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Abstract

This paper analyzes and extends the growing econometric literature on the economic impact of
information technology (IT).  I begin with a “meta-analysis” to systematically examine the results of
twenty empirical studies and show that much of the observed variation in estimates of the output
elasticity of IT is predictable and due to differences in model specification and econometric technique.
Using a single dataset for U.S. industries, I then find similar variation across alternative specifications
and estimation methods.  Most results show a productivity effect from IT-use, but the point estimate of
the elasticity is fragile and depends on the details of the estimation.
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I. Introduction

It is now fifteen years since Robert Solow introduced the “computer productivity paradox” to

the economics profession with his observation that productivity growth remained sluggish despite the

computer revolution.  In recent years, however, U.S. productivity has improved dramatically and the

perception of information technology (IT) has reversed – IT is now seen by many as the driving force

behind the resurgence of U.S. productivity growth after 1995.

This nearly unanimous viewpoint reflects a flood of diverse empirical work on the output and

productivity effects of IT.  Aggregate growth accounting studies, for example, report large

productivity contributions from both IT-producing and IT-using industries, while industry-level

comparisons show that IT-intensive industries enjoyed the largest productivity gains after 1995.

Similarly, production function estimates using firm or industry data typically report a significant link

between IT and output, and industry-specific case studies have documented large benefits from IT in

industries as varied as trucking and health care.1

This evidence clearly points to a positive productivity effect from IT.  But, how large?  Are

the productivity effects large enough to create “excess returns”?  Or is IT a normal piece of capital that

earns normal returns?  On these questions, there is considerably less agreement.  Figure 1 shows a

histogram of 41 estimates of the output elasticity of IT (IT-elasticity) from 20 econometric studies.2

The median estimate is 0.046, but there is obviously considerable variation with estimates ranging

from –0.06 to 0.24.  This is perhaps not surprising as the studies differ along important dimensions

like sample period, level of aggregation, measure of IT, production function specification, estimation

technique, and other regressors.  Nonetheless, this wide variation obscures our understanding of the

impact of IT and highlights methodological questions about estimating output elasticities.

The purpose of this paper is to put some order and structure on this set of divergent results.  I

begin with a “meta-analysis” that looks for predictable differences in estimates of the IT-elasticity

based on study characteristics like sample period, level of aggregation, or econometric specification.

The second part of the paper uses U.S. industry data for 1987 to 2000 to estimate IT-elasticities from a

variety of plausible specifications and alternative estimation techniques.  A single, consistently defined

dataset allows one to gauge the sensitivity of the estimates to methodological variation, to identify

                                                     
1Aggregate growth accounting studies for the U.S. include Baily (2002), Council of Economic Advisors (2001),
Gordon (2000), Jorgenson, Ho, and Stiroh (2002), Jorgenson (2001), Jorgenson and Stiroh (2000), Oliner and
Sichel (2000, 2002).  Industry-level studies include Baily and Lawrence (2001) and Stiroh (forthcoming). Many
firm-level studies are surveyed by Brynjolfsson and Hitt (2000) and are discussed later.  Hubbard (2001) and
Athey and Stern (2002) are specific case-study examples.
2Section II provides details on these papers and how they were selected.
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which factors are the most critical, and to test the predictions of the meta-analysis.  Because estimates

do vary widely, I take a full-disclosure approach and report estimates from a large number of

production function regressions.

The meta-analysis shows that a good deal of the variation in IT-elasticities across studies is

predictable and reflects differences in specifications and empirical methods.  For example, inclusion of

fixed effects or estimation in first differences tends to lower estimates, while more aggregated data or

use of later data tends to raise it.  These types of study characteristics explain about 35% of the

variation in the IT-elasticities across studies and support the idea that there is indeed a productivity

effect from IT.  If the estimates had been largely unpredictable, idiosyncratic data differences would

be driving the results entirely and the case for a pervasive relationship would be weaker.

Results from U.S. industry data support the predictions of the meta-analysis and suggest that

IT does matter, although the specific point estimate of the IT-elasticity is fragile.  For example, the

estimated elasticity of computer capital from a basic log-levels regression with gross output as the

dependent variable and year dummy variables is 0.047, while inclusion of industry fixed effects drops

the point estimate to 0.012.  This variation has very different implications for the role of IT – the first

result suggests possible excess returns, while the second appears consistent with normal returns in a

neoclassical world.  In contrast, weighting industries or estimating a labor productivity regression with

constant returns imposed does not change the estimate substantially. 

Simultaneity is also an important issue and various instrumental variable (IV) techniques are

compared to the more common ordinary least squares (OLS) results.  The preferred IV regression that

controls for both unobserved industry heterogeneity and simultaneity shows a positive impact from IT,

although the point estimate is imprecise and the data just fail to reject the null hypothesis that both

computer and telecomm capital have an elasticity of zero.  The estimated elasticity of all types of

capital are individually insignificant, however, which suggests the results most likely reflect weak

instruments, possibly due to the high persistence in capital, or small sample biases rather than a lack of

impact from IT.   

This new evidence generally supports the view that IT does matter, but the wide variation

means that one must be very cautious in putting too much faith in a specific estimate and that

observers must remain cognizant of differences across studies.  Moreover, this variation raises

concerns about publication and specification search biases.  Because economic theory makes clear

predictions about both the sign and the magnitude of the IT-elasticity, researchers and referees may

have a predisposition towards reporting and accepting only those results with the “right” sign and
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magnitude.  The fragility of the estimates under plausible sets of alternative modeling assumptions

suggests that this is a real concern in the context of estimating IT-elasticities.

II. A Meta-Analysis of the Impact of IT

Meta-analysis is a “means of combining the numerical results of studies with disparate, even

conflicting research methods and findings…to discover the consistencies in a set of seemingly

inconsistent findings (Hunt (1997, pg. 1)).  The idea behind a meta-analysis is that a systematic,

quantitative analysis of the similarities and differences in results and methodologies across related

studies can offer new insights into the underlying relationships.  More specifically, a meta-regression

uses some result (an estimated coefficient or the significance level of some test) from a series of

related papers as the dependent variables in a cross-section regression that employs study

characteristics (sample period, econometric techniques, assumptions) as independent variables.  By

identifying the study characteristics most highly correlated with results, one can hope to better

understand why studies reach different conclusions and learn something about the underlying

relationship.

This approach has gained widespread acceptance in medical and social sciences, and it is

becoming increasingly popular as a methodological tool for evaluating the accumulating econometric

evidence on a wide variety of topics.  Stanley (2001) summarizes this work and shows how meta-

analysis has been successfully applied in a variety of economic research areas including studies of

minimum wage effects, tests of Ricardian equivalence, the returns to education, and many other

empirical topics.

In addition to helping to organize and codify a set of disparate findings, meta-analysis has also

been a useful methodological tool to search for potential publication bias and specification search bias

(Card and Krueger (1995)).  Publication bias reflects the possibility that journals are more likely to

publish papers with significant results, while specification bias results if researchers focus on and

report only those estimates with the “right” sign and magnitude.  Card and Krueger (1995), for

example, argue that the published empirical work on the minimum wage with time-series data appears

to be biased with statistically significant results over-sampled in the literature.  This is a legitimate

concern in the current application, and is discussed below.

This section describes a meta-regression analysis for the output elasticity of information

technology (IT-elasticity) from econometric estimates of production functions.  Figure 1 shows that

estimates of the IT-elasticity vary widely across studies and this type of meta-analysis can help explain

whether the variation reflects idiosyncratic differences in the underlying data or predictable

differences due to alternative methodological choices made by the researchers.  I first discuss how IT-
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elasticities have typically been estimated in the literature, and then describe the meta-analysis

methodology and results.

a) A Meta-Regression for the IT-Elasticity

Econometric estimates of production functions have a long history in economics and many

recent papers have expanded the set of inputs to explicitly account for IT.3  In its simplest form, an

extended Cobb-Douglas production function can be expressed as:

(1) εββββ ++++= MLKKY MLNONNONITIT lnlnlnlnln

where Y is real gross output, KIT is IT capital, KNON is non-IT capital, L is labor, and M is intermediate

inputs, all for different firms or industries at different points in time.  Firm and time subscripts are

suppressed for exposition.

The coefficient of interest is the estimate of βIT, which is the elasticity of output with respect

to IT capital (IT-elasticity).  There are a number of ways to estimate Equation (1), however.  One can

estimate it directly in levels, or if one believes there is some unobservable fixed component in ε, it can

be estimated in first differences or with a fixed effect.  One can allow for shifts in the production

function (technological progress) by explicitly including time effects.  If constant returns to scale are

assumed, variables can be transformed into to per labor units.  One can drop intermediate inputs and

use a value-added measure of output as the dependent variable.  Estimation can be done with ordinary

least squares (OLS) or, if one explicitly recognizes the simultaneity issue, with instrumental variables.

Data may be for firms or industries, and the time periods may vary. 

The purpose of this meta-regression is to relate estimates of βIT to specific study

characteristics.  To find the relevant research papers, I searched twenty prominent academic journals,4

National Bureau of Economic Research and Social Science Research Network working papers, and

working papers and publications at major economic organizations like the OECD and the Federal

Reserve System after 1990 for the following keywords: “productivity,” “production function,” “labor

productivity,” “production,” “computers,” and “information technology.”   The journals were also

searched manually for any relevant work that did not include these keywords.  Once candidate papers

were identified, reference sections were examined for other cited papers.  

