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Abstract 
 

This paper measures scientific influence by means of citations to scientific papers.  Our analysis 
considers the top 110 research universities over the period 1981-1999 that account for the majority of 
academic research in the U.S.  The analysis takes into consideration 12 main fields of science that cover 
nearly all research in these institutions.  The data set derives from the Institute for Scientific Information 
(ISI) and consists of 2.4 million scientific papers and 18.5 million citations to these papers by top 110 
schools.    
 We find that citation channels of scientific influence are well defined and occur primarily within 
fields, and that cross-field citation channels are highly selective.  Cross-field channels appear to be 
symmetric between pairs of fields.  Scientific influence is primarily from top-ranked institutions to those 
less highly ranked, though there is a significant influence of lesser institutions on those that are higher-
ranked. In addition we find evidence suggesting that quality of university-fields is more strongly reinforced 
by surrounding institutions in the case of top-ranked university-fields.  Overall the results suggest that 
knowledge spillovers are important in academia, but are tightly circumscribed by field and intrinsic 
relevance. This suggests another limit on the returns to scale in the knowledge production function, in this 
case for basic research.      
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I. Introduction   

 This paper is part of a larger project, now reaching its maturity, which has engaged much of our 

attention in recent years1.  In the early going the goals of the project are to describe basic research 

interactions among the top 110 U.S. universities, among the top 200 U.S. R&D firms in the late 1990s, and 

between the universities and firms.  The time period of our investigation is 1981-1999; its scope includes 

all of science, and the data cover almost 3 million scientific papers and more than 20 million citations to 

these papers.  The focus of our work to date is not on patented technology, but rather on pre-technology 

basic science, though clearly the two can and do overlap. 

The present work provides detailed evidence on interactions among the 110 universities2.  Its purpose 

is to trace scientific influence across institutions and fields of science.  On this occasion space limitations 

confine our measurements to scientific influence as captured by a single indicator, citations to scientific 

papers from other scientific papers.  We assume that papers represent amounts of new knowledge 

produced, albeit variable amounts, and that, on the whole, citations to the papers indicate scientific 

influence.  We restrict the investigation to article citations even though other paths of influence can easily 

be imagined, not the least of which are close collaboration and mobility of graduate students from one 

school to another. 

We are interested in questions having to do with scientific influence of the following kind.  What is the 

comparative influence of research in one field on research in another?  How important are cross-field 

influences compared with influence within a field?  Are cross-field influences asymmetric, so that as 

between a pair of fields the more cited might be regarded as the more basic, in the sense of the one more 

relied upon?  What role does quality of graduate teaching and research play in scientific influence?  Could 

quality of a program interact with other high quality programs to reinforce excellence in science, as if to 

demonstrate an institutional Matthew Effect?3 

                                                 
1 During the planning phases of this project we had the indisputable advantage as well as the undeniable 
privilege of working with Zvi Griliches.  We deeply and profoundly regret that he did not live to see this 
work come to fruition. 
2 See the Appendix, table A-1 for the list of universities. 
3 The Matthew Effect says that past individual success in science leads to additional support, which in turn 
leads to future success.  Thus scientific achievement is cumulative.  See Merton (1973) and Zuckerman 
(1977) for more on this topic, including the intergenerational aspects of scientific excellence.  
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This paper has been strongly influenced by a larger literature.  Studies of wheat and maize and other 

crops by Evenson and Kislev (1975) point out limits to the usefulness of research aimed at one climatic 

region for productivity in other climatic regions. In this way their work suggests geographic limitations on 

the diffusion of research.  Scherer (1982a, b) uses input-output tables based on patent citations to map 

interindustry flows of technology.   By and large he finds that R&D used, as defined by the flow-through of 

product R&D from all industries to the using industry plus process R&D in the same industry, outperforms 

R&D from the industry of origin.  The implication is that pecuniary or technological externalities of R&D 

proceed along well-defined channels between industries.  Griliches (1979, 1992), besides providing a guide 

to the locus and kind of externality associated with R&D, also provides an overview of the literature of 

knowledge externalities and how one might go about measuring them.  He argues that knowledge 

externalities are more powerful than pecuniary externalities because of non-rivalry in the use of knowledge.  

But he emphasizes that knowledge externalities associated with R&D decrease with technological distance. 

Our measurements of scientific influence have been strongly affected by Jaffe (1986), which derives 

and implements the un-centered correlation between the distributions of two entities’ R&D among patent 

classes as a concrete measure of the distance between these entities, as discussed by Griliches (1979, 1992).  

This paper likewise owes much to the citations literature, including Trajtenberg (1990) and especially Jaffe 

and Trajtenberg (1999). 

Adams (1990) shows that the influence of stocks of scientific papers that are relevant to particular 

industries on productivity growth of other industries are limited by technological distance using the cosine 

measure of Jaffe (1986).  Adams and Jaffe (1996), in a plant-level study based on Census data, finds that 

the influence of R&D in the rest of the firm is not only limited by technological distance between firms but 

also by the technological distance within firms.     

The common thread that runs through these papers is that technology flows and knowledge 

externalities are tightly restricted by the limited relevance of the majority of knowledge generated in 

society, so that increasing returns are correspondingly limited.  The tenor of the findings reported in this 

paper as regards knowledge creation in academia are similar, in that knowledge flows proceed very 

selectively from one institution and science to another.  In this sense the knowledge production function for 

basic research that might be conceived of, based on the information presented here, while it would 
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undoubtedly provide evidence of significant knowledge flows between academic entities, would also 

suggest that the outcome of most academic R&D is tightly circumscribed.  Since academic science 

replenishes research opportunities in industry (and conversely), this result has a bearing on growth models, 

as represented for example by Romer (1990), and Jones (1995, 2002).  In the evolution of these models, 

scale effects in the knowledge production function have been steadily curtailed over time.  In this way 

opportunities for perpetual growth have increasingly been viewed as deriving from growth of R&D rather 

than its level, supported by a contribution from knowledge spillovers that is sufficient to avoid diminishing 

returns to research.  However, models of economic growth continue to assume that knowledge flows freely 

throughout entire economies and even the entire world4.   Our findings confirm that knowledge flows are 

extensive within the university system, but are still limited by the narrow applicability of most discoveries, 

as captured by citation frequency.  And yet the overall picture conveyed by the results is one of a vibrant, 

interactive system.  

The main findings are as follows.  First, citation within fields occurs at rates that are an order of 

magnitude greater than citation between fields.  This is so even if one stacks the deck in favor of those 

select cross-field interactions that are significantly different from zero.  Second, the number of significant 

cross-field interactions is less than one-fourth of the potential number.  Since we classify the data as falling 

into 12 fields, there are 11×12=132 potential cross-field interactions.  Roughly 30 of these differ from zero 

at the 5% level or better.  Together these observations suggest that knowledge flows are indeed bounded by 

scientific distance, just as there is evidence that knowledge flows are hemmed in by technological distance 

in industry (Adams and Jaffe, 1996). 

Third, tests of the symmetry of cross-citation accept the null hypothesis in most cases.  The rate at 

which biology cites medicine is not significantly different from the rate at which medicine cites biology.  

One exception is that economics cites mathematics and statistics at a higher rate than mathematics and 

statistics cites economics. Another is that physics cites astronomy more than the reverse.   However, we 

                                                 
4 Marshall (1920, p. 220) is notably circumspect in observing that, “Many of those economies in the use of 
specialized skill and machinery which are commonly regarded as within the reach of very large factories, 
do not depend on the size of individual factories.  Some depend on the aggregate volume of production of 
the kind in the neighborhood; while others again, especially those connected with the growth of knowledge 
and the progress of the arts, depend chiefly on the aggregate volume of production in the whole civilized 
world.”   What is noteworthy about this is that he does not say that the externality has to depend on the 
volume of production in the whole civilized world, but that it may, depending on the facts of the case.  
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remain convinced that asymmetries in field-to-field interactions do exist, but that they take a different form.  

We find that applied life sciences exhibit thicker cross-citation trails than fields that are more basic, such as 

mathematics and statistics. Indeed, mathematics and statistics receives citations from other fields, but fails 

to cite any other field at a significant rate.      

Fourth, compared with patent citations, we find that knowledge diffuses more rapidly within science as 

evidenced by science citations, than within technology as measured by patent citations.  The modal lag of 

scientific citations, a measure of the speed of diffusion, is slightly more than three years, compared with a 

modal lag of more than five years in patent citations (Jaffe and Trajtenberg, 1999). 

Fifth, our evidence confirms the role of stratification in scientific research.  We find that quality of a 

program does increase scientific influence.  We carry out symmetry tests of this proposition by checking 

whether higher ranked university-fields are more often cited than those lower-ranked. In 30 out of 36 

comparisons the answer is yes, with most of the exceptions in agriculture.  Finally, we test whether 

interactions in citation with peer institutions increase with quality of program.  In other words, do 

university-fields in the top 20% cite one another than university-fields in the bottom 40% cite one another?  

The answer again is yes, in 30 out of 36 cases.  If knowledge spillovers result from citation then this 

suggests that reinforcement of research by surrounding peer programs increases with quality.    

The rest of this paper consists of three sections.  Section II explains the database and provides an 

extensive description of various cuts of the data that turn out to be important by means of tables and 

figures.  Section III reports the econometric estimates and carries out tests of symmetry and equality of 

citation propensities within and across fields.  A brief conclusion is contained in section IV.               

II. Description of the Data    

The data consist of 2.4 million publications of the top 110 U.S. universities from 1981-1999 and 18.7 

million citations to those papers from the same period.  The 110 universities account for the majority of 

U.S. academic R&D.  The schools are documented in Table A-1 of the appendix. The data source is the 

Institute for Scientific Information (ISI) in Philadelphia, Pennsylvania.  The data cover all articles, reviews, 

notes, and proceedings, or the standard set of communications, in 12 fields of science that account for most 

of university research. The 12 main fields are agriculture, astronomy, biology, chemistry, computer science, 
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earth sciences, economics and business; engineering, mathematics and statistics; medicine, physics, and 

psychology.   

The papers appear in 7137 scientific journals.  All are assumed to belong to a single dominant field 

where the journal is assigned5.  This assignment is often accurate for journals that are designed to reach a 

specialized audience, despite the difficulty of drawing hard and fast distinctions between fields.  But the 

method is bound to produce errors for general journals of science, where a dominant field is assumed 

despite the inclusion of many other fields.  The main alternative to the journal assignment method, though, 

is the dismal one of assigning papers according to academic “departments” of the authors, and this is ruled 

out by incompleteness of the information6.  Notice that, unlike patent data, multiple field assignments are 

almost non-existent in the scientific papers data.  In order to consistently carry out such a multiple 

assignment, clear and unambiguous criteria would be required, and the right to carry out the assignments 

would have to be vested in a Scientific Papers Office that is a precise analogue to the Patent Office.  

It is critically important to see that these data, while voluminous, are still only a window on 

scientific research.  The data are truncated on the left and right in time, they are geographically restricted to 

research having at least one author in a U.S. university; and industry, government, and non-profit sectors, 

where scientific research also takes place, are all left out.  Thus for example, we lack information on 

citations made to papers in the late 1990s, since these citations for the most part have not yet been made.  In 

fact we know almost nothing about papers that influenced research in the early 1980s since citations to 

these early papers are excluded from the database7.   Citations made by U.S. researchers to foreign 

literature are excluded, and likewise citations received by U.S. researchers from foreign literature are 

excluded.  The rich interactions of the international scientific enterprise are thus left out of our analysis.  

But one has to begin somewhere.             
                                                 
5 In the case of the 5,507 journals that are currently published, we follow the assignment of journals to 
fields practiced by the Institute for Scientific Information, relying on ISI ’s experience to provide a more 
accurate assignment.  In the case of 1,630 journals that are formerly published we rely on the field 
assignments of CHI, Computer Horizons Inc.  The argument is the same, that the experience of an 
established firm in bibliometrics is likely to be more accurate than an idiosyncratic assignment by the 
principal investigators.        
6 As an experiment we set out to assign all the papers of Harvard University to one of the 12 main science 
fields in our data using purely address information.  About one-third of the papers could not be assigned to 
a field using information on authors’ Harvard addresses.  This led us to abandon the effort, though more 
could be done in the future to codify the origins of papers by field.    
7 We hope that in the future ISI will extend the database of papers and citations backward to the 1960s, in 
the interest of supporting bibliometric investigation of science over the long run.  
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Table 1 provides a look at the field dimensions of the data.  Main fields are in the first column.  

The second column reports total papers, percent of all papers, total citations received, and percent of 

citations received.  The third column reports composition of main fields by component sub-fields.  In 

addition to variation in the size and complexity of the fields the table illustrates differences in citation 

practices.  Biology ranks second in publications but dominates all other fields in citations received.  

Computer science ranks last in both papers and citations.  It is not clear what to make of these differences. 

The size of citing populations differs among fields and is larger in biology than computer science, 

suggesting that size should be considered before drawing conclusions from the raw data. 

The citation probability introduced by Jaffe and Trajtenberg (1999) is one way to take account of 

size of the citing population.  The citation probability is 

(1)   
jtiT

iTjt
iTjt nn

c
p =  

where i and j are citing and cited groups and T and t are citing and cited years (T>t).   The term iTjtc in the 

numerator is the number of citations from group i in year T to group j in year t.  In reality the citations are 

the number of papers in (i, T) and (j, t) that are actually linked by citation.  The terms iTn and jtn  in the 

denominator of (1) are the number of potentially citing and potentially cited papers in (i, T) and (j, t) that 

could be linked.  Thus equation (1) is bounded by 0 and 1 and has a probability interpretation.  If not one 

paper in (i, T) cited a single paper in (j, t) then (1) would equal zero. If instead every paper in (i, T) cited 

every paper in (j, t) then (1) would equal 1.0.  In reality (1) is much closer to zero than to one. 

 In the empirical work, citing and cited fields as well as citing and cited years define the citation 

probabilities and provide the data cells noted in (1).  In addition, citations within field are distinguished 

according to a quality dimension that ranks institutions as high, medium, or low within a given discipline.  

For any i-j combination there are 171 possible citing and cited year combinations, assuming a citation lag 

of at least one year8.    Of course not all of the i-j combinations are significant in the statistical sense, or 

even take place.  Table 2 reports means of citations, potential papers citing, and potential papers cited 

                                                 
8 Papers in 1999 can cite papers from 1998 through 1981, forming 18 combinations.  Papers in 1998 can 
cite papers from 1997 through 1981, forming 17 combinations.  This process continues for 18 years until 
1982, when only 1981 papers can be cited.  The sum of the series is S=18+17+16+…+1, or 
S=(19×18)/2=171.  
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across up to 171 citing and cited year combinations, but only within fields and for interactions between 

fields that prove to be statistically significant.  In this sense table 2 looks forward to the regression findings 

and by this method manages the length of the table.  Even with these restrictions, though, the table lists 32 

interactions between fields.  

Unlike table 1, table 2 and all that follow exclude self-citation and even citation from same 

university.  Self-citation reflects the influence of a university-field’s own past research rather than external 

scientific influence.  Exclusion of same-university citations between different fields is motivated by the 

same concerns.  Since papers are classified by journal assignment, the same authors in the same schools can 

write in multiple fields and cite themselves.  Even these precautions do not eliminate hidden self-citation to 

collaborations with other universities.  But it is the best that can be done with the information that we have.    

 For each science the top entry shows citations and papers citing and cited within field, followed by 

cross-field interactions in alphabetic order.  For example, the table shows that agriculture has two 

significant cross-field interactions, with biology and earth sciences.  On the contrary, biology interacts with 

five others: agriculture, chemistry, earth sciences, medicine, and psychology, and is in this sense a leader in 

cross-field interactions.  By and large the significant cross-field interactions in table 2 are consistent with 

expectations.  For example, biology and medicine, chemistry and physics are significantly linked through 

cross-citation.  But this information, while it confirms expectations as to the structure of the sciences, also 

shows that interactions between fields are selective.  To see this, note that each of the fields can interact 

with any of the remaining 11, yielding a total of 12×11=132 possible interactions. And yet only a fourth of 

these (32 of 132) are even close to significant. 

 Table 2 shows that mean citations within fields are an order of magnitude greater than mean 

citations between fields, even restricting this comparison to significant cross-field interactions.  In some 

sense this results from the broad definitions of the fields shown in table 1.  But the higher rate of interaction 

within fields is real in that it represents greater scientific influence within disciplines.  It thus represents 

“localization” in scientific space.  This overall description glosses over differences in the size of cross- and 

within field interactions.   If one compares highest cross-field citation counts to the within field counts, then 

astronomy, mathematics and statistics, and physics seem to be autonomous from the rest of science.  By the 

same criterion the life science fields of agriculture, biology, medicine, and psychology display strong 
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interdependence.  We revisit this topic below using mean citation probabilities and find broadly similar 

results.   

 Table 2 suggests that simple measures of citations received or even citations per paper are 

incomplete measures of scientific influence, because they do not consider the counterfactual of all the 

citations that might have taken place but did not.  Put another way, very high citation counts within field, 

where most citations take place, are strongly correlated with the number of potentially citing papers, which 

in turn bring down the probability that a paper is actually cited by taking into account potential citation.  

This observation underscores the value of the citation probability (1) as a criterion for judging whether 

citation rates are high or low. 

Table 3 reports means of the citation probabilities (1) for the groups shown in table 2.  We provide 

various moments of the probabilities across the 171 citing and cited year combinations to provide a sense of 

the variation in the probabilities.  Consistent with what has gone before, within field probabilities are an 

order of magnitude greater than the cross-field probabilities.  The large within field probabilities in small 

fields such as astronomy, computer science, earth sciences, and economics and business are somewhat 

startling.  Perhaps the skills of a given team of researchers more readily cover these fields.  This suggests 

that time costs associated with the accumulation of knowledge permit a higher citation rate in smaller 

fields.  But since the probability of citation is not especially high within mathematics and statistics, another 

small field, this explanation has a problem.  Perhaps certain small fields are more homogeneous or less 

costly, but mathematics and statistics does not meet this additional criterion.                   

In some of our analysis we distinguish citing and cited cells within fields, in which schools are 

ranked high, medium, and low, and form “rank-stratification” classes.  Since the regression analysis in 

below allows for a full set of interactions among rank-stratification classes, there are already nine 

interactions for each of the sciences.  Four classes imply 16 interactions per science; five classes 25 

interactions, and so on.  Allowing for three classes is a compromise position. It permits us to study the role 

played by institutional quality without generating huge numbers of parameters for the estimation procedure.      

We classify the quality of schools as follows.  First we use the 1993 National Research Council 

(NRC) peer rankings of graduate programs (National Research Council, 1995) to rank the ten sciences (out 

of 12) that are included in the NRC data.  The ten are astronomy, biology, chemistry, computer science, 



 

 9 

earth sciences, economics and business; engineering, mathematics and statistics; physics, and psychology.  

The remaining two fields, agriculture and medicine, are not ranked by NRC.  As an imperfect substitute we 

rank institutions in agriculture and medicine by means of their 1998 federal R&D.  Since a key strength of 

the 1993 NRC rankings is their emphasis on quality of programs rather than quantity of funding, use of 

federal R&D to rank agriculture and medicine could have the effect of concealing the link between quality 

and citations.  We are not aware of peer rankings in agriculture and medicine that are comparable to the 

NRC rankings and we have little choice but to follow this alternative procedure in these cases. 

The size of disciplines varies markedly (see table 1) and the number of ranked graduate and 

professional programs varies accordingly.   The large scale of the biomedical enterprise leads us to break 

out 75 schools within biology and medicine, with the remainder of the 110 treated as a residual institution 

of the lowest rank.  For nine other fields—agriculture, chemistry, computer science, earth sciences, 

economics and business; engineering, mathematics and statistics; physics, and psychology—we consider 50 

separate schools, with the remainder again treated as a residual.  In the case of astronomy, where there are 

many fewer ranked programs than the other fields, we break out 25 schools, treating the remainder as a 

residual.  The size of residual “institutions” treated in this way is about the same as that of a single ranked 

university-field.   

We classify a school as high quality if it falls in the top 20% of schools in a field, as medium if it 

falls in the next 40%, and as low quality if it falls in the bottom 40%, including the remainder.  In this way 

we construct the rank-stratification classes used in the study.  Next we calculate the number of citations, the 

number of potentially citing papers, and the number of potentially cited papers for every field, every rank-

stratification class combination, and every citing and cited year pair.   As we have seen there are nine 

possible citing and cited rank-stratification class combinations for every field and citing and cited year 

combination. 

Table 4 brings together mean citations, papers citing and cited, and the citation probability for 

citing and cited rank-stratification classes within fields of science.  As before we take averages across citing 

and cited years.  We arrange this information in a 3×3 matrix, with citing classes forming the rows and 

cited classes forming the columns. Thus the first and row and column for each field refers to top 20% 

schools citing each other, the second element in the first row to top 20% schools citing middle 40% 
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schools, and the third element to top 20% schools citing bottom 40% schools.  Likewise the second and 

third rows represent the citation behavior of the middle 40% and bottom 40% schools to the top 20%, 

middle 40%, and bottom 40% of institutions in that field. 

The top line of each entry reports mean citations, papers citing, and  papers cited.  Thus, the top 

20% schools in chemistry make an average of 322 citations to other top 20% schools for each citing and 

cited year combination.  Also, an average of 12,056 top 20% chemistry papers could cite; and allowing for 

lags in citation, an average of 9,430 papers top 20% chemistry papers could be cited.  The second line of 

each entry reports the mean citation probability in parentheses.  Thus the average citation probability with 

which top 20% schools in chemistry cite each other is 47.2×10-6.  The other entries have a similar 

interpretation. 

While thus arranged the data can seem overwhelming, several useful observations emerge from 

the table.  First, the probability that the top 20% cites the middle 40% and the bottom 40% is nearly always 

less than the probability that the middle 40% or the bottom 40% cite the top 20%.  Likewise the probability 

that the middle 40% cite the bottom 40% is less than the probability that the bottom 40% cites the middle 

40%.  To see this, compare the off-diagonal elements in the upper triangle of each 3×3 matrix with their 

counterparts in the lower triangle.  One observes that scientific influence is more top-down than it is 

bottom-up, although bottom-up influence is clear.  The only exception to this pattern is agriculture9. 

 Another important feature is that top 20% institutions usually cite each more often than the 

middle 40% institutions cite each other.  In turn the middle 40% tend to cite each other more often than the 

bottom 40%, and so on.  Out of 36 comparisons across the 12 sciences only six exceptions are recorded.  

This suggests that interactions among the top 20% institutions are typically more intense than among the 

middle 40%, and that interactions among the middle 40% are more intense than among the bottom 40%.  

This is an earmark of differences in research activity among schools.  But in addition, on a knowledge 

                                                 
9 Besides the fact that the method of ranking schools of agriculture is based on the size of federal R&D, 
which this field shares with medicine, agriculture has one other characteristic that makes it unique among 
the sciences in the U.S.  This is the fact that all the schools of agriculture are located in state universities 
that were founded under the Morrill Act of 1862. The Hatch Act of 1887, founding the state agricultural 
experiment stations, further enhanced the standing of these schools.  Huffman and Evenson (1993), Chapter 
1 contains an illuminating discussion of the pressure groups that mobilized to bring about this result. 
research.  For our purposes what this means is that there are no private universities among ranked schools 
of agriculture.      
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spillovers interpretation, it suggests that the top institutions are a greater source of support for one another 

than institutions of lesser rank.  In raising this possibility, notice that citation practices are being held 

constant at the field level. 

A third feature of the table that stands out is the difference among fields in top-down asymmetries 

of citation.  We refer to the fact that schools of a lower rank cite schools of a higher rank at a higher rate 

than the reverse.  This pattern is non-existent in agriculture, moderate in engineering and medicine, but is 

pronounced in computer science and economics.  These differences probably have to do with the varying 

depth of science departments.  In some sciences high quality programs are widely dispersed, such as 

chemistry and medicine, while in others, like economics, a few top programs dominate the field. 

Figures 1 and 2 provide a graphical summary.  Figure 1 includes line graphs of the average 

probability of citation by lag between citing and cited years, where the average is taken across all 12 fields 

of science.  The top two lines are graphs of citations within fields.  The actual data on citations within 

science peak at around two years and decline thereafter, reflecting a familiar diffusion-decay process. The 

fitted data peak later but also decline faster, reflecting the adjustment for citing and cited year effects.  

Peaks in the within-field citation rates occur much earlier than for patents, whose citation probability crests 

at something more than five years (Jaffe and Trajtenberg, 1999).  The lower two lines in the figure consist 

of all-inclusive citations showing the average probability of citation within and between fields.  Again the 

fitted curve peaks later but falls faster.  At all lags the all-inclusive probability of citation is about ½ the 

within-field probability, but peaks at two to three years as before. 

Figure 2 summarizes in one graph what we have learned about the role of rank-stratification class.  

The figure shows for example that the probability of citation from the top 20% to the middle 40% is less 

than the probability of citation from the middle 40% to the top 20%.  To see this, compare the middle bar in 

the leftmost group to the first bar in the middle group.  The figure also shows that the probability of citation 

from the bottom 40% to the top 20% is greater than the converse probability, and that the probability of 

citation is greater from the bottom 40% to the middle 40% than the converse.  Scientific influence is more 

often from the top-down than it is from the bottom-up, even though there is an appreciable influence of less 

highly ranked schools.  Finally, figure 2 again shows that the probability of citation among the top 20% 

schools exceeds the probability among middle 40% schools.  The probability of citation among the middle 
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40% is again higher than the probability of among the bottom 40%.  By this measure knowledge flows 

increase with quality of university-fields, which could make already strong institutions still stronger.                                                          

III. Citation Function Analysis   

A. Estimation Procedure 
 

In this section we model the citation probability as a function of citing and cited sciences, years, and 

the quality of scientific institutions, and we estimate this function using papers and citations of the top 110 

universities.   To this end we adapt a procedure developed by Jaffe and Trajtenberg (1999) for the purpose 

of explaining patterns of patent citation.  The application of this approach to scientific paper citations is 

based upon the findings just presented.   There we found sizable differences in own and cross-field citation 

and we found evidence within each science of top-down asymmetries that give a predominant role to higher 

quality institutions.  As usual we found that citation reaches an early peak and then declines, with a long 

tail off to the right as the lag between citing and cited scientific papers increases.  In this section we model 

these effects using nonlinear regression10.  Throughout we make the assumption that citations and the field, 

year, and institutional effects that drive them indicate greater scientific influence11. 

The baseline citation function used in this paper takes the form:    

 (2)   ( ) ( )[ ]{ } iTjtutTtTjtTijiTjtp +−−−



 −−=      2  exp1    11 exp βββααα  

In (2) ijα captures the average probability that field i cites field j, Tα  is the average probability that a 

citation is made in period T, and tα  is the average probability that a citation is received in period t.  In the 

case of a field citing itself, the parameter ijα becomes iiα .  In our data i and j run from 1 to 12, representing 

the 12 fields of science in table 1.  One important point is that the probability parameters are only defined 

relative to a baseline value.  We chose to normalize the ijα by the value for chemistry citing itself, whose 

transformed value is accordingly set equal to 1.0.  Likewise, the various Tα and tα parameters are 

                                                 
10 We thank Adam Jaffe for providing us with nonlinear regression programs that we modified for present 
purposes. 
11 See Banks, Fogarty, and Jaffe (1996) for an analysis that uses a set of NASA patents, as well as expert 
opinion on the patents, to test the validity of patent citations, answered in the affirmative, as an indicator of 
the importance of patents.   
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normalized by the earliest periods citing and cited, whose transformed values are accordingly set equal to 

1.0.  We experienced difficulties obtaining convergence during estimation when we specified a full set of 

citing and cited years.  For this reason we aggregate the citing years into the four periods: 1981-1985, 

1986-1990, 1991-1995, and 1996-1999.  Thus T and Tα  refer to the four time intervals, while t and 

tα refer to single years cited.  

The 1β  parameter is a parameter standing for the rate of decay in citation for the baseline field, which 

we again take to be chemistry, while the j1β parameters are decay parameters relative to chemistry.  The 

parameter 2β  governs overall diffusion as captured by citation.  Since 2β  positions the overall rate of 

citation this parameter is not identified by field independently of the ijα  vector.  Finally, the error term 

is iTjtu .  The estimates for citation function (2) are reported in table 5 below.  

In addition to (2) we consider a more elaborate specification of the citation function.  This version 

allows for differences in same-field citation parameters by quality of scientific institution.   We turn to this 

more elaborate specification in view of the evidence in table 4.  That suggests that lower-ranked institutions 

cite those that are higher ranked more than these higher-ranked institutions cite them.  We also found 

confirmation that on the whole, higher-ranked institutions cite each other more than lower-ranked 

institutions cite each other.  To allow for these effects, we replace the within-field parameter iiα  in (2) with 

the following 3×3 matrix of citation possibilities: 

(3)   















=

33,32,31,

23,22,21,

13,12,11,

))((

iii

iii

iii

ii

ααα
ααα
ααα

α      

The leading subscript i refers to field, while the trailing subscripts 1, 2, and 3 refer to the top 20%, the 

middle 40%, and the bottom 40% of institutions.  As in (2) the parameters are identified up to a baseline 

parameter.  Here we choose to normalize the parameters by the top 20% institutions in chemistry citing 

each other.  Thus 11,4α =1 in (3), so that all the other within-field parameters, as well as the between-field 

parameters ijα , are defined relative to 11,4α . 

The parameters in the first row of (3) represent the probabilities that top 20% schools cite themselves, 

the middle 40%, and the bottom 40% institutions, in that order.  The parameters in the second row capture 
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citations of the middle 40% to themselves and other rank-stratification classes, and those of the third row 

spell out citations of the bottom 40%, both to themselves and to other groups.  The matrix of citation 

possibilities allows us to take account of quality effects within fields, where most citations occur12.  

Moreover, these quality effects are statistically significant.  We report estimates of the expanded citation 

function, which incorporates (3), in table 6 below.  

Construction of the citation probabilities is our first priority.  We begin by grouping the data on 

citations, potentially citing papers, and potentially cited papers into cells.  The definitions of the cells are as 

follows.  We define nine cells that correspond to (3) within fields.  The between field cells consist of the 

interactions of fields with the other 11 fields, at least where these exist13.  Thus there are 9×12=108 within-

field cells and up to 11×12=132 cells between fields, and therefore up to 240 cells for every citing and cited 

year combination.  Since there are (19×18)/2=171 potential citing and cited year combinations, the number 

of cells that could exist is 240×171=41,040.  But 4,206 or about 10% of the cells are missing.  This occurs 

mostly because particular citing and cited year pairs are missing in cases of rare cross-field citations.  As a 

result, the actual number of cells in the data set is 41,040-4,206= 36,834.   

B. Regression Findings   

The next step is to fit the citation probabilities to field and year dummies and the lag in citation.  Table 

5 reports estimates of the baseline function.  We begin by discussing within- and between-field parameters 

in the intercept of (2).  All the within parameters differ significantly from zero and are significantly larger 

than the leading cross-field parameters.  Thus citation decreases with scientific distance.  There is also 

considerable variation in the rate of citation, from a low of 0.234 in engineering to a high of 13.346 in 

astronomy, these differences are significant compared with the baseline value of 1.0 for chemistry.  The 

findings indicate the more than 50 to 1 range in citation probabilities across disciplines.      

As noted in the descriptive section, citation parameters within fields are typically an order of 

magnitude larger than the cross-field parameters, even though the cross-field parameters reported in table 5 

                                                 
12 Citations between fields are typically not so thick on the ground as to permit rank-stratification effects 
for cross-field citations. 
13 Since we the ignore rank-stratification effects in table 5, in that table we average over the nine 
probabilities for each science that correspond to all possible interactions between the different rank-
stratification classes in that science. 
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include only those that are near or above a cutoff representing the 5% level of significance14.   Cross-field 

citation is highly selective. 

Another result is that fields vary in the extent to which they cite other fields.  Judging by the ratio of 

the leading cross-field parameter to the within-field parameter, the following fields— agriculture, biology, 

engineering, and medicine— may be seen as strongly dependent on other sciences.  This appears in the 

close connection between agriculture and biology, biology and medicine, engineering and computer 

science, and medicine and biology.   In all four cases the cross-field parameter is 1/5 or more the size of the 

within-field parameter.  Some of the cross-field effects may in part reflect the difficulty of drawing 

distinctions between fields that study similar processes.    In contrast, mathematics and statistics shows no 

significant dependence on other disciplines. 

We turn now to a discussion of the cited year and citing period effects in table 5.  Cited year effects are 

U-shaped and reach a minimum in 1991.  This pattern controls for citing period effects, which drop slightly 

during the late 1980s and increase thereafter.  The cited year parameters seem to reflect vintage effects, 

though the most recent papers have not had the same opportunity to be cited as earlier papers.   The upward 

drift in citation is shown by the rising parameters over citing intervals. 

This discussion of table 5 concludes with the decay and diffusion parameters.   Differentiation of the 

citation function shows that the inverse of the baseline diffusion parameter 1β  (chemistry) times the 

diffusion parameter for each of the sciences i1β  yields the modal lag for that science, or the lag at which 

citations peak: 

 (4)   iiModalL 11, /1 ββ= . 

To prove this result take the derivative of the citation function, set it equal to zero, and solve for iModalL , . 

The modal lag is a measure of the speed of diffusion.  Table 5 shows that the modal lag varies from 1.75 

years for the fastest field (physics), to 2.83 years for chemistry, to 4.2 years for the slowest field (computer 

science).   All the modal lags lie appreciably under similar lags for patented technologies (Jaffe and 

                                                 
14 The results reported in the table are about the same whether interactions that are insignificantly different 
from zero are included or not in the estimation procedure, and thus whether the data cells on which the 
estimates are based are or are not included.  This is consistent with the fact that the insignificant cells add 
very little information to what we know about scientific influence across disciplines.  
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Trajtenberg, 1999).  In fact science diffuses about two years faster than technology, suggesting that Open 

Science institutions do in fact accelerate the spread of knowledge through society. 

 Another feature of the data is the peak citation probability, which is approximately equal to 

(5)   iiP 112
max / βββ=     

It turns out that for the baseline field of chemistry (where i1β =1) the peak citation probability is 

approximately 2.0×10-4.  This is roughly 100 times larger than the peak citation probability for patent 

citations, which is on the order of 1.5×10-6, indicating the greater volume of science citations compared 

with patent citations15. 

Table 6 reports estimates of the expanded citation function, that allows for rank-stratification 

classes within each of the sciences.  In this table we report only the rank-stratification parameters since the 

other estimates are quite similar to table 5.   The table confirms patterns already seen in table 4 and figure 

2.  First, the probability within a given field that an institution in the top 20% cites another top 20% 

institution typically exceeds the probability that middle 40% institutions cite each other, and that 

probability in turn exceeds the probability that bottom 40% institutions cite each other. For example, in 

computer science the parameters in question, measured relative to chemistry, are 1.490, 1.176, and 0.712.  

The differences are significant.  The same pattern holds in every field save agriculture.  Citation trails 

thicken as quality of institution increases, suggesting increased scientific activity and knowledge spillovers 

that reinforce differences among institutions. 

A second feature of table 6 also predominates.  This is the tendency for citations to proceed more 

from the bottom-up than from the top-down.    This pattern suggests that scientific influence is primarily 

from the top-down.  Chemistry provides an example.  The parameter for the top 20% citing the middle 40% 

is 0.700 while the parameter for the middle 40% citing the top 20% is 0.924.  The difference turns out to be 

highly significant.  The same pattern holds in the case of the off-diagonal comparisons in chemistry and 

implies that scientific influence increases with quality of institution.  The primary exception to this pattern 

is again agriculture. 

                                                 
15 This comparison draws on Appendix B of Jaffe and Trajtenberg (1999), which reports a baseline value 
for 1β of 0.190, and a value for 2β of 0.289×10-6. 
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C. Symmetry Tests 

The regression findings of tables 5 and 6 point out opportunities for statistical tests, especially of 

the symmetry of the citation parameters across fields and rank-stratification classes.  Table 7 summarizes 

the results of pair-wise tests of symmetry of the parameters. 

The first line of the table reports tests of equality of the cross-field citation parameters shown in 

table 5.  For example, does the rate at which medicine cites biology differ from the rate at which biology 

cites medicine?  The first line provides a round up of our answers to this question for cases in which 

citation takes place in both directions.  Cross-citation effects do not differ significantly from symmetry in 

the majority of cases.  One exception is economics, which cites mathematics and statistics more than the 

reverse at the 1% level of significance.  Another is physics, which cites astronomy at a higher rate than the 

reverse at the 2% level of significance. Two other cross-citation parameters are unbalanced and missed by 

the above evaluation: agriculture cites earth sciences and astronomy cites biology, but neither is cited in 

return.  More deeply, these tests miss “underground” asymmetries in influence, which appear in the main 

body of scientific papers.  Many papers, for example, make of techniques in mathematics and statistics, but 

feedback effects to mathematics and statistics are far less common.  Our method passes over such hidden 

asymmetries, which require a method of encoding content that is beyond current frontiers. 

The second line of table 7 tests for differences in the probability of citation by rank-stratification 

classes and refers to table 6.  Equality is rejected in the majority of cases, with agriculture the primary 

exception.  The top 20% institutions in computer science cite each other more often than the middle or 

bottom 40% institutions do, and the differences are significant at the 1% level.  The third line tests for the 

significance of asymmetries in top-down versus bottom-up citation.  Asymmetry is accepted, and equality 

in the cross-effects is rejected at the 1% level in the majority of cases, with agriculture and medicine being 

the main exceptions16.  Thus the point estimates of table 6 are significantly asymmetric in most cases.   

                                                 
16 The reappearance of agriculture and medicine on the list of exceptions calls for an explanation.  In part 
the pattern recurs because we rank programs according to quantity of federal R&D rather than quality, 
which may mix up institutional quality in these fields.  But also these two fields may be more egalitarian 
than most other sciences.  This tendency towards greater equality also holds to an extent for engineering, 
where rank-stratification classes follow the usual filter provided by the NRC rankings. 
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IV. Conclusion   

This paper has described interactions among the top 110 U.S. universities by means of citations to 

scientific papers.   One finding is that citation and scientific influence mostly occur within fields of science.  

Also, cross-field interactions are highly selective:  statistically significant interactions occur in less than 

one-fourth of the potential cases.  Collectively this suggests that knowledge flows are bounded by scientific 

distance, just as industrial knowledge flows are hemmed in by technological distance (Adams and Jaffe, 

1996). 

We find besides that most two-way interactions between fields are symmetric so that most of the time 

field A cites field B about as often as B cites A.   Even so, we are convinced that hidden asymmetries are 

present in field-to-field interactions.  This is because of the fact that applied fields cite other fields more 

often than more basic, underlying fields, and because of deeply buried course content in applied courses 

that interprets basic science materials, but not as much in reverse.        

In addition we find that knowledge diffuses more rapidly within science than technology, and that 

paper citations are more abundant than patent citations, as judged by citation frequency.  Our evidence 

confirms that quality of a university-field increases its scientific influence.  When we test whether higher 

ranked university-fields are cited more than those lower-ranked, we accept the null hypothesis in five of 

every six cases.  We also test for whether interactions with peer institutions increase with quality. The 

answer is again yes in five of every six cases.  This suggests that surrounding programs reinforce the 

research process in a given university-field to a larger extent as quality increases.    

The way ahead seems clear.  The work presented here is but one ingredient of a full-fledged 

knowledge production for the academic sector.  The production process would explain papers and perhaps 

patents of universities and it would include as explanatory variables, knowledge spillovers as well as 

current and past contributions from one’s own research 17.   Of course, adequate pursuit of this agenda 

would require for starters, information on several channels of interaction among universities and fields, as 

well as the spillback of a university-field’s own past research besides its current research support.  

                                                 
17 Adams and Griliches (1998) studied production of academic research for samples of university-fields, 
but without knowledge spillovers.  Their findings suggest that production obeyed constant returns at the 
aggregate level, but decreasing returns at the individual level.  This may follow from knowledge 
externalities, or another factor operating more strongly at the individual level, such as errors in variables.  



 

 19 

Looking still further ahead our goal is to extend this methodology to consider the effects on firm 

patents of multi-dimensional spillovers from universities to firms and from firms to firms, in addition to the 

role of firm’s own research efforts in the determination of innovative success 18.  The resulting edifice of the 

knowledge production function in industry is itself an ingredient, though a crucial one, in the economics of 

growth and technical change. 

                                                 
18 Popp (2002) represents a promising approach to this question. 
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Figure 1--Mean Citation Probabilities by Citation Lag
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Table 1 
Definition, Size, and Composition of 12 Main Science Fields 

Practiced in the Top 110 U.S. Universities, 1981-1999 
 

 
Main Science Field 

 

 
Total Papers 

(Percent of Total Papers) 
[Total Citations Received a] 
{Percent of Total Citations 

Received} 
 

 
Sub-Field Composition of Main Science Field 

 

 
Agriculture 
 

 
189,740 
(7.8%) 

[730,777] 
{3.9%} 

 

 
General agriculture and agronomy; aquatic sciences; animal 
sciences; plant sciences; agricultural chemistry; entomology 
and pest control; food science and nutrition; veterinary 
medicine and animal health 
 

Astronomy 
 

35,795 
(1.5%) 

[371,982] 
{2.0%} 

 

Astronomy and astrophysics 

Biology 
 

639,195 
(26.3%) 

[8,339,862] 
{44.4%} 

General biological sciences; biochemistry and biophysics; cell 
and developmental biology; ecology and environment; 
molecular biology and genetics; biotechnology and applied 
microbiology; microbiology; experimental biology; 
immunology; neurosciences and behavior; pharmacology and 
toxicology; physiology; oncogenesis and cancer research  
 

Chemistry 
 

195,437 
(8.0%) 

[1,371,491] 
{7.3%} 

 

General chemistry; analytical chemistry; inorganic and 
nuclear chemistry; organic chemistry and polymer science; 
physical chemistry and chemical physics; spectroscopy, 
instrumentation, and analytical science 
  

Computer Science 
 

28,184 
(1.2%) 

[76,424] 
{0.4%} 

 

Computer science and engineering; information technology 
and communications systems 
 

Earth Sciences 
 

73,126 
(3.0%) 

[566,280] 
{3.0%} 

 

Atmospheric sciences; geology and other earth sciences; 
geological, petroleum, and mining engineering; oceanography 
  

Economics and 
Business 
 

43,892 
(1.8%) 

[161,813] 
{0.9%} 

 

Economics; accounting; decision and information sciences; 
finance, insurance, and real estate; management; marketing 
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Table 1 
Definition, Size, and Composition of 12 Main Science Fields 

Practiced in the Top 110 U.S. Universities, 1981-1999 
 

 
Main Science Field 

 

 
Total Papers 

(Percent of Total Papers) 
[Total Citations Received a] 
{Percent of Total Citations 

Received} 
 

 
Sub-Field Composition of Main Science Field 

 

Engineering 
 

170,569 
(7.0%) 

[467,955] 
{2.5%} 

Aeronautical engineering; biomedical engineering; chemical 
engineering; civil engineering; electrical and electronics 
engineering; engineering mathematics; environmental 
engineering and energy; industrial engineering; materials 
science; mechanical engineering; metallurgy; nuclear 
engineering 
 

Mathematics and 
Statistics 
 

61, 061 
(2.5%) 

[187,484] 
{1.0%} 

 

Mathematics; biostatistics and statistics 

 
Medicine 
 

 
659,000 
(27.1%) 

[4,563,261] 
{24.3%} 

 
General and internal medicine; anesthesia and intensive care; 
cardiovascular and hematology research; cardiovascular and 
respiratory systems; clinical immunology and infectious 
disease; clinical psychology and psychiatry; dentistry and oral 
surgery; dermatology; endocrinology, metabolism, and 
nutrition; environmental medicine and public health; 
gastroenterology and hepatology; health care sciences and 
services; hematology; medical research, diagnosis, and 
treatment; medical research, general topics; medical research, 
organs and systems; neurology; oncology; ophthalmology; 
orthopedics, rehabilitation, and sports medicine; 
otolaryngology; pediatrics; radiology, nuclear medicine, and 
imaging; reproductive medicine; research, laboratory 
medicine, and medical technology; rheumatology; surgery; 
urology and nephrology   
 

Physics 
 

217,026 
(8.9%) 

[1,219,080] 
{6.5%} 

 

General physics; applied physics, condensed matter, and 
materials science; optics and acoustics 
 

Psychology 116,976 
(4.8%) 

[727,673] 
{3.9%} 

 

Psychology and psychiatry 
 

Notes.  a Citations received derive from top 110 universities during the period 1981-1999.  They are not a 
census of citations received, though citations can originate in any of the 12 main science fields listed in the 
table to any of the fields.  Total number of papers across all 12 fields is 2,430,001.  The total number of 
citations received is 18,784,082. 
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Table 2 

Mean Citations and Papers Citing and Cited, by Field of Science, 
The Top 110 U.S. Universities, 1981-1999 

 
 

Citing Field 
 

 
Cited Field Citations Potential Papers 

Citing 
Potential Papers 

Cited 

     
Agriculture Agriculture 2,543 11,326 10,671 
       “   Biology 1,843 “ 34,411 
       “    Earth Sciences 106 “ 3,979 
 
Astronomy 

 
Astronomy 

 
3,218 

 
2,879 

 
2,127 

       “    Biology 212 “ 34,411 
       “    Earth Sciences 123 “ 3,979 
       “    Physics 118 “ 11,747 
 
Biology 

 
Biology 

 
40,349 

 
44,135 

 
34,411 

       “    Agriculture 905 “ 10,671 
       “     Chemistry 625 “ 10,035 
       “    Earth Sciences 351 “ 3,979 
       “    Medicine  6,454 “ 36,725 
       “     Psychology  530 “ 7,007 
 
Chemistry 

 
Chemistry 

 
4,989 

 
12,166 

 
10,035 

       “    Biology 1,101 “ 34,411 
       “    Physics 492 “ 11,747 
 
Computer Science 

 
Computer Science 

 
326 

 
2,031 

 
1,410 

       “    Mathematics & Statistics 28 “ 3,572 
       “    Engineering 81 “ 8,205 
 
Earth Sciences 

 
Earth Sciences 

 
3,324 

 
5,312 

 
3,979 

       “    Astronomy 113 “ 2,127 
       “    Biology 668 “ 34,411 
 
Economics & Business 

 
Economics & Business 

 
1,315 

 
2,966 

 
2,632 

       “     Mathematics & Statistics 153 “ 3,572 
       “    Psychology 54 “ 7,007 
 
Engineering 

 
Engineering 

 
1,501 

 
11,434 

 
8,205 

       “    Computer Science 133 “ 1,410 
       “     Mathematics & Statistics 99 “ 3,572 
       “    Physics 328 “ 11,747 
 
Mathematics & Statistics 

 
Mathematics & Statistics 

 
828 

 
3,975 

 
3,572 

       “    Computer Science 19 “ 1,410 
       “    Economics & Business 32 “ 2,632 
       “    Engineering 48 “ 8,205 
 
Medicine 

 
Medicine 

 
26,714 

 
45,734 

 
36,725 

       “    Biology 9,764 “ 34,411 
       “ 
 

   Psychology 737 “ 7,007 
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Table 2 
Mean Citations and Papers Citing and Cited, by Field of Science, 

The Top 110 U.S. Universities, 1981-1999 
 

 
Citing Field 

 

 
Cited Field Citations Potential Papers 

Citing 
Potential Papers 

Cited 

 
Physics 

 
Physics 

 
13,561 

 
16,272 

 
11,747 

       “     Astronomy 174 “  2,127 
       “     Chemistry  315 “  10,035 
       “     Engineering 226 “  8,205 
 
Psychology 

 
Psychology 

 
4,399 

 
7,804 

 
7,007 

       “     Biology 555 “  34,411 
       “     Economics & Business 50 “  2,632 
       “  
 

   Medicine 789 “  36,725 

Notes.  The entries are means over as many as 171 citing and cited year pairs for each citing and cited field 
combination, where the lags range from one to eighteen years.  The statistics are based on 36,834 cells that 
report number of citations and numbers of potentially citing and cited papers, classified by citing and cited 
groups and years.  Self-citations within a field and citations between fields in the same university are 
excluded from this analysis. 
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Table 3 

Moments of the Citation Probabilities, By Citing and Cited Field 
Papers and Citations of the Top 110 U.S. Universities, 1981-1999 

 

Mean S.D. Min Max 
Citing Field Cited Field 

(All Entries in Units of 10-6  a )   
 

 
Agriculture 

 
Agriculture 

 
20.7 

 
6.6 

 
8.6 

 
38.7 

       “    Biology 4.6 1.2 2.3 7.1 
       “    Earth Sciences 2.3 0.6 0.8 4.0 
 
Astronomy 

 
Astronomy 

 
526.0 

 
226.3 

 
108.2 

 
1081.0 

       “     Biology 2.2 1.7 0.3 11.2 
       “     Earth Sciences 11.8 7.1 2.1 40.9 
       “     Physics 3.6 2.2 0.6 14.7 
 
Biology 

 
Biology 

 
25.7 

 
11.9 

 
5.0 

 
44.6 

       “     Agriculture 1.9 0.7 0.7 3.3 
       “     Chemistry 1.4 0.5 0.5 2.5 
       “     Earth Sciences 1.9 0.7 0.6 3.4 
       “     Medicine  3.9 1.7 0.9 7.0 
       “     Psychology  1.7 0.6 0.7 3.7 
 
Chemistry 

 
Chemistry 

 
40.9 

 
16.5 

 
11.1 

 
84.1 

       “     Biology 2.5 1.0 0.8 5.1 
       “     Physics 3.4 1.2 1.1 5.8 
 
Computer Science 

 
Computer Science 

 
125.5 

 
52.6 

 
41.0 

 
302.3 

       “     Mathematics & Statistics 4.0 2.1 0.3 11.5 
       “     Engineering 4.9 2.3 0.7 12.9 
 
Earth Sciences 

 
Earth Sciences 

 
159.1 

 
56.9 

 
67.8 

 
416.6 

       “     Astronomy 10.3 5.8 2.3 42.1 
       “     Biology 3.5 1.5 1.4 10.4 
 
Economics & Business 

 
Economics & Business 

 
165.1 

 
47.4 

 
80.2 

 
262.4 

       “     Mathematics & Statistics 15.1 7.6 1.6 39.0 
       “     Psychology 2.7 1.2 0.2 6.0 
 
Engineering 

 
Engineering 

 
15.9 

 
5.0 

 
6.1 

 
27.3 

       “     Computer Science 8.6 3.0 2.0 17.7 
       “     Mathematics & Statistics 2.5 0.7 0.7 4.5 
       “     Physics 2.4 0.8 0.8 4.8 
 
Mathematics & Statistics 

 
Mathematics & Statistics 

 
58.2 

 
13.6 

 
31.3 

 
86.8 

       “     Computer Science 3.6 1.7 0.4 10.2 
       “     Economics & Business 3.3 1.9 0.2 11.0 
       “  
 

   Engineering 1.5 0.6 0.3 3.9 
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Table 3 
Moments of the Citation Probabilities, By Citing and Cited Field 
Papers and Citations of the Top 110 U.S. Universities, 1981-1999 

 

Mean S.D. Min Max 
Citing Field Cited Field 

(All Entries in Units of 10-6  a )   
 

 
Medicine 

 
Medicine 

 
15.5 

 
6.1 

 
4.1 

 
25.8 

       “     Biology 5.9 2.5 1.2 10.5 
       “     Psychology 2.3 0.7 0.9 4.3 
 
Physics 

 
Physics 

 
60.2 

 
49.0 

 
10.0 

 
238.0 

       “     Astronomy 5.0 3.2 0.5 14.1 
       “     Chemistry  2.0 0.9 0.5 4.5 
       “     Engineering 1.6 0.7 0.4 3.5 
 
Psychology 

 
Psychology 

 
79.6 

 
23.9 

 
30.7 

 
145.5 

       “     Biology 2.0 0.6 0.8 3.5 
       “     Economics & Business 2.5 1.8 0.1 11.6 
       “  
 

   Medicine 2.7 0.9 1.0 4.9 

Notes.  The entries are means over all 171 citing and cited year pairs for each of the citing and cited field 
combinations.   The calculations are based on 36,834 citing and cited group and year observations.  See the 
text for an additional discussion.  a The statement that all entries are in units of 10-6 simply says that 20.7 is 
20.7×10-6, 6.6 is 6.6×10-6, and similarly for all the other entries in the table. 
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Table 4 

Mean Citations, Papers Citing and Papers Cited, and Citation Probabilities 
Within Field, by Rank Stratification-Class 

The Top 110 Universities, 1981-1999 
 

 
Statistics 

 
Cited Rank-Stratification Class 

 

 
 
 
 
 

Field and Citing Rank-
Stratification Class 

 
Citations/Papers Citing/ 

Papers Cited 
(Probability of Citation) 

 
Top 20% 

 

 
Citations/Papers Citing/ 

Papers Cited 
(Probability of Citation) 

 
Middle 40% 

 
Citations/Papers Citing/ 

Papers Cited 
(Probability of Citation) 

 
Bottom 40% 

 
Agriculture 

   

   Top 20% 
 

221 / 3,529/ 3,312 
(18.7×10-6) 

356 /3,529 / 4,743 
(21.0×10-6) 

174 / 3,529 / 2,616 
(18.6×10-6) 

   Middle 40%  
 

388 / 5,011/ 3,312 
(23.0×10-6) 

524 / 5,011 / 4,743 
(21.7×10-6) 

252 / 5,011 / 2,616 
(18.9×10-6) 

   Bottom 40% 
 

171 / 2,787 / 3,312 
(18.2×10-6) 

231 / 2,787 / 4,743 
(17.2×10-6) 

226 / 2,787 / 2,616 
(30.5×10-6) 

Astronomy    
   Top 20% 
 

160 / 647 / 486 
(541.0×10-6) 

259 / 647 / 692 
(591.5×10-6) 

293 / 647 / 949 
(469.9×10-6) 

   Middle 40%  
 

292 / 872 / 486 
(706.1×10-6) 

303 / 872 / 692 
(496.6×10-6) 

402 / 872 / 949 
(468.6×10-6) 

   Bottom 40% 
 

395 / 1,361 / 486 
(615.8×10-6) 

503 / 1,361 / 692 
(539.6×10-6) 

611 / 1,361 / 949 
(451.3×10-6) 

Biology    
   Top 20% 
 

5,502 / 12,056 / 9,430 
(47.2×10-6) 

4,486 / 12,056 / 12,569 
(28.5×10-6) 

2,569 / 12,056 / 12,412 
(16.4×10-6) 

   Middle 40%  
 

6,371 / 16,056 / 9,430 
(40.8×10-6) 

5,225 / 16,056 / 12,569 
(24.8×10-6) 

3,520 / 16,056 / 12,412 
(16.9×10-6) 

   Bottom 40% 
 

4,742 / 16,023 / 9,430 
(30.6×10-6) 

4,681 / 16,023 /12,569 
(22.5×10-6) 

3,524 / 16,023 / 12,412 
(15.7×10-6) 

Chemistry    
   Top 20% 
 

322 / 2,378 / 2,088 
(65.7×10-6) 

313 / 2,378 / 2,881 
(45.3×10-6) 

406 / 2,378 / 5,066 
(33.4×10-6) 

   Middle 40%  
 

438 / 3,467 / 2,088 
(61.1×10-6) 

434 / 3,467 / 2,881 
(43.2×10-6) 

599 / 3,467 / 5,066 
(33.7×10-6) 

   Bottom 40% 
 

699 / 6,320 / 2,088 
(54.0×10-6) 

746 / 6,320 / 2,881 
(40.8×10-6) 

1,031 / 6,320 / 5,066 
(31.9×10-6) 

Computer Science    
   Top 20% 
 

33 / 518 / 377 
(177.1×10-6) 

28 / 518 / 449 
(129.1×10-6) 

20 / 518 / 584 
(70.9×10-6) 

   Middle 40%  
 

43 / 615 / 377 
(198.8×10-6) 

36 / 615 / 449 
(142.8×10-6) 

30 / 615 / 584 
(90.0×10-6) 

   Bottom 40% 
 
 

48 / 898 / 377 
(152.3×10-6) 

48 / 898 / 449 
(125.2×10-6) 

41 / 898 / 584 
(83.4×10-6) 
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Table 4 
Mean Citations, Papers Citing and Papers Cited, and Citation Probabilities 

Within Field, by Rank Stratification-Class 
The Top 110 Universities, 1981-1999 

 
 

Statistics 
 

Cited Rank-Stratification Class 
 

 
 
 
 
 

Field and Citing Rank-
Stratification Class 

 
Citations/Papers Citing/ 

Papers Cited 
(Probability of Citation) 

 
Top 20% 

 

 
Citations/Papers Citing/ 

Papers Cited 
(Probability of Citation) 

 
Middle 40% 

 
Citations/Papers Citing/ 

Papers Cited 
(Probability of Citation) 

 
Bottom 40% 

 
Earth Sciences 

   

   Top 20% 
 

274 / 1,211 / 1,027 
(224.8×10-6) 

266 / 1,211 / 1,260 
(174.9×10-6) 

286 / 1,211 / 1,692 
(137.9×10-6) 

   Middle 40%  
 

371 / 1,738 / 1,027 
(216.9×10-6) 

339 / 1,738 / 1,260 
(156.8×10-6) 

394 / 1,738 / 1,692 
(133.3×10-6) 

   Bottom 40% 
 

427 / 2,362 / 1,027 
(181.3×10-6) 

454 / 2,362 / 1,260 
(151.7×10-6) 

513 / 2,362 / 1,692 
(125.3×10-6) 

Economics and Business    
   Top 20% 
 

141 / 714 / 633 
(306.3×10-6) 

94 / 714 / 725 
(178.9×10-6) 

71 / 714 / 1,275 
(76.4×10-6) 

   Middle 40%  
 

168 / 801 / 633 
(324.7×10-6) 

108 / 801 / 725 
(181.7×10-6) 

106 / 801 / 1,275 
(101.1×10-6) 

   Bottom 40% 
 

215 / 1,451 / 633 
(229.7×10-6) 

188 / 1,451 / 725 
(176.3×10-6) 

224 / 1,451 / 1,275 
(117.7×10-6) 

Engineering    
   Top 20% 
 

238 / 3,824 / 2,944 
(21.3×10-6) 

182 / 3,824 / 2,978 
(15.5×10-6) 

109 / 3,824 / 2,283 
(12.2×10-6) 

   Middle 40%  
 

251 / 4,282 / 2,944 
(20.1×10-6) 

183 / 4,282 / 2,978 
(14.1×10-6) 

123 / 4,282 / 2,283 
(12.3×10-6) 

   Bottom 40% 
 

173 / 3,328 / 2,944 
(17.4×10-6) 

144 / 3,328 / 2,978 
(14.1×10-6) 

97 / 3,328 / 2,283 
(12.3×10-6) 

Mathematics and Statistics    
   Top 20% 
 

61 / 828 / 777 
(94.8×10-6) 

64 / 828 / 1,115 
(69.3×10-6) 

55 / 828 / 1,680 
(39.2×10-6) 

   Middle 40%  
 

97 / 1,244 / 777 
(100.7×10-6) 

88 / 1,244 / 1,115 
(62.9×10-6) 

87 / 1,244 / 1,680 
(41.2×10-6) 

   Bottom 40% 
 

111 / 1,903 / 777 
(75.3×10-6) 

127 / 1,903 / 1,115 
(59.4×10-6) 

137 / 1,903 / 1,680 
(42.6×10-6) 

Medicine    
   Top 20% 
 

3,374 / 15,210 / 12,183 
(17.8×10-6) 

3,659 / 15,210 / 14,464 
(16.2×10-6) 

2,010 / 15,210 / 10,079 
(12.8×10-6) 

   Middle 40%  
 

4,158 / 18,349 / 12,183 
(18.2×10-6) 

4,133 / 18,349 / 14,464 
(15.2×10-6) 

2,537 / 18,349 / 10,079 
(13.4×10-6) 

   Bottom 40% 
 
 

2,453 / 12,175 / 12,183 
(16.2×10-6) 

2,698 / 12,175  / 14,464 
(14.9×10-6) 

1,693 / 12,175  / 10,079 
(13.5×10-6) 
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Table 4 
Mean Citations, Papers Citing and Papers Cited, and Citation Probabilities 

Within Field, by Rank Stratification-Class 
The Top 110 Universities, 1981-1999 

 
 

Statistics 
 

Cited Rank-Stratification Class 
 

 
 
 
 
 

Field and Citing Rank-
Stratification Class 

 
Citations/Papers Citing/ 

Papers Cited 
(Probability of Citation) 

 
Top 20% 

 

 
Citations/Papers Citing/ 

Papers Cited 
(Probability of Citation) 

 
Middle 40% 

 
Citations/Papers Citing/ 

Papers Cited 
(Probability of Citation) 

 
Bottom 40% 

 
Physics 

   

   Top 20% 
 

952 / 4,260 / 3,347 
(64.4×10-6) 

1,062 / 4,260 / 3,524 
(60.9×10-6) 

1,060 / 4,260 / 4,876 
(40.6×10-6) 

   Middle 40%  
 

1,315 / 4,815 / 3,347 
(76.8×10-6) 

1,505 / 4,815 / 3,524 
(74.9×10-6) 

1,686 / 4,815 / 4,876 
(56.2×10-6) 

   Bottom 40% 
 

1,604 / 7,197 / 3,347 
(61.4×10-6) 

2,110 / 7,197 / 3,524 
(68.0×10-6) 

2,266 / 7,197 / 4,876 
(49.3×10-6) 

Psychology    
   Top 20% 
 

242 / 1,624 / 1,450 
(102.4×10-6) 

253 /1,624 / 1,736 
(88.9×10-6) 

455 / 1,624 / 3,822 
(72.5×10-6) 

   Middle 40%  
 

304 / 1,880 / 1,450 
(110.9×10-6) 

276 /1,880 / 1,736 
(83.7×10-6) 

510 / 1,880 / 3,822 
(70.0×10-6) 

   Bottom 40% 
 
 

613 / 4,300 / 1,450 
(97.7×10-6) 

625 /4,300 / 1,736 
(82.8×10-6) 

1,121 / 4,300 / 3,822 
(67.4×10-6) 

Notes.  For this table, the number of citing and cited group and year observations is 171×12×9=18,468.  As 
in previous tables, 171 is the number of citing and cited year combinations, 12 is the number of fields, and 
9 is the number of rank-stratification class combinations within each field. 
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Table 5 

Baseline Citation Function, with Cross-Field Effects 
The Top 110 U.S. Universities, 1981-1999 

 
 

Variable or Statistic 
 

 
Regression 
Parameter 

 
Asymptotic 

Standard Error 

 
Asymptotic 

t-Statistic, H0=0 

 
Asymptotic 

t-Statistic, H0=1 
 

 
Field Intercepts (ααi s) 

 

    

Citing Field 
 
 
 
 

Cited Field     

 
Agriculture 

 
Agriculture 

 
0.334 

 
0.020 

 
16.7 

 
-33.3 

      “  Biology 0.073 0.012 6.1 -77.3 
      “  Earth Sciences 0.036 0.019 1.9 -50.7 

      
Astronomy Astronomy 13.346 0.337 39.6 36.6 

      “  Biology 0.057 0.024 2.4 -39.3 
      “  Earth Sciences 0.265 0.042 6.3 -17.5 
      “  Physics 0.086 0.031 2.8 -29.5 
      
Biology Biology 0.702 0.023 30.5 -13.0 
      “  Agriculture 0.048 0.017 2.8 -56.0 
      “  Chemistry 0.035 0.017 2.1 -56.8 
      “  Earth Sciences 0.048 0.021 2.3 -45.3 
      “  Medicine 0.102 0.013 7.8 -69.1 
      “  Psychology 0.041 0.019 2.2 -50.5 
      
Chemistry Chemistry 1.000 -- -- -- 
      “  Biology 0.058 0.016 3.6 -58.9 
      “  Physics 0.076 0.020 3.8 -46.2 
      
Computer Science Computer Science 1.616 0.056 28.9 11.0 
      “  Engineering 0.065 0.021 3.1 -44.5 
      “  Mathematics & Statistics 0.053 0.026 2.0 -36.4 
      
Earth Sciences Earth Sciences 2.929 0.079 37.1 24.4 
     “  Astronomy 0.186 0.031 6.0 -26.3 
      “  Biology 0.066 0.015 4.4 -62.3 
      
Economics & Business Economics & Business 2.358 0.066 35.7 20.6 
      “  Mathematics & Statistics 0.190 0.024 7.9 -40.9 
      “  Psychology 0.035 0.019 1.8 -50.8 
      
Engineering Engineering 0.234 0.018 13.0 -42.6 
      “  Computer Science 0.124 0.025 5.0 -35.0 
      “  Mathematics & Statistics 0.036 0.019 1.9 -50.7 
      “  Physics 0.035 0.014 2.5 -68.9 
      
Mathematics & Statistics Mathematics & Statistics 0.867 0.035 24.8 -3.8 
       “  Computer Science 0.049 0.029 1.7 -32.8 
       “  Economics & Business 0.047 0.025 1.9 -38.1 
       “  Engineering 0.021 0.019 1.1 -51.5 
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Table 5 
Baseline Citation Function, with Cross-Field Effects 

The Top 110 U.S. Universities, 1981-1999 
 

 
Variable or Statistic 

 

 
Regression 
Parameter 

 
Asymptotic 

Standard Error 

 
Asymptotic 

t-Statistic, H0=0 

 
Asymptotic 

t-Statistic, H0=1 
 

 
Field Intercepts (ααi s) 

    

 
Citing Field 

 
Cited Field 

    

 
Medicine 

 
Medicine 

 
0.324 

 
0.014 

 
23.1 

 
-48.3 

       “  Biology 0.126 0.011 11.5 -79.5 
       “  Psychology 0.045 0.015 3.0 -63.7 
      
Physics Physics 3.414 0.096 35.6 25.1 
       “  Astronomy 0.239 0.059 4.1 -12.9 
       “  Chemistry 0.086 0.040 2.2 -22.9 
       “  Engineering 0.069 0.041 1.7 -22.7 
      
Psychology Psychology 1.137 0.034 33.4 4.0 
       “  Biology 0.028 0.011 2.5 -88.4 
       “  Economics & Business 0.034 0.020 1.7 -48.3 
       “  Medicine 0.037 0.010 3.7 -96.3 
 

Cited Year Effects 
     

       1981    1.000 -- -- -- 
       1982  1.012 0.009 112.4 1.3 
       1983  1.031 0.010 103.1 3.1 
       1984  1.027 0.011 93.4 2.5 
       1985  0.993 0.011 90.3 -0.6 
       1986  0.956 0.011 86.9 -4.0 
       1987  0.862 0.011 78.4 -12.5 
       1988  0.798 0.011 72.5 -18.4 
       1989  0.761 0.011 69.2 -21.7 
       1990  0.739 0.012 61.6 -21.8 
       1991  0.722 0.012 60.2 -23.2 
       1992  0.775 0.013 59.6 -17.3 
       1993  0.725 0.013 55.8 -21.2 
       1994  0.744 0.015 49.6 -17.1 
       1995  0.766 0.016 47.9 -14.6 
       1996  0.822 0.018 45.7 -9.9 
       1997  0.832 0.019 43.8 -8.8 
       1998  1.110 0.028 39.6 3.9 
 
Citing Interval Effects 

     

       1981-1985  1.000 --  -- 
       1986-1990  0.925 0.008 115.6 -9.4 
       1991-1995  1.070 0.015 71.3 4.7 
       1996-1998 
 

 1.160 0.022 52.7 7.3 
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Table 5 
Baseline Citation Function, with Cross-Field Effects 

The Top 110 U.S. Universities, 1981-1999 
 

 
Variable or Statistic 

 

 
Regression 
Parameter 

 
Asymptotic 

Standard Error 

 
Asymptotic 

t-Statistic, H0=0 

 
Asymptotic 

t-Statistic, H0=1 
 

 
Decay Parameter (ββ1) 

  
0.353 

 
0.006 

 
58.8 

 
-- 

Diffusion Parameter (ββ2) 7.2×10-5 1.86×10-6 387.1 -- 
 

Field Decay Parameters (ββ1i s) 
    

  Agriculture  0.778 0.029 26.8 -7.7 
  Astronomy  1.044 0.016 65.3 2.8 
  Biology  1.068 0.021 50.9 3.2 
  Chemistry  1.000 -- -- -- 
  Computer Science  0.675 0.015 45.0 -21.7 
  Earth Sciences   0.849 0.014 60.6 -10.8 
  Economics & Business  0.679 0.012 56.6 -26.8 
  Engineering  0.738 0.037 19.9 -7.1 
  Mathematics & Statistics  0.716 0.018 39.8 -15.8 
  Medicine  0.917 0.024 38.2 -3.5 
  Physics  1.623 0.028 58.0 22.3 
  Psychology 
 

 0.691 0.013 53.2 -23.8 

Notes.  The number of cells, classified by citing and cited fields and years, is 36,834.  The adjusted 
R2=0.900 and the standard error of the regression (the root mean squared error) is 0.0013.  Citations from 
the same university are treated as self-citations and hence are excluded from the equation.  Reported cross-
field citation parameters are at or near the margin of significance for a test of H0=0.  
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Table 6 

Citation Function: Effects of Rank Stratification-Class 
The Top 110 Universities, 1981-1999 

(Asymptotic Standard Errors in Parentheses) 
 

 
Cited Rank-Stratification Class 

 
Field and Citing Rank-

Stratification Class  
Top 20% 

 

 
Middle 40% 

 
Bottom 40% 

 
Agriculture 

   

   Top 20% 
 

0.198 
(0.017) 

0.224 
(0.016) 

0.198 
(0.017) 

   Middle 40%  
 

0.244 
(0.017) 

0.232 
(0.016) 

0.203 
(0.017) 

   Bottom 40% 
 

0.195 
(0.017) 

0.184 
(0.016) 

0.326 
(0.022) 

Astronomy    
   Top 20% 
 

8.733 
(0.263) 

9.753 
(0.291) 

7.969 
(0.239) 

   Middle 40%  
 

11.254 
(0.335) 

8.133 
(0.244) 

7.902 
(0.236) 

   Bottom 40% 
 

9.893 
(0.295) 

8.852 
(0.264) 

7.723 
(0.231) 

Biology    
   Top 20% 
 

0.867 
(0.031) 

0.528 
(0.021) 

0.303 
(0.015) 

   Middle 40%  
 

0.733 
(0.026) 

0.451 
(0.018) 

0.307 
(0.015) 

   Bottom 40% 
 

0.531 
(0.021) 

0.395 
(0.017) 

0.275 
(0.014) 

Chemistry    
   Top 20% 
 

1.000 
(--) 

0.700 
(0.028) 

0.516 
(0.023) 

   Middle 40%  
 

0.924 
(0.032) 

0.660 
(0.026) 

0.519 
(0.022) 

   Bottom 40% 
 

0.809 
(0.028) 

0.623 
(0.023) 

0.490 
(0.019) 

Computer Science    
   Top 20% 
 

1.490 
(0.059) 

1.079 
(0.047) 

0.598 
(0.035) 

   Middle 40%  
 

1.636 
(0.063) 

1.176 
(0.049) 

0.739 
(0.037) 

   Bottom 40% 1.280 
(0.051)  

1.066 
(0.045) 

0.712 
(0.035) 

Earth Science    
   Top 20% 
 

2.685 
(0.086) 

2.093 
(0.068) 

1.671 
(0.056) 

   Middle 40%  
 

2.556 
(0.081) 

1.852 
(0.061) 

1.608 
(0.053) 

   Bottom 40% 
 
 

2.140 
(0.069) 

1.801 
(0.059) 

1.519 
(0.050) 
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Table 6 
Citation Function: Effects of Rank Stratification-Class 

The Top 110 Universities, 1981-1999 
(Asymptotic Standard Errors in Parentheses) 

 
 

Cited Rank-Stratification Class 
 

Field and Citing Rank-
Stratification Class  

Top 20% 
 

 
Middle 40% 

 
Bottom 40% 

    

 
Economics and Business 

   

   Top 20% 
 

2.693 
(0.086) 

1.572 
(0.054) 

0.678 
(0.030) 

   Middle 40%  
 

2.853 
(0.090) 

1.597 
(0.054) 

0.897 
(0.035) 

   Bottom 40% 
 

2.001 
(0.065) 

1.528 
(0.051) 

1.046 
(0.037) 

Engineering    
   Top 20% 
 

0.211 
(0.018) 

0.156 
(0.016) 

0.122 
(0.016) 

   Middle 40%  
 

0.198 
(0.017) 

0.140 
(0.015) 

0.122 
(0.015) 

   Bottom 40% 
 

0.173 
(0.017) 

0.141 
(0.016) 

0.124 
(0.016) 

Mathematics and Statistics    
   Top 20% 
 

0.857 
(0.040) 

0.637 
(0.033) 

0.365 
(0.025) 

   Middle 40%  
 

0.910 
(0.040) 

0.575 
(0.029) 

0.382 
(0.023) 

   Bottom 40% 
 

0.677 
(0.032) 

0.543 
(0.027) 

0.395 
(0.022) 

Medicine    
   Top 20% 
 

0.248 
(0.013) 

0.226 
(0.012) 

0.180 
(0.011) 

   Middle 40%  
 

0.252 
(0.013) 

0.211 
(0.011) 

0.187 
(0.011) 

   Bottom 40% 
 

0.222 
(0.013) 

0.206 
(0.012) 

0.187 
(0.012) 

Physics    
   Top 20% 
 

2.184 
(0.077) 

2.258 
(0.078) 

1.572 
(0.059) 

   Middle 40%  
 

2.634 
(0.089) 

2.840 
(0.094) 

2.253 
(0.076) 

   Bottom 40% 
 

2.120 
(0.073) 

2.622 
(0.087) 

1.994 
(0.068) 

Psychology    
   Top 20% 
 

0.929 
(0.034) 

0.806 
(0.031) 

0.658 
(0.025) 

   Middle 40%  
 

0.996 
(0.036) 

0.755 
(0.029) 

0.634 
(0.024) 

   Bottom 40% 
 
 

0.880 
(0.031) 

0.748 
(0.027) 

0.610 
(0.022) 
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Notes.  The number of citing and cited group and year observations is 36,834.  The adjusted R2=0.938 and 
the standard error of the regression (root mean squared error) is 0.0010.  * The t-statistic is reported for the 
null hypothesis H0=0. ** The t-statistic is reported for the null hypothesis that H1=1. Citations from the 
same university are treated as self-citations and hence are excluded from the equation.  The regression 
includes all the cross-field citation parameters, cited year effects, and citing year interval effects of Table 5.
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Table 7  
Symmetry Tests of the Citation Function 
Of the Top 110 Universities, 1981-1999 

 
 

Test 
 

 
Null Hypothesis 

 
Purpose 

 
Summary 

 

 
Exceptions 

 
 
Equality of Between-
Field Citation 
Parameters 
 

 

jiij αα =  
 
Check for asymmetries in 
the direction of citation 
between fields i and j 

 
Equality is accepted by 13 of 15 
tests at the 5% level of significance  

 
Economics and Business cites Mathematics and Statistics 
more than the reverse (χ2=16.7, P<0.0001);  Physics cites 
Astronomy more than the reverse (χ2=5.1, P=0.0240) 

Equality of Within-
Field, Within Rank-
Stratification Class 
Parameters 
 

llikki ,, αα =  

 
 

Check for asymmetries in 
citation within quality 
groups and within fields 

Equality is rejected by 33 of 36 
tests at the 1% level of significance. 
Citation increases with quality of 
institution in 30 of 36 tests 

Top 20% of Agriculture is cited less than the bottom 40% 
(χ2=33.7, P<0.0001); middle 40% is cited less than the 
bottom 40% (χ2=21.5, P<0.0001).  Top 20% of Physics is 
cited less than the middle 40% (χ2=139.7,P<0.0001);    

Equality of Within-
Field, Between Rank-
Stratification Class 
Parameters 
 

lkikli ,, αα =  Check for asymmetries in 
citation across quality 
groups and within fields 

Equality is rejected by 30 of 36 
tests at the 1% level of significance. 
Citation is less top to bottom than it 
is bottom to top in 30 of 36 tests  

All tests accept equality in agriculture.  Equality between 
the top 20% and middle 40% of engineering is accepted at 
the 1% but not 2% levels (χ2=5.1, P=0.0237). Equality 
between the top 20% and middle 40% of medicine is 
accepted at the 1% but not 3% levels (χ2=4.6, P=0.0317).  
Equality between the middle 40% and bottom 40% of 
medicine is accepted. 
          

Notes.  All χ2 tests are Wald Tests that evaluate the difference in the parameters from zero for the unrestricted likelihood.
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Appendix Table A-1 
 The Top 110 U.S. Universities 

 

FICE Code University Name 
 

1998 Federal R & D Expenditures 

(In Millions of $) 

 

2077 Johns Hopkins University 752.983* 
1305 Stanford University 342.426 
3798 University of Washington - Seattle 336.748 
X9091 University of Michigan, All Campuses 311.450 
2178 Massachusetts Institute of Technology 310.741 
1317 University of California-San Diego 262.303 
2155 Harvard University 251.876 
3378 University of Pennsylvania 247.914 
3895 University of Wisconsin-Madison 240.513 
1315 University of California-Los Angeles 233.702 
X7963 Columbia University, All Campuses 229.723 
X8717 University of Colorado, All Campuses 228.342 
1319 University of California-San Francisco 219.912 
X1051 University of Alabama, All Campuses 205.511 
1426 Yale University 205.046 
X8761 University of Minnesota, All Campuses 204.741 
X8779 Cornell University, All Campuses 204.187 
1328 University of Southern California 190.547 
2520 Washington University 187.173 
X8813 Pennsylvania State University, All Campuses 186.274 
1131 California Institute of Technology 177.748 
2920 Duke University 172.532 
2974 University of North Carolina at Chapel Hill 171.505 
1312 University of California-Berkeley 171.135 
1775 University of Illinois at Urbana-Champaign 168.871 
X8815 University of Pittsburgh, All Campuses 168.511 
3658 University of Texas at Austin 165.082 
1083 University of Arizona 161.999 
X3632 Texas A&M University, All Campuses 144.938 
3024 Case Western Reserve University 132.274 
2894 University of Rochester 130.773 
2103 University of Maryland at College Park 129.198 
1739 Northwestern University 127.911 
1774 University of Chicago 125.982 
X8802 Ohio State University, All Campuses 124.177 
1564 Emory University 118.045 
1892 University of Iowa 115.312 
1313 University of California-Davis 114.912 
X8723 Georgia Institute of Technology, All Campuses 

 
113.643 
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Appendix Table A-1 
 The Top 110 U.S. Universities 

 

FICE Code University Name 
 

1998 Federal R & D Expenditures 

(In Millions of $) 

 

 
4949 Baylor College of Medicine 110.610 
1535 University of Florida 106.510 
3535 Vanderbilt University 106.325 
2130 Boston University 104.428 
1536 University of Miami 101.492 
2785 New York University 101.426 
3675 University of Utah 100.722 
X8755 University of Massachusetts, All Campuses 100.122 
3660 University of Texas Southwestern Med Center Dallas  97.200 
X8731 Indiana University, All Campuses 95.840 
3242 Carnegie Mellon University 95.046 
X3745 University of Virginia, All Campuses 93.328 
X8732 Purdue University, All Campuses 92.844 
9555 SUNY at Stony Brook, All Campuses 91.531 
8805 University of Cincinnati, All Campuses 90.307 
1610 University of Hawaii at Manoa 86.886 
1445 Georgetown University 84.801 
2663 University of New Mexico, All Campuses 84.365 
3754 Virginia Polytechnic Institute and State University 82.734 
3210 Oregon State University 82.416 
2290 Michigan State University 81.146 
1350 Colorado State University 80.451 
2903 Yeshