably generally

into an MD framework, as done, for example, by

Loeb and Bound (1996), who had G  36

cohort-division groups and many observations per

group. For each group g, write

ygm  g  zgmg  ugm.     (17)
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where we assume random sampling within group

and independent sampling across groups.

Generally, the OLS estimates withing group are

Mg -asymptotically normal. The presence of xg

can be viewed as putting restrictions on the

intercepts, g, in the separate group models in (2.8).

In particular,

g    xg,g  1, . . . ,G,     (18)

where we now think of xg as fixed, observed

attributes of heterogeneous groups. With K

attributes we must have G ≥ K  1 to determine 

and . In the first stage, we obtain the ̂g, either by

group-specific regressions or pooling to impose

some common slope elements in g. Let V̂ be the

G  G estimated (asymptotic) variance matrix of
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the G  1 vector ̂. Then the MD estimator is

̂  X′V̂−1X−1X′V̂−1̂     (19)

The asymptotics are as each group size gets large,

and ̂ has an asymptotic normal distribution; its

estimated asymptotic variance is X′V̂−1X−1. When

separate regressions are used, the ̂g are

independent, and V̂ is diagonal.

∙ Can test the overidentification restrictions. If

reject, can go back to the DL approach (or find

more elements of xg. With large group sizes, can

justify analyzing

̂g    xg  cg,g  1, . . . ,G     (20)

as a classical linear model because

̂g  g  OpMg
−1/2, provided cg is normally

distributed.

24



3. What if G and Mg are Both “Large”?

If we have a reasonably large G in addition to large

Mg, we have more flexibility. In addition to

ignoring the estimation error in ̂g (because of large

Mg), we can also drop the normality assumption in

cg (because, as G gets large, we can apply the

central limit theorem). But, of course, we are still

assuming that the deviations, cg, in

g    xg  cg, are at least uncorrelated with xg.

We can apply IV methods in this setting, though, if

we have suitable instruments.

4. Nonlinear Models

∙Many of the issues for nonlinear models are the

same as for linear models. The biggest difference

is that, in many cases, standard approaches require

distributional assumptions about the unobserved
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group effects. In addition, it is more difficult in

nonlinear models to allow for group effects

correlated with covariates, especially when group

sizes differ.

Large Group Asymptotics

We can illustrate many issues using an unobserved

effects probit model. Let ygm be a binary response,

with xg and zgm, m  1, . . . ,Mg,g  1, . . . ,G

defined as in Section 1. Assume that

ygm  1  xg  zgm  cg  ugm ≥ 0
ugm|xg,Zg,cg~Normal0, 1

    (21)
    (22)

(where 1 is the indicator function). Then

Pygm  1|xg, zgm,cg    xg  zgm  cg,     (23)

where  is the standard normal cumulative

distribution function (cdf).
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∙We already discussed the issue of quantities of

interest, including parameters and average partial

effects.

∙ For estimation, if we assume cg is independent of

xg,Zg with a Normal0,g2 distribution, then

pooled probit consistently estimates the scaled

coefficients (multiplied by 1  c2−1/2). The

pooled or partial maximum likelihood estimator is

sometimes called a pseudo maximum likelihood

estimator

∙ If we add the conditional independence

assumption that ug1, . . . ,ug,Mg are independent

conditional on xg,Zg,cg then we can use random

effects probit, albeit in an unbalanced case. As we

saw before, all parameters are identified.

∙ A challenging task, and one that appears not to

27



have gotten much attention for true cluster samples,

is allowing correlation between the unobserved

heterogeneity, cg, and the covariates that vary

within group, zgm. For linear models, we know that

the fixed effects estimator allows arbitrary

correlation, and does not restrict the within-cluster

dependence of ug1, . . . ,ug,Mg. Unfortunately,

allowing correlation between cg and

zg1, zg2, . . . , zgMg. Even if we assume normality

and exchangeability in the mean, we must at least

allow for difference variances:

cg|zg1, . . . , zg,Mg ~Normal  z̄g,a,Mg2 ,     (24)

where a,Mg2 denotes a different variance for each

group size, Mg. Then the marginal distributions are

Pygm  1|Zg    zgm  z̄g/1  a,Mg2 1/2.     (25)

28



Any estimation must account for the different

variances for different group sizes. With very large

G and little variation inMg, we might just use the

unrestricted estimates ̂Mg , ̂Mg , ̂Mg, estimate the

APEs for each group size, and then average these

across group size. But more work needs to be done

to see if such an approach loses too much in terms

of efficiency.

∙ The methods of Altonji and Matzkin (2005) can

be applied to allow more flexible relationships

between cg and z̄g, say, or other functions of

zg1, . . . , zg,Mg

∙ The logit conditional MLE applies to cluster

samples without change, so we can estimate

parameters without restricting Dcg|zg1, . . . , zgMg.

A Small Number of Groups and Large Group
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Sizes

∙ Unlike in the linear case, for nonlinear models

exact inference is unavailable even under the

strongest set of assumptions. But approximate

inference is if the group sizes Mg are reasonably

large

∙With small G and random sampling of

ygm, zgm : m  1, . . . ,Mg write

Pygm  1|zgm  g  zgmg     (26)

g    xg,g  1, . . . ,G.     (27)

Using a minimum distance approach, in a first step

we estimate a series of G probits (or pool across g

to impose common slopes), obtain the group “fixed

effects” ̂g,g  1, . . . ,G. Then, we impose the

restrictions in (26) using linear MD estimation –
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just as before. Now, the asymptotic variances

Avar̂g come from the probits.

∙ The DL approach also applies with largeMg but

we again must assume g    xg  cg where cg

is independent of xg and homoskedastic normal. As

in the linear case, we just use classical linear model

inference in the equation ̂g    xg  cg,

provide G  K  1.

∙ The same holds for virtually any nonlinear model

with an index structure: the second step is linear

regression.

Large G and Large Mg

∙ As in the linear case, more flexibility is afforded

if G is somewhat large along with large Mg because

we can relax the normality assumption in cg in

analyzing the regression ̂g on 1, xg, g  1, . . . ,G.
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∙ A version of the method proposed by Berry,

Levinsohn, and Pakes (1995) for estimating

structural models using both individual-level and

product-level data, or market-level data, or both can

be treated in the large G, large Mg framework,

where g indexes good or market and m indexes

individuals within a market. Suppose there is a

single good across many markets (so G is large)

and we have many individuals within each market

(the Mg are large). The main difference with what

we have done up until now is that BLP must allow

correlation between xg (particularly, price) and the

unobserved product attributes in market g, cg. So,

the second step involves instrumental variables

estimation of the equation ̂g    xg  cg. If the

Mg are large enough to ignore estimation error in
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the ̂g, then the second step can be analyzed just

like a standard cross section IV estimation. (BLP

actually derive an asymptotic variance that

accounts for estimation error in ̂g, along with the

uncertainty in cg, and simulation error – which

comes from difficult computational problems in the

first stage.)
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