                                                     
3See Griliches and Mairesse (1998) for a historical view of production function estimates.
4American Economic Review, Brookings Papers on Economic Activity, Canadian Journal of Economics,
Econometrica, Economic Journal, Journal of Business, Journal of Economic Literature, Review of Economic
Dynamics, Journal of Productivity Analysis, Journal of Economic Growth, Journal of Industrial Economics,
Journal of Political Economy, Quarterly Journal of Economics, Review of Economic Studies, Review of
Economics and Statistics, RAND Journal of Economics, Journal of Applied Econometrics, Journal of
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This search yielded about 110 published papers and working papers related to IT.  Of these, 20

econometrically estimated production functions like Equation (1) with some measure of IT as an

explanatory variable.  A key point emphasized by Stanley (2001) is that all relevant studies should be

included, so I made no attempt to discriminate based on paper quality or result.  Each study often

reported many estimates, so I identified the authors’ most discussed result as the “preferred” result.  If

several results were emphasized, these were also recorded, which led to 41 estimates of βIT in the

“full” meta-regression database.  Table 1 shows the author, publication date, journal, and the

“preferred” IT-elasticity for each study.5

I next identified major differences between studies, which constitute the “moderator” or

independent variables for the meta-regression.  Because I am focusing on the IT-elasticity, this

amounted to differences in the estimation of production function regressions and in data.  An initial

examination of the papers identified eleven potentially important differences across studies (Table 2).

After these variables were created for all studies, four variables (Instruments, Flexible Functional

Form, Cross-Section, and Between Effects) had to be dropped, however, due to insufficient variation

across studies.  This left seven independent variables for the meta-regression.6  Finally, note that the

default specification (all dummy variables set to 0) is a Cobb-Douglas, value-added regression

estimated in levels via OLS with firm-level data.

b) Results and Discussions 

The first column of Table 3 reports estimates of the meta-regression for the preferred sample.

The only significant coefficients are the Aggregate and Average Sample Period dummies, which

indicate that firm-level estimates are typically smaller than estimates from more aggregate data and

that studies done with more recent data tend to have larger IT-elasticities.  Of course, the small sample

size makes statistical significance hard to interpret, and the point estimates of the other variables do

                                                                                                                                                        
Econometrics, Journal of Economic Perspectives, Journal of Labor Economics, Economics of Innovation and
New Technology.
5Growth accounting studies or econometric studies that did not explicitly estimate an IT-elasticity were
excluded, which led to the exclusion of several well-known papers.  For example, Berndt and Morrison (1995)
and Greenan et al. (2001) include the ratio of high-tech capital to total capital in a labor productivity regression,
but did not estimate IT-elasticities.  Morrison (1997) and Gera, Gu, and Lee (1999) estimate the marginal
product of IT, rather than the elasticity.  Siegel (1997) uses total factor productivity as the dependent variable.
Greenan and Mairesse (1996) use data on the share of worker who use a personal computers as their measure of
IT intensity, while Licht and Moch (1999) use count variables on the number of IT equipment.  All of these
studies were excluded from the meta-regression.
6Note that I have not included the precise definition of IT as a regressor, i.e., computer hardware or hardware
plus software or computers plus telecomm equipment.  This obviously effects the magnitude of the estimated
elasticity, but wide variation in the measure across studies made it impractical to identify.  These differences will
show up in the error term, and as long as the definition of IT is not correlated with methodological choices, then
this should not be a problem.
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seem largely reasonable.  For example, estimates from gross output regressions are typically smaller as

expected, and inclusion of fixed effects tends to reduce the estimated elasticity.

The second column reports estimates from the full sample.  Here, the results are qualitatively

similar, and statistical significance increases.  The results indicate that first differencing, using firm-

level data, focusing on manufacturing, including fixed effects, and using early data all tend to lower

the estimated IT-elasticity.  A somewhat surprising result is that the conditional difference between

gross output and value-added regressions is essentially zero.  In the raw data, however, the mean IT-

elasticity for the 20 estimates from value-added regressions was 0.068 and the mean IT-elasticity for

the 19 estimates from gross output regression was 0.042 (p-value=0.20 for test of difference in means).

As a final point, it should be noted that the statistical significance of some of these estimates is not

very robust; exclusion of a single observation can sometimes change the significance substantially.

A key result from the meta-analysis is that a good deal of the variation in the estimated IT-

elasticity is predictable – the adjusted-R2 around 0.35 in both regressions – and reflects the

researchers’ choices of methodology and specification.7  This suggests that there is some consistency

within the wide range of empirical estimates in the literature, which strengthens the belief that there is

an underlying relationship between IT and output.  If the estimates had appeared totally unpredictable,

evidence for a true relationship would be much weaker.

Large variation, whether predictable or not, however, begs the question of what is the best

way to estimate an IT-elasticity.  Should the output concept be value-added or gross output?  Should

estimation be done with fixed effects that will likely lower the estimate or in levels, which will likely

raise it?  Should OLS or an instrumental variable technique be used?  Economic and econometric

theory provide some guidance, e.g., separability assumptions might inform the choice of a value-added

or gross output production function, evidence on unobserved heterogeneity will determine the

appropriateness of fixed effects, and beliefs about the nature of productivity shocks might guide

suitable instruments.  Moreover, the preferred specification is likely to depend on the question at hand.

For example, researchers interested in the precise impact of IT might favor fixed effects, while those

interested in the broader impact of the IT revolution may not.  Nonetheless, researchers must remain

cognizant of these differences and recognize that methodological choices matter a great deal and make

comparisons across studies quite difficult.

                                                     
7The remaining variation is due to other characteristics of the study not included here: differences in data,
differences in IT definition, specification error in the meta-regression, and random error.
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A related issue is publication bias and specification search bias.  This is a legitimate concern

here because neoclassical production theory makes clear predictions about both the sign and the

magnitude of an estimated elasticity: if markets are competitive and returns are constant, elasticities

should equal factor shares.  Factor shares are relatively easy to measure, so researchers may have

strong priors about the expected IT-elasticity and may search specifications and econometric

techniques until the “right” coefficient emerges, while journal editors may be more inclined to publish

those papers.  Indeed, many of the papers explicitly compare the estimated IT-elasticity to the

observed factor share to provide supporting evidence for the reasonability of the results.  While it is

difficult to gauge the magnitude of this concern, the wide range of estimated coefficients suggests that

it cannot be ignored.

The remainder of the paper explores these issues more fully by estimating IT-elasticities from

a single database for U.S. industries, but with alternative specifications and methodologies.  This will

provide more direct evidence on the practical effects of different estimation choices and allows a better

understanding of the reasons for variation in the IT-elasticities across studies.

III. Data

The primary data are the “Gross Domestic Product by Industry” developed by the Bureau of

Economic Analysis (BEA) and described in Lum and Moyer (2001).  These data include real output

(both gross output and value-added), intermediate purchases, and labor (measured as full-time

equivalent employees (FTE)) for 61 detailed industries at roughly the two-digit Standard Industrial

Classification (SIC) level.  This data is available for 1987-2000 for all industries, and for 1977-2000

for a subset of consolidated industries.  For example, Business Services (SIC #73) and Social Services

(SIC #83) only have complete data back to 1987, while Electronic and Other Electric Equipment (SIC

#36) and Instruments and Related Products (SIC #38) are combined for the early period.

It is useful to be clear about the distinction between the two output concepts used by BEA.

Gross output is “sales or receipts and other operating income, commodity taxes, and inventory

change,” while value-added is industry gross output “minus its intermediate inputs (which consists of

energy, raw materials, semifinished goods, and services that are purchased from domestic industries or

from foreign sources ((Lum and Moyer (2001, pg. 17)).”  Both are expressed in real terms based on a

Fischer quantity index.  For all private industries after 1987, the BEA employs the “double deflation

method” to estimate real value-added.  This approach essentially subtracts intermediate inputs from
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gross output in current prices and in base-year prices, and then uses the ratio to construct a real-value-

added ratio that can be chained together to form an index series.8

Both output concepts are regularly employed in production analysis and have relative

advantages and disadvantages.  Basu and Fernald (1995) argue that “value added is not a natural

measure of output and can in general be interpreted as such only with perfect competition (pg. 251),”

but it does have the appealing property that nominal value-added sums to GDP (ignoring the statistical

discrepancy).  Gross output is more readily available in some cases, e.g., firms are more likely to

report sales than payments to primary factors, but one also need details on intermediate inputs for a

complete production analysis.  In the context of estimating IT-elasticities, about half of the studies use

a gross output measure, and this paper examines both. 9

BEA also produces detailed investment and capital stock data for detailed industries in its

“Fixed Reproducible Tangible Wealth” survey described by Herman (2001).  These data are available

for 62 industries at roughly the two-digit level for 62 distinct reproducible assets including three IT

asset categories – computer hardware, computer software, and telecommunications equipment.  The

BEA capital data, however, is not ideal for productivity analysis.  As discussed by Whelan (2002), the

BEA capital stock data are “wealth stocks” and not the conceptually more appropriate “productive

stocks.”  In addition, a measure of capital service flows, which accounts for substitution between

assets with different marginal products, is preferred to a stock measure.

To avoid these problems, I use the BEA investment data by industry and by asset to construct

estimates of capital service flows using the methodology detailed by Jorgenson and Stiroh (2000).  In

short, I create estimates of real investment by asset by deflating nominal investment across industries

by the aggregate price index for each asset.10  Estimates of real capital stocks are then obtained from

the familiar perpetual inventory equation where depreciation rates are taken from Jorgenson and Stiroh

(2000), which in turn are largely based on Fraumeni (1997).  Important exceptions are the depreciation

rate for computer hardware and automobiles, which are estimated as the best geometric approximation

to the non-geometric patterns employed by BEA.   For the IT assets, the geometric depreciation rates

are 0.315 for hardware and software and 0.11 for communications equipment.

                                                     
8See Yuskavage (1996) for formulas and details.
9Several papers in the meta-analysis use gross output (or sales) as the independent variable, but do not have
detailed data on intermediate materials (Brynjolfsson and Hitt (1996), Hempell (2002), Lehr and Lichtenberg
(1999), and Lichtenberg (1995), Wolff (2002).  This suggests a potentially important specification bias, and the
common solution is to include industry and time effects and hope that the material ratio does not vary
systematically across firms in a given industry at a point in time.
10The aggregate price of each asset is the calculated as the sum of nominal investment across industries divided
by the sum of real investment.  This avoids the noise in the industry-specific deflators.
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For each asset in each industry, I then assume that capital services are proportional to the two-

period average of the current and lagged stock as in Jorgenson and Stiroh (2000) and Oliner and Sichel

(2002).  To aggregate assets, I use the capital service prices (rental price) for each asset from the work

of Jorgenson, Ho, and Stiroh (2002) and create aggregates as Tornquist indices of the components.

While the use of aggregate service prices misses the industry dimension, it captures the most important

factors, namely the depreciation rates and revaluation terms.  For example, on an economy-wide basis,

the service price for computer hardware fell 23.6% per year from 1995 to 2000, while the service

prices for software and telecommunications equipment fell only 1.7% and 4.3% per year, respectively.

This variation reflects large differences in the BEA investment deflators, which declined by 21.6% per

year for hardware from 1995 to 2000, but only 0.5% and 2.9% per year for software and

telecommunications, respectively.11

This procedure yields estimates of capital service flows from 1960 to 2000 for various

categories of assets.  Industry total capital (K) includes all 62 fixed reproducible capital assets

available in the BEA data, equipment includes 39 types of equipment and software, and structures

includes the remaining 23 types of structures.  Equipment can be further broken down into IT (KIT) and

non-IT components (KNON).  IT capital includes computer hardware (mainframes, personal computers,

storage devices, printers, terminals, tape drives, and integrated systems), computer software

(prepackaged, custom, and own-account), and telecommunications equipment (KCOMM).  I also create

an aggregate of hardware and software, which I call computers (KCOMP).  Non-IT capital includes non-

IT equipment and software (KEQU) and structures (KSTR).  The structure of the capital data is:

(2) 
),(
),(

),(

STREQUNONNON

COMMCOMPITIT

NONIT

KKKK
KKKK

whereKKKK

=
=

=

The two primary datasources are combined to create an internally consistent set of production

accounts for 58 industries from 1987 to 2000.12  These industries account for all private industry

output in 2000.  To summarize, each industry has data for output (gross output and value-added),

capital services and capital stocks (total, structures, equipment, IT, non-IT, computers,

                                                     
11See Jorgenson and Stiroh (2000) and Jorgenson (2001) for more on these relative price differences.
12While BEA produces both the output and capital data, the industry lists are not identical, so I aggregated
industries to obtain the maximum number of consistently defined industries with data from 1987 to 2000.  For
the longer period 1977-2000, 49 consistently-defined industries are available, which account for about 71% of
2000 private industry output.  The following empirical work focuses on the sample of 58 industries with the
longer time series dimension, and results are similar for the 49 industries for 1977-2000.
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telecommunications, other equipment), labor (full-time equivalent workers (FTE)), and intermediate

inputs.  All inputs and outputs are measured in both nominal and real dollars.

Table 4 shows the average revenue shares for each of these inputs; the top panel reports

unweighted averages of 58 industries for 1987, 1995, and 2000 and the bottom panel reports FTE-

weighted estimates.  As mentioned above, neoclassical assumptions about competitive markets and

constant returns to scale imply that output elasticities should equal income shares, so these shares are

often used to gauge the reasonability of production function estimates.  Each input share is calculated

as the nominal value of the input divided by the nominal value of gross output for each industry.  The

value of intermediate inputs is available directly from BEA, the value of labor is defined as all

compensation of employees (wages, salaries, and supplements) plus two-thirds of proprietor’s income,

and the value of capital income is equal to the aggregate asset-specific service price multiplied by the

quantity of capital services, summed over all assets in the industry.13

The first thing to note is that revenue shares of all inputs do not sum to 1.0.  This primarily

reflects the exclusion of indirect business taxes (IBT) and the imputed nature of capital income.  IBT

account for about 9% of private industry GDP, so this suggests that capital income is about right.

Second, intermediate inputs are the largest input, accounting for about half of the value of output for

the average industry, followed by labor at about 32% and capital at about 16%.  Within capital,

computers and telecomm each account for only about 1-2% of total revenue.  

At face value, these shares provide a benchmark for estimated elasticities.  In a gross output

regression, one might reasonably expect an elasticity of around 0.50 for intermediate materials, 0.30

for labor, 0.13 for non-IT capital, and 0.02 for IT capital.  In a value-added regression, the IT-elasticity

should be higher, in the range of 0.03-0.04.  Of course, this is a reasonable benchmark only under the

neoclassical assumptions.  Hall (1988) and Basu and Fernald (1995, 1997) discuss the implications of

imperfect competition for estimates of technological change and returns to scale, while Stiroh (2001)

discusses reasons why estimated elasticities may differ from factor shares, e.g., production spillovers,

excess returns, omitted variables, or measurement error.

As a final point, it is useful to consider the importance of the service price framework.  As

mentioned above, IT assets, particularly computer hardware, have relatively large depreciation rates

and large negative revaluation terms, which means IT has a large service price (user cost) and must

provide high marginal products to cover the loss in value as it ages and obsolesces.  A high return to

                                                     
13BEA includes proprietor’s income in its “property-type income” category, but some of this is the return to
capital owned by small businesses.  I arbitrarily include two-thirds of this income as labor income because
labor’s share of income is traditional thought to be in this range.
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IT, therefore, is not necessarily indicative of excess returns, but also reflects the relatively large user

cost.  At a practical level, large service prices raise the share of IT.  For example, in 2000, IT assets

accounted for about 10% of the nominal capital stock, but 19% of the nominal capital service flow,

which directly reflects the relatively large service prices of IT.

IV. Production Function Estimates

This section examines how estimates of IT-elasticities actually vary across different empirical

specifications and methodologies within a single dataset.  To this end, I use the industry-level data for

58 industries from 1987 to 2000 for the remaining analysis and systematically vary how the estimation

is done.  I begin with the most straightforward specification for Equation (1) and gradually incorporate

additional features and alternative methods.  In particular, I am interested in whether the factors

identified in the meta-regression have the predicted effect on the estimate of the IT-elasticity and how

much variation one can obtain under plausible specifications.  As mentioned above, I take a full-

disclosure approach and report estimates from all of these alternative specifications.

a) Basic Value-Added and Gross Output Estimates

Table 5 begins with a basic OLS, log-levels regression with real value-added as the dependent

variable, total capital and labor as the only inputs, and year dummy variables:

(3) titttiLtiKti DLKV ,,,, lnlnln εδββ +++=

where V is real value-added, K is the industry total capital service flow, L is labor, all for industry

581K=i  in year 20001958K=t .  Dt is a set of year dummy variables, Dt=1 in year t and Dt=0

otherwise.

The results (column 1) look reasonable and show an estimated elasticity for both capital and

labor that are near revenue shares; together they imply constant returns to scale.  Breaking out capital

into the IT and non-IT components (KIT and KNON) yields similar estimates of the labor elasticity, while

the estimate of the IT-elasticity (0.096) is much bigger than the revenue share.  Again, constant returns

cannot be rejected.  The final value-added regression includes the full capital breakdown, which

breaks out IT capital into computers and telecommunications equipment (KCOMP, KCOMM) and non-IT

capital into other equipment and structures (KEQU, KSTR).  These estimates show a very large estimate

for the computer elasticity (0.13), an insignificant elasticity on telecomm, and continued constant

returns.

A first useful comparison is between these value-added estimates and those from a gross

output regression.  The next three columns of Table 5 use real gross output as the dependent variable

and include real intermediate materials as an explanatory variable:
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(4) titttiMtiLtiKti DMLKY ,,,,, lnlnlnln εδβββ ++++=

where Y is real gross output.

In the basic specification with total capital (column 4), estimated elasticities are close to their

revenue shares, although materials appears too large, while labor appears somewhat too small.

Estimates of returns to scale have increased, but remain constant.  When capital is broken down into

the IT and non-IT components (column 5), the estimate of the IT-elasticity remains large and

statistically significant.  Column 6 includes the full capital breakdown and shows a very large

elasticity on computers (0.047), an elasticity for telecomm above its factor shares (0.026), and a

surprising negative, although not statistically significant, coefficient on other equipment.

These results show large differences in estimated IT-elasticities between the value-added and

gross output specifications.  This is not surprising, of course, as the capital and labor elasticities from a

gross output production function should equal the elasticity from a value-added production function

multiplied by one minus the material share, if the neoclassical assumptions hold.  In this data, the

average material share is about 0.50, which suggests capital and labor elasticities should be about half

as large in the gross output regression.  Here, the labor coefficients are about 40% as large as in the

value-added regression, while the capital coefficients change considerably.  The coefficient on

computer capital, for example, falls from 0.129 in the value-added regression to 0.047 in the gross

output regression, while the coefficient on communication capital increases from 0.012 to 0.026.

In terms of the meta-regression, about half of the estimated IT-elasticities are based on value-

added (mean IT-elasticity of 0.042) and half on gross output (mean IT-elasticity of 0.066), although

the conditional difference in the meta-regression is much smaller and not significant.  The estimates in

Table 5 also show large differences between the gross output and value-added estimates, but the

differences do not always match the simple accounting explanations, and suggest some other possible

specification bias or failure of key assumptions.

Which to believe?  There is reason to have more faith in the gross output regressions.  Work

by Basu and Fernald (1995, 1997) shows that value-added estimates may suffer from an important

omitted variable bias.  If there is imperfect competition, the elasticity of materials can exceed its factor

share, implying that constructed measures of real value-added fail to account fully for the productive

contribution of intermediate inputs.   Moreover, if material growth is procyclical, this will tend to bias

the estimated elasticities upward.  Finally, gross output appears to be the more natural measure of firm

output, so the remainder of this paper focuses on the gross output results.

A second issue is estimation in levels or in per unit of labor variables.  Under the assumption

of constant returns to scale, the specification with the full capital breakdown can be transformed to:
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where lower-cases indicate that variables are per unit of labor.

Conceptually, if returns are constant, there is no difference in estimating elasticities with a

level regression (column 6) or with a per unit of labor regression (column 7).  The estimates, in fact,

are quite close.  This supports the meta-regression, which found no systematic difference in IT-

elasticities estimated from levels or per unit of labor regressions.

A third observation from these regressions is the importance of decomposing capital into its

constituent parts.  In the gross output levels specification, for example, computers have a large positive

elasticity of 0.047, while telecomm has a smaller elasticity of 0.026.  Similarly, within non-IT capital,

structures capital appear highly productive with an estimated of 0.115, while other equipment shows

an elasticity of –0.018.  The point about aggregation effects has been made in the R&D context by

Lichtenberg (1990) and in the IT context by McGuckin and Stiroh (2002), and these results support

the notion that aggregation can obscure considerable heterogeneity across types of capital.14

Overall, these regressions show large and statistically significant estimates of IT-elasticities.

In fact, the estimates, particularly for computer capital, appear to be “too large,” at least with respect to

their factor shares.  One interpretation is that this reflects true “excess returns” in the sense that the

marginal returns to computers outweigh marginal costs (Lichtenberg (1995) and Lehr and Lictenberg

(1999)).  In this case, IT investment, particularly computers, is highly profitable, which raises the

question of why there is not even more investment.  

Alternatively, there could be a standard omitted variable bias; if IT is correlated with

productivity-enhancing inputs that are excluded from the regression, it would be biased upward.

Bresnahan, Brynjolfsson and Hitt (2002), for example, report a strong correlation and productive

complementarities between IT and human capital, which is not accounted for in these regressions.

Similarly, Black and Lynch (2001a, 2001b) document the importance of complementary workplace

practices and Hempell (2002) finds strong complementarity between process innovation and IT.  In

this interpretation, the elasticity of computer elasticity is a “marker” of omitted attributes and is simply

picking up the productive effects of the missing inputs (Brynjolfsson and Hitt (1995)).  If these

unobserved variables are fixed over time, then inclusion of an industry fixed effect should help.

A related explanation centers on adjustment costs (Brynjolfsson and Hitt (1996), Brynjolfsson

and Yang (2001), and Kiley (2001)).  Here, computers must have high returns to cover the large

                                                     
14Aizcorbe (1990) develops econometric tests for the appropriateness of certain types of aggregation.
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adjustment costs that accompany their successful deployment.  Brynjolfsson and Yang (2001), for

example, estimate computer hardware and software costs account for only about 20% of the total start-

up costs for a typical enterprise resource planning (ERP) system.  These additional costs are rightly

thought of as investment, and it may appear that computers have excess returns if they go unmeasured.

A final explanation is econometric.  If output and inputs respond to the same shocks, the

coefficients suffer from an upward simultaneity bias.  The potential for simultaneity bias is a well-

known concern in the production function literature and is addressed later.

To summarize, these alternative OLS regressions yield three conclusions about estimating an

IT-elasticity.  One, estimates differ between value-added and gross output production functions,

although the differences are not always as expected.  Two, it is important to disaggregate capital,

particularly computers from telecomm equipment.  Three, estimates vary very little between level and

per unit of labor regressions.  The remainder of the paper, therefore, uses gross output as the

dependent variable with four distinct types of capital as explanatory variables as the benchmark and

varies other dimensions of the estimation procedure to examine the effect on the IT-elasticity.

b) Alternative Gross Output Estimates

Table 6 presents alternative estimates of the benchmark gross output specification:
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where column 1 repeats the OLS estimates for reference.

The first question is whether or not to include time trends.  It is well known that IT investment

and capital has steadily grown in importance.  BEA, for example, reports that the real growth rates of

computer capital, software capital, and telecomm capital were 24.5%, 12.3%, and 6.7% per year for

1990-2000, respectively, which is much faster than the 2.5% annual growth of aggregate private fixed

assets.  The previous regressions have all included year dummy variables, which take out the average

variation over time and identify the production function parameters primarily through the cross-

sectional variation.  This, however, may be removing an important part of the IT story.  When year

dummy variables are excluded (column 2), the coefficient on computer capital rises by about one-

third, while the other coefficients remain roughly constant.  Because one wants to control for overall

technological progress, it seems reasonable to leave the year dummy variables in, but it should be

pointed out that coefficients are typically larger when they are excluded.

A second issue is the definition of capital.  As discussed earlier, the flow of capital services is

the appropriate measure for productivity analysis, but it is more difficult to construct and most studies

use the stock of capital.  When the capital stock is substituted for the capital service flow (column 3),



15

the results are virtually identical.  In this context, this is not too surprising because capital service

flows differ from capital stocks due to aggregation effects when there are large differences between

service and asset prices.  The assets where this likely matters are computers and telecomm, but these

assets are already isolated in the benchmark specification.  Thus, there is little aggregation effect from

different asset weights, which suggests that earlier studies that have used capital stocks rather than

capital services are not likely to be materially biased.

The next two columns report weighted least squares (WLS) rather than OLS; column 4 uses

labor weights and column 5 uses output weights.  In a related context, Kahn and Lim (1998) argue that

WLS is appropriate because the variance of residuals is inversely related to industry size, perhaps

because data is noisier in smaller industries.  Moreover, this might provide a better historical view of

the U.S. economy as a whole because industries vary enormously in size and the classifications are

somewhat arbitrary.  Empirically, the residuals from the base specification do in fact have a higher

standard deviation in small industries, suggesting that some weighting is desirable.15  A more formal

test of cross-sectional heteroskedasticity across industries decisively rejects the null of equal variances

across industries.16  In this application, therefore, weights seem appropriate, but they have only a small

effect on the results.  The remainder of the paper uses labor weights (log of full-time equivalent

employees) where possible.

The bottom line from these regressions is that computer capital in particular appears highly

productive.  The estimated elasticity varies little from 0.047 in the benchmark OLS regression to 0.045

in the labor-weighted regression but does increase when year dummy variables are dropped, while the

estimated elasticity of communications equipment varies from 0.026 in the OLS regression to 0.023 in

the labor-weighted regression.   The next section performs several robustness tests to further examine

the strength and stability of the estimated IT-elasticity.

c) Split Sample Estimates

Table 7 presents estimates of the benchmark gross output specification from Equation (6) with

labor weights for various sub-samples to serve as robustness checks.  Column 1 repeats the benchmark

WLS results for all 58 industries from 1987 to 2000.  The next column drops the two industries that

actually produce most IT hardware, Industrial Machinery and Equipment (SIC #35) and Electronic and

Other Electric Equipment (SIC #36).  There has been some discussion that much of the productivity

gains from IT are concentrated in those industries that actually produce IT hardware, but these results

                                                     
15I calculated the simple correlation between the standard deviation of the residuals from the base specification
(Table 6, column 1) and average log output and average log labor; the correlations were –0.32 for the 58
industries.



16

show that the elasticities of computers and telecomm equipment are both slightly higher outside of

these industries.  This suggests that the productive benefits from IT-use are not concentrated in these

two high-tech producing industries.  The other elasticities and estimate of scale economies are

virtually unchanged.

One can take this split even farther and allow the estimated coefficients to vary between

manufacturing and non-manufacturing industries.  I do this by allowing all coefficients (including year

dummy variables) in Equation (7) to vary between manufacturing and non-manufacturing industries

as:
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where MFGi is a dummy variable set equal to 1 for manufacturing industries and zero otherwise.17

Columns 3 and 4 report results from this regression; column 3 shows the uninteracted

coefficients for non-manufacturing industries (e.g., βCOMP) and column 4 shows the sum of the

uninteracted and interacted coefficient for manufacturing industries (e.g., βCOMP+γCOMP).  First, the

data overwhelmingly reject the null hypothesis that the non-manufacturing and manufacturing

coefficients are equal, i.e., that the interaction terms are jointly zero, which suggests different

production functions across broad sectors.  Second, returns to scale appear different, with decreasing

returns in manufacturing.  This is similar to Basu et al. (2001) who find the largest decreasing returns

in non-durable manufacturing.18

Both the computer and telecomm capital coefficient are slightly larger in manufacturing,

although not statistically different.  Brynjolfsson and Hitt (1995) also found little differences in

estimated elasticities for computer capital and labor between manufacturing and services.  Thus, it

                                                                                                                                                        
16Greene (1990, pg. 467).
17This set of complete interactions is identical to separate OLS regressions and this joint estimation was done
simply to allow for easier hypothesis testing.
18Basu and Fernald (1997) report conflicting evidence; two-stage least squares estimates of returns to scale are
larger in the private economy than in manufacturing, while OLS estimates show slightly larger returns to scale in
manufacturing.
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appears there is little variation between these broad sectors.  Note that this counters the meta-analysis,

which showed that manufacturing studies typically had smaller estimates of the IT-elasticity.

Columns 5 and 6 report a second split sample regression, this time along the time dimension.

Recall that one of the more robust results from the meta-regression was that the IT-elasticity was

generally larger for studies of later periods.  This seems intuitive as IT has become an increasingly

important input, and one can examine this by allowing the coefficients to vary over time.  I do this by

estimating a regression similar to Equation (7), except that I replace the manufacturing dummy with a

time dummy set equal to 1 for years 1996-2000 and 0 for years 1987-1995.

Overall, the data reject the equality of the coefficients between the two periods, primarily due

to large differences in the intermediate inputs, telecomm capital, and structure capital coefficients.

There is a decline in the computer elasticity, but the difference is not statistically significant.

Telecomm capital, however, show a much larger elasticity in the later period, which suggests that this

asset has had important productivity effects in recent years.

d) Unobservable Industry Heterogeneity Estimates

All of the regressions reported so far have ignored any unobservable, industry-specific

differences in the production process.  Given the enormous differences in fundamental production

issues like the pace of technological progress, regulatory issues that impact competitive forces, or

industry life-cycle factors, etc., it may be more reasonable to specifically allow for unobserved

heterogeneity across industries.  To do this, one can decompose the error term into an industry-specific

component and a classical error term:
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where αi is the industry fixed effect and υi,t is a disturbance term that reflects measurement error and

productivity shocks.

Equation (8) can be estimated in several ways depending on how one views the composite

error term.  Ignoring potential simultaneity problems for now, the obvious solutions are to estimate

Equation (8) as is with OLS (a “within” estimator) or to estimate it in first differences in order to

remove the fixed effect.  Historically, however, the fixed effect approach has generally led to

disappointing results with insignificant capital coefficients and implausibly low returns to scale

(Griliches and Mairesse (1998)).  In the IT-context, Brynjolfsson and Hitt (1995) report a decline in

their computer elasticity from 0.109 in an OLS regression to 0.052 in a fixed effect regression, while

Hempell (2002) shows a decline in the IT-elasticity from 0.24 in a pooled levels regression to 0.016 in
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a within regression.  The meta-analysis also shows this: including fixed effects drops the estimated IT-

elasticity by 0.066 according to the full sample regression reported in Table 3.

Table 8 reports various estimates of Equation (8).  I emphasize that these results ignore the

simultaneity problem and the fixed effect results implicitly assume that productivity shocks are

uncorrelated with all inputs in all periods (strict exogeneity); this assumption is explored more fully in

the following subsection.  I report four types estimates – fixed effects, first differences, fixed effects

with first differences, and long differences – for the full capital breakdown.

Column 1 again reports the benchmark WLS results.  Column 2 with industry-specific fixed

effects is quite different from the benchmark.  In terms of the IT-components, both fall as predicted by

the meta-regression, and neither is statistically different from zero.  Estimated elasticities on other

equipment rises, however, and the estimate of returns to scale increases dramatically from 1.01in the

basic WLS regression to 1.29 in the fixed effect regression.  Both of these increases counter the pattern

described in Griliches and Mairesse (1998), and reflect the large increase in the other equipment

coefficient.

Estimation in first differences (column 3) yields very poor results.  The intermediate input

elasticity falls far below it’s share and the elasticity of labor rises to around 0.7.  This likely reflects

the relatively high persistence of capital variables, so that changes are primarily noise, and the relative

variability of labor, where year-to-year changes are more meaningful.  All of the capital coefficients

except other equipment are essentially zero, and telecomm and structures are negative, although very

imprecisely estimated.  Again, this type of decline in the IT-elasticity is consistent with the meta-

regression, which shows smaller estimates in first difference regressions.  As a concrete example, the

IT-elasticity in Brynjolfsson and Hitt (2000) falls from 0.030 in a panel to 0.012 in first differences in

one dataset, and from 0.025 to –0.002 in another.

As a final point about the basic fixed effect and first difference regressions, it is interesting to

note the differential impact of the year.  If the year dummies are excluded from columns 2 and 3 (not

shown), the estimated elasticity on computers rises substantially in the fixed effect regression

(coefficient = 0.070, s.e.=0.009), but remains roughly constant in the first difference regression

(coefficient = 0.027, s.e.=0.027).  This suggests that it is quite important to control for the overall time

trend, but less so for changes in the time trend.

An even more ambitious specification includes fixed effects in the first difference regression

as in Basu et al. (2001).  Typically, one either includes fixed effects or uses first differences to remove

the unobserved fixed factor, but it may be reasonable to include a fixed effect in a first difference

regression (“within differences” in Griliches and Mairesse (1998)).  For example, the error terms in
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Equation (8) partially reflect productivity shocks and it is plausible to assume that shocks to

productivity growth vary systematically across industries.  The IT-producing industries, for example,

have consistently shown faster total factor productivity growth than other industries.  Estimates of a

first difference regression with fixed effects (column 4) are also poor, however, with a large estimate

of the elasticity of labor and a large negative coefficients on structures.  The coefficient on structures,

which drives the returns to scale parameter to only 0.53, suggests that there are important cross-

industry differences in the time trend of this variable.  The estimate of the computer capital coefficient

is large, but imprecisely estimated.

The last three columns include “long difference” estimates where the growth rate of each

variable is calculated as the average across either a 5, 10, or 13 year period.19  As in the first difference

regressions, this effectively removes the unobserved component.  The added advantage is that longer

differences help to remove classical measurement error that may be present in first differences, but at

the expense of lost information (Griliches and Mairesse (1998)).  In the IT-context, Brynjolfsson and

Hitt (2000) find that the estimated return to IT increases with the length of their long difference

estimates, which they interpret as evidence of complementarity and adjustment costs.

These results do not show any obvious pattern for computer or telecomm coefficients; they are

typically small and imprecisely estimated.  The coefficients for intermediate inputs and labor seem

reasonable and, like the fixed effect and first difference results, the coefficient on other equipment

capital is large when the unobserved coefficient is removed.  This suggests that within variation in

other equipment is important, but gets swamped by cross-industry differences in the levels regressions.

It is difficult to draw specific conclusions about the magnitude of the IT-elasticity from these

results and one needs a more fully developed model of unobserved heterogeneity to choose between

alternatives.  The only clear point is that it matters a great deal for all types of elasticities how one

deals with unobserved heterogeneity.  This general point is not new, but in the context of

understanding the productive impact of IT, these comparisons show that researchers’ choices have a

considerable impact on the conclusions.  As seen earlier in the meta-analysis, inclusion of fixed effects

or estimation in first differences substantially lowers the estimated elasticity of IT capital and

generates a much more pessimistic view of the IT revolution.

e) Instrumental Variable Estimates

                                                     
19Each long difference regression uses the maximum number of observations available.  For example, the 13 year
difference regression has only one observation per industry (1987-2000), while the 10 year difference regression
has 4 observations per industry (1987-1997, 1988-1998, 1989-1999, 1990-2000), etc.
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The final issue relates to the simultaneity problems surrounding the entire production function

literature.  The key point, discussed at length by Griliches and Mairesse (1998), is that inputs are not

really independent variables, but are chosen by the firms in some behavioral fashion.  If the factors

that determine inputs are fixed, then the fixed effect approach described above can satisfactorily solve

the problem if one is willing to assume that all explanatory variables are strictly exogenous.  If one

believes that there is a fixed component and that shocks are correlated with inputs choices, e.g., firms

hire more labor when a positive productivity shock raises the marginal product of labor, then one

should use first differences to remove the unobservable component and suitable instruments to account

for endogeneity.  It is worth noting that despite the well-known nature of this problem only seven of

the twenty papers included in the meta-analysis econometrically account for simultaneity through an

instrumental variable approach.20

Instruments, however, are hard to come by: one needs variables that are correlated with inputs

(the right-hand side variables) and uncorrelated with productivity shocks (the error term in Equation

(8)) and the production function literature has pursued several alternatives.  The micro-econometric

literature developed by Arellano and Bond (1991), Arellano and Bover (1995), Blundell and Bond

(1998a, 1998b), and others has focused on “internal” instruments such as lagged independent

variables, while macro work by Hall (1988), Basu and Fernald (1995, 1997) and Basu et al. (2001) has

used demand-side instruments like oil prices, defense spending shocks, and monetary policy shocks.

This section will pursue both approaches.21

Table 9 compares instrumental variables (IV) approaches with the more common OLS

approach.  Column 1 reports OLS estimates for the levels specification in Equation (6).  The results

are similar to the weighted regressions in Table 8, and the two IT coefficients are large, and

statistically significant both individually and jointly (p-value=0.003 for the null that both are equal to

zero).22   Column 2 then reports the fixed effect estimates as in Equation (8) and again the results are

similar to the weighted estimates with insignificant IT coefficients (p-value=0.80 for the same null).

Column 3 reports IV estimates of the fixed effect specification where estimation is via the

generalized method of moments (GMM) framework developed by Arellano and Bover (1995) and

                                                     
20These papers are Dewan and Kramer (2000), Hempell (2002), Brynjolfsson and Hitt (1996, 2000), McGuckin
and Stiroh (2002), and Stiroh (2001, 2002).
21A third approach using input-output data has been developed by Shea (1993a, 1993b).  This approach,
however, is not applicable for many non-manufacturing industries that do not produce intermediate inputs.  Even
within manufacturing, Shea (2002b) finds that less than half of the industries have plausible instruments from
input-output data.
22Weights are not included to be consistent with the IV estimates.
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Blundell and Bond (1998a) where lagged first differences are used as instruments.23  The estimates for

intermediate inputs and labor are similar to the OLS estimates, while none of the capital coefficients

are significantly different from zero.  This IV estimate provides weak evidence that IT capital matters,

although the test that both the computer and telecomm capital coefficients are zero cannot be rejected

(p-value=0.17).  The lack of precision of all capital coefficients, however, suggests that this may be

reflective of weak instruments, rather than a lack of a true underlying relationship.  Strictly speaking,

however, estimating the GMM levels equation with fixed effects is appropriate only if the correlation

between regressors and the fixed effect is constant over time and a stationarity condition is met, so I

now turn to the first difference estimates.

To provide a benchmark, column 4 reports the OLS first difference estimates; this removes the

unobservable fixed component, but does not account for the simultaneity problem.  As in the weighted

regressions in Table 8, these estimates are poor with insignificant and often negative capital

coefficients.  The two IT capital coefficients are far from joint significance (p-value=0.55).  Column 5

reports IV estimates where instruments are lagged levels and estimation is via GMM (Arellano and

Bond (1991)).24  The estimates for intermediate input and labor elasticities are somewhat improved,

i.e., closer to factor shares, but all capital coefficients remain insignificant.

A third GMM approach, developed by Blundell and Bond (1998a), is a “system GMM

estimator (SYS-GMM)” from a stacked system of first difference equations (with lagged levels as

instruments) and levels equations (with lagged first differences as instruments).  These estimates

(column 6) are the most sensible: returns to scale are constant, both intermediate inputs and labor are

near their factor shares and are estimated very precisely, and the capital coefficients are mostly

plausible.25  Here, the point estimate of both computer and telecomm capital are near factor shares, but

estimated imprecisely.  The p-value associated with the null of their joint significance is 0.15.  The

SYS-GMM estimates reflect state-of-the-art econometric methodology and provide some evidence

productive impact from IT, although all the capital coefficients are estimated imprecisely.  Finally,

note that the SYS-GMM estimates essentially recover the GMM level estimates (column 3).  This

                                                     
23All GMM estimation is done with DPD98 described by Arellano and Bond (1998).  Reported GMM estimates
are the one-step estimates with robust standard errors.
24Due to problems inverting the instrument matrix with a large number of lags, I use a single lag for intermediate
inputs and labor and two lags for capital, rather than all available lags as is conceptually feasible.  This reduces
the efficiency of the estimates, but avoids the possible over-fitting problems from a large number of instruments
(Arellano and Bond (1998), pg. 8).
25To avoid an overly large instrument matrix, the instrument set included one lag of first differences and one lag
of levels for intermediate inputs, labor, and the capital components.
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suggests that the input series have relative large auto-regressive components so that identification is

coming from the levels and not the differences, which would be mostly noise.

A second IV approach used by Hall (1988), Basu and Fernald (1995, 1997), Basu et al. (2001),

and others incorporates demand-side variables as instruments, i.e., variables that are hopefully

correlated with inputs, but uncorrelated with technology.  In particular, Basu et al. (2001) use oil

prices (current and one lag), defense spending shocks (current and one lag), and monetary policy

shocks as instruments for industry-level regressions of output growth on input growth, and I follow

this approach. 26  One difficulty, however, is that their defense spending shocks are constant after

1980, so I cannot include the full capital breakdown.

Before discussing results, I should point out that Basu et al. (2001) are interested in different

questions and focus on estimating returns to scale and utilization parameters.   Therefore, they do not

decompose input growth into specific components, but rather regress output growth on the growth of

an aggregate of all inputs (a Tornquist aggregate of materials, labor, and capital using average input

shares as weights), and various adjustments terms for returns to scale, utilization, and adjustment

costs.  In principle, one can simply include the components rather than the aggregate, but I use the

same instrument set with more right-hand side variables, so this is asking a good deal more of these

aggregate instruments.

Column 6 of Table 9 reports estimates of an OLS regression in the spirit of Basu et al. (2001),

i.e., output growth on input growth. 27 The coefficient of 0.86 implies decreasing returns to scale; Basu

and Fernald (1997) estimate 0.83 in a similar regression.  The demand-side IV approach (column 7)

shows a much larger coefficients (1.16), bigger standard error, and the data reject constant returns to

scale.  If productivity shocks induce input growth, then one would expect a positive bias in the OLS

estimates, but these results show larger estimates of scale economies in the IV regressions.  Column 8

uses the same IV approach, but decomposes total input growth into the materials, labor, and two

capital components (IT capital and non-IT capital).  There appears to be little predictive power from

these instruments for capital input growth as the estimates are all far from factors shares and

imprecisely estimated.  This could reflect the weakness of the instruments (Nelson and Startz (1990)),

which may lead to considerable small-sample bias.

To summarize, the most plausible IV estimates are from the SYS-GMM framework that

estimates a stacked system of equations in levels and first differences.  In this case, labor and material

                                                     
26I thank John Fernald for providing these data to me.
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coefficients are near factor shares and the various capital coefficients have some explanatory power.

Other IV estimates are generally disappointing.  This divergence highlights both the difficulty and the

importance of accounting for simultaneity issues in production function analyses and offers one

explanation for why most studies in the meta-analysis did not explicitly deal with the issue.  Standard

IV techniques do not seem to generate “reasonable” results, and researchers and journals may be less

inclined to report results that differ from prior expectations.  As econometric techniques continue to

improve and become incorporated into standard econometric software packages, researchers interested

in the impact of IT will need to address the simultaneity issue more seriously.

V. Conclusions

The large and growing literature on the economic impact of information technology has fueled

a surge in optimism surrounding the IT revolution.  The estimates reported in this paper do not refute

the optimistic view, but both the meta-analysis and the new econometric results suggest caution when

trying to precisely quantify the impact of IT.  Reasonable differences in econometric techniques yield

a wide range of estimates of the output elasticity of IT, which have very different implications for how

important IT has been for the U.S. economy.

Estimating production functions in levels is the most common technique in the literature, and

virtually all of the level estimates from U.S. data show a large elasticity for IT.  This implies either

excess returns for IT or some important omitted variable.  The omitted variable interpretation seems

most sensible as a growing body of microeconomic work stresses the importance of complementary

innovations like improved workplace practices and firm reengineering for the successful deployment

of IT.  If one specifically accounts for unobserved heterogeneity via fixed effects or estimation in first

differences, the IT-elasticity falls substantially.  A pessimistic interpretation is that IT does not really

matter, and has simply been receiving credit for productivity gains more appropriately attributed to

other fixed factors.  This interpretation seems too strong, however, because all capital coefficients tend

to be smaller in these specifications, and it is unlikely that all physical capital is really unproductive.

The most promising IV estimates are from the system-GMM estimator.  Here, the point

estimates for computer and telecomm capital are consistent with normal returns.  Other IV estimates

are weaker, but this may be more reflective of weak instruments than of a lack of a productive impact

from IT.  Future empirical research on IT needs to take this simultaneity issue more seriously and

                                                                                                                                                        
27This is not exactly the Basu et al. (2001) approach because they estimate via three-stage least squares rather
than in a panel, allow parameters to vary across broad sectors, include fixed effects, and include terms for
adjustment costs and utilization changes.
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examine the possible biases that remain from small samples and weak instruments.  A Monte Carlo

analysis of synthetic production function data, for example, could shed some light on these issues.

An important implication of the variation in the estimated IT-elasticities is the potential for

publication and specification search bias.  The range of estimates from seemingly plausible

specifications raises the possibility that the set of published results is not truly representative of the

research performed.  This is always a concern in empirical work, of course, but seems especially

problematic in this application due to the strong priors about the elasticity from a basic neoclassical

framework.  The results reported here suggest that researchers have a great deal of discretion in the

types of estimates they report.  If researchers are more inclined to report only those estimates that

conform to prior expectations and journals are more likely to publish the same, then the published

literature will over-sample the basic OLS, levels regressions that provide those answers.  Indeed, the

majority of papers in the IT/productivity literature do focus on estimates of levels regressions without

a great deal of attention to unobserved heterogeneity or simultaneity issues.

The bottom line result from this paper is that IT does matter, but one must be careful about

putting too much weight on any given estimate.  The preferred estimate in this analysis, the system-

GMM estimator that accounts for both unobserved heterogeneity and simultaneity, suggests that IT

earns normal returns.  This is somewhat reassuring, because the existence of either sustained excess

returns or large investment in an unproductive asset counters the notion of rational, profit-maximizing

firms.  Moreover, the existence of normal returns provides empirical grounding for the influential

growth accounting literature, which implicitly assumes normal returns to all factors.  If this is the case,

the emerging consensus that IT played a critical role in the U.S. productivity revival remains intact.
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Figure 1: Histogram of IT-Elasticities
41 Estimates from 20 Studies
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Estimated
# Authors Year Journal IT-Elasticity

1 Bresnahan, Brynjolfsson, and Hitt 2002 Quarterly Journal of Economics 0.035
2 Brynjolfsson and Hitt 1995 Economics of Innovation and New Technology 0.052
3 Brynjolfsson and Hitt 1996 Management Science 0.017
4 Brynjolfsson and Hitt 2000 Mimeo 0.030
5 Caselli and Paterno 2001 Bank of Italy, WP #419 0.031
6 Department of Commerce 1997 EA/OPD 97-3 0.105
7 Dewan and Kremer 2000 Management Science 0.051
8 Dewan and Min 1997 Management Science 0.104
9 Hempell 2002 ZEW, WP 0.075

10 Kiley 2001 Carnegie-Rochester Conf. Series 0.060
11 Lee and Barua 1999 Journal of Productivity Analysis 0.024
12 Lehr and Lichtenberg 1998 Journal of Industrial Economics 0.061
13 Lehr and Lichtenberg 1999 Canadian Journal of Economics 0.077
14 Lichtenberg 1995 Economics of Innovation and New Technology 0.100
15 Loveman 1994 In "IT and the Corporation of the 1990s: Research Studies" -0.060
16 McGuckin and Stiroh 2002 Economic Inquiry 0.177
17 Steindel 1992 Quarterly Review, FRBNY 0.026
18 Stiroh 2001 FRBNY, WP #115 0.045
19 Stiroh 2002 Review of Income and Wealth -0.003
20 Wolff 2002 NBER, WP #8743 -0.006

Mean 0.050
Standard Deviation 0.050

Table 1: Studies Included in Meta-Analysis

Notes: List presents preferred estimate of the IT-elasticity from each paper.  Section II describes creation of the database.



Variable Definition Preferred Full

IT-Elasticity Estimated elasticity of output with respect to information technology (IT) 0.050 0.054

Labor Productivity = 1 if dependent variable was labor productivity (output per labor); = 0 if output 0.250 0.220
Gross Output = 1 if dependent variable was gross output; = 0 if value-added 0.600 0.512
First Differences = 1 if estimation was done in differences or system of differences & levels; = 0 if levels 0.400 0.317
Instruments = 1 if estimation used some type of instrumental variables; = 0 if not 0.150 0.098
Flexible = 1 if estimation employed flexible functional form; = 0 if not 0.050 0.098
Aggregate = 1 if data were aggregated (industries or countries); = 0 if not (firms or business units) 0.400 0.415
Manufacturing = 1 if data were only for manufacturing; = 0 if not 0.250 0.244
Cross-Section = 1 if data were for a single cross-section;  = 0 if a panel 0.050 0.024
Fixed Effects = 1 if a fixed effects model; = 0 if not 0.250 0.268
Between Effects = 1 if a between effects model; = 0 if not 0.000 0.049
Average Sample Period = mean of sample period 1987.7 1987.9

Table 2: Variables for IT-Elasticity Meta-Regression

Notes: Preferred sample includes 20 observations, one from each study. Full sample includes 41 observations. In the meta-regression, Average Sample
Period is normalized by the mean average sample period.

Dependent Variable

Independent Variables

Mean



Independent Variables

Labor Productivity 0.011 0.031
(0.028) (0.030)

Gross Output -0.015 0.001
(0.022) (0.018)

First Differences -0.006 -0.041 **
(0.021) (0.018)

Aggregate 0.046 * 0.062 ***
(0.024) (0.020)

Manufacturing -0.039 -0.054 *
(0.028) (0.027)

Fixed Effect -0.041 -0.066 ***
(0.026) (0.020)

Average Sample Period 0.005 * 0.006 **
(0.003) (0.003)

Constant 0.061 *** 0.065 ***
(0.018) (0.015)

Adjusted R2 0.318 0.392
No. Obs. 20 41

 ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Notes: The dependent variables is the estimated IT-elasticity. The preferred sample includes
one estimate from each of 20 different studies, while the full sample includes 41 observations,
between one and four estimates from each study. Reported coefficients are from OLS
regressions. All independent variables are dummy variables, except for Average Sample Period,
and defined in Table 2.

Table 3: Meta-Regression Results

Preferred Full
Sample



1987 1995 2000

Total Revenue Share 96.4 98.4 98.8
Intermediate Inputs 47.6 49.8 50.0
Labor 33.3 32.6 32.1
Capital 15.5 16.0 16.8

Computers 1.3 1.4 1.8
Telecomm 0.9 1.1 1.1
Other Equipment 6.2 6.4 7.2
Structures 7.1 7.0 6.6

Value-Added Share 52.4 50.2 50.0

Total Revenue Share 92.0 92.0 91.8
Intermediate Inputs 42.6 42.9 41.4
Labor 39.9 39.6 40.6
Capital 9.5 9.5 9.8

Computers 1.6 1.4 1.9
Telecomm 0.5 0.6 0.6
Other Equipment 3.9 4.0 4.3
Structures 3.5 3.4 3.0

Value-Added Share 57.4 57.1 58.6

Unweighted Mean

Weighted Mean

Table 4: Average Revenue Shares

Notes: All summary statistics are for the 58 industries that are consistently defined from
1987 to 2000. Weighted mean uses full-time equivalent workers as the weights. Each
revenue share is defined as nominal input payments divided by nominal gross output.
Value-added share is defined as nominal gross product originating (value-added) divided
by nominal gross output.  All values are percentages.



Intermediate Inputs 0.600 *** 0.614 *** 0.612 *** 0.611 ***
(0.015) (0.014) (0.016) (0.015)

Labor 0.631 *** 0.594 *** 0.550 *** 0.255 *** 0.223 *** 0.220 ***
(0.015) (0.017) (0.018) (0.011) (0.011) (0.011)

Capital 0.373 *** 0.160 ***
(0.020) (0.012)

IT Capital 0.096 *** 0.059 ***
(0.013) (0.007)

Non-IT Capital 0.305 *** 0.113 ***
(0.023) (0.013)

Computer Capital 0.129 *** 0.047 *** 0.048 ***
(0.015) (0.009) (0.009)

Telecomm Capital 0.012 0.026 *** 0.026 ***
(0.009) (0.006) (0.006)

Other Equipment Capital 0.044 *** -0.018 -0.018
(0.017) (0.011) (0.011)

Structure Capital 0.246 *** 0.115 *** 0.114 ***
(0.020) (0.011) (0.010)

Returns to Scale 1.00 0.99 0.98 1.02 1.01 1.00
CRS p-value 0.830 0.754 0.285 0.145 0.384 0.834

No. Obs. 812 812 812 812 812 812 812
Adjusted-R2 0.854 0.860 0.877 0.954 0.957 0.961 0.908

Table 5: Basic Value-Added and Gross Ouptut Estimates

Notes: Estimates are from OLS regressions for 58 industries from 1987 to 2000 and include year dummy variables. Robust standard errors are
reported in parentheses. IT Capital includes computer hardware, software, and telecommunications equipment. Computer Capital includes
hardware and software. All variables are measured in logs. CRS p-value reports the p-value associated with a test of the null hypothesis that
the sum of the input coefficients equals 1.0.
 ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Value-Added Gross Output
Gross Output

per Labor
(1) (2) (3) (4) (5) (6) (7)



Intermediate Inputs 0.612 *** 0.628 *** 0.614 *** 0.607 *** 0.617 ***
(0.016) (0.017) (0.016) (0.015) (0.016)

Labor 0.220 *** 0.203 *** 0.220 *** 0.235 *** 0.219 ***
(0.011) (0.010) (0.011) (0.011) (0.011)

Computer Capital 0.047 *** 0.061 *** 0.046 *** 0.045 *** 0.048 ***
(0.009) (0.009) (0.009) (0.009) (0.009)

Telecomm Capital 0.026 *** 0.025 *** 0.027 *** 0.023 *** 0.025 ***
(0.006) (0.006) (0.006) (0.006) (0.006)

Other Equipment Capital -0.018 -0.022 * -0.020 * -0.010 -0.020 *
(0.011) (0.012) (0.011) (0.011) (0.011)

Structure Capital 0.115 *** 0.108 *** 0.115 *** 0.113 *** 0.120 ***
(0.011) (0.011) (0.011) (0.010) (0.011)

Returns to Scale 1.00 1.00 1.00 1.01 1.008
CRS p-value 0.834 0.744 0.801 0.132 0.413

No. Obs. 812 812 812 812 812
Adjusted-R2 0.961 0.960 0.961 0.961 0.961

(4)
Benchmark

Capital
Stock

(1) (2) (3)

Table 6: Alternative Gross Ouptut Estimates

 ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Notes: Estimates are from OLS or WLS regressions for 58 industries from 1987 to 2000 with gross output as the dependent variable. All
regressions except column 2 include year dummy variables. Robust standard errors are reported in parentheses. Weights are either the log of
full-time equivalent employees (labor weights) or log of gross output (gross output weights). Computer Capital includes hardware and
software. All variables are measured in logs. CRS p-value reports the p-value associated with a test of the null hypothesis that the sum of the
input coefficients equals 1.0.

(5)

Gross Output
Weights

Labor
Weights

No Year
Dummies



Intermediate Inputs 0.607 *** 0.603 *** 0.607 *** 0.787 *** 0.507 *** 0.630 ***
(0.015) (0.016) (0.026) (0.018) (0.040) (0.015)

Labor 0.235 *** 0.236 *** 0.245 *** 0.061 *** 0.230 *** 0.231 ***
(0.011) (0.011) (0.017) (0.011) (0.035) (0.011)

Computer Capital 0.045 *** 0.050 *** 0.056 *** 0.071 *** 0.064 *** 0.042 ***
(0.009) (0.009) (0.010) (0.018) (0.020) (0.010)

Telecomm Capital 0.023 *** 0.024 *** 0.015 *** 0.020 -0.017 0.031 ***
(0.006) (0.006) (0.006) (0.015) (0.015) (0.005)

Other Equipment Capital -0.010 -0.005 0.000 0.026 ** 0.007 -0.014
(0.011) (0.011) (0.013) (0.013) (0.037) (0.011)

Structure Capital 0.113 *** 0.109 *** 0.096 *** -0.030 0.158 *** 0.106 ***
(0.010) (0.010) (0.011) (0.019) (0.035) (0.011)

Returns to Scale 1.01 1.02 1.02 0.94 0.95 1.02
CRS p-value 0.132 0.067 0.136 0.000 0.094 0.008
Split p-value

No. Obs. 812 784
Adjusted-R2 0.961 0.962

(1) (2) (3) (4)

Table 7: Split Sample Regressions

Notes: Estimates are from WLS regressions for 58 industries from 1987 to 2000 with gross output as the dependent variable and include year
dummy variables. Robust standard errors are reported in parentheses. Weights are the log of full-time equivalent employees. IT-producing
industries include SIC #35 and #36. Industry split sample regression allows all coefficients (including year dummy variables) to vary between
manufacturing and non-manufacturing industries; see text for details. Time split sample regression allows all elasticities to vary between the
two time periods; see text for details. Computer Capital includes hardware and software. All variables are in logs. CRS p-value reports the p-
value associated with a test of the null hypothesis that the sum of the input coefficients equals 1.0.
 ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Benchmark
Drop

IT-Producing Mfg
Industry Split

1987-1995 1996-2000
Time Split

Non-Mfg

0.000 0.005

(5) (6)

812
0.965

812
0.962



Intermediate Inputs 0.607 *** 0.506 *** 0.323 *** 0.297 *** 0.487 *** 0.553 *** 0.558 ***
(0.015) (0.027) (0.023) (0.023) (0.028) (0.037) (0.078)

Labor 0.235 *** 0.497 *** 0.743 *** 0.655 *** 0.552 *** 0.394 *** 0.490 **
(0.011) (0.065) (0.093) (0.112) (0.059) (0.096) (0.234)

Computer Capital 0.045 *** 0.012 0.021 0.065 0.025 * 0.009 -0.011
(0.009) (0.011) (0.027) (0.046) (0.013) (0.013) (0.024)

Telecomm Capital 0.023 *** -0.001 -0.019 -0.027 0.001 -0.001 0.015
(0.006) (0.012) (0.027) (0.057) (0.014) (0.015) (0.032)

Other Equipment Capital -0.010 0.210 *** 0.182 * 0.017 0.186 *** 0.214 *** 0.244 *
(0.011) (0.052) (0.095) (0.131) (0.055) (0.072) (0.145)

Structure Capital 0.113 *** 0.062 -0.142 -0.471 *** 0.091 0.087 -0.206
(0.010) (0.147) (0.251) (0.146) (0.105) (0.181) (0.437)

Returns to Scale 1.01 1.29 1.11 0.53 1.34 1.26 1.091
CRS p-value 0.13 0.00 0.57 0.02 0.00 0.01 0.671

No. Obs. 812 812 754 754 522 232 58
Adjusted-R2 0.961 0.990 0.459 0.482 0.791 0.842 0.789

Long Differences

Table 8: Unobserved Industry Heterogeneity Estimates

(7)
13 Years10 Years5 YearsBenchmark Effects

Fixed First

Notes: Estimates are from WLS regressions for 58 industries from 1987 to 2000 with gross output as the dependent variable and include year dummy variables. Robust
standard errors are reported in parentheses. Weights are the log of full-time equivalent employees. Fixed effect regression includes an industry-specific dummy and first
difference regression one-period differences all input and output variables. Long differences include rolling n-period growth rates of each variable; the number of
observations varies with the number of n-period observations. Computer Capital includes hardware and software. All variables are in logs. CRS p-value reports the p-value
associated with a test of the null hypothesis that the sum of the input coefficients equals 1.0.
 ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

(5) (6)(4)(1)
Differences

Fixed Effects and
First Differences

(2) (3)



Intermediate Inputs 0.611 *** 0.480 *** 0.633 *** 0.302 *** 0.540 *** 0.630 *** 0.292
(0.045) (0.058) (0.060) (0.036) (0.051) (0.054) (0.572)

Labor 0.220 *** 0.537 *** 0.239 *** 0.762 *** 0.398 ** 0.239 *** 0.878
(0.036) (0.124) (0.047) (0.099) (0.156) (0.044) (0.629)

Computer Capital 0.047 * 0.012 0.014 0.027 0.025 0.021
(0.026) (0.020) (0.026) (0.025) (0.023) (0.022)

Telecomm Capital 0.026 * 0.000 0.025 -0.016 -0.015 0.018
(0.015) (0.027) (0.022) (0.036) (0.032) (0.020)

Other Equipment Capital -0.018 0.238 ** -0.015 0.194 ** 0.192 -0.010
(0.034) (0.100) (0.054) (0.090) (0.130) (0.055)

Structure Capital 0.115 *** 0.042 0.077 -0.157 0.060 0.079
(0.034) (0.153) (0.049) (0.232) (0.166) (0.049)

Total Inputs 0.856 *** 1.156 ***
(0.065) (0.158)

IT Capital 0.034
(0.167)

Non-IT Capital 0.863
(4.093)

Returns to Scale 1.00 1.31 0.97 1.11 1.20 0.98 0.86 1.16 2.07

Jt. Sig. of  IT Variables 0.00 0.80 0.17 0.55 0.54 0.15

Sargan Statistic 40.5 42.7 40.8
Sargan p-value 0.99 1.00 1.00

No. Obs. 812 754 812 754 754 812 754 754 754

Stacked First Differences

(6)

Levels

(4)
OLS-FE

First Differences

Table 9: Instrumental Variable Estimates

Notes: Estimates are for 58 industries from 1987 to 2000 and include year dummy variables. Robust standard errors are reported in parentheses. All variables are in logs. OLS-FE includes an
industry fixed effect. GMM-FE in levels includes an industry fixed effect and uses lagged first differences as instruments. GMM first difference estimates use lagged levels as instruments. SYS-
GMM estimates are from a stacked system of levels equations (with lagged first differences as instruments) and first difference equations (with lagged levels as instruments). Demand-side
instruments include growth in relative price of oil (current and lagged), relative price of oil (current and lagged), and monetary policy shocks (one lag). Jt. Sig. of IT Variables reports p-value
associated with Wald test of the joint significance of the Computer and Telecommm coefficients. Sargan Statistic is a test of overidentifying restrictions (null of valid instruments) and Sargan p-
value  is the associated p-value.

(9)

Internal Instruments Demand-side Instruments

OLS IV IV
(7) (8)

 ***, **, * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

OLS GMM-FE OLS GMM SYS-GMM
(1) (3)(2) (5)
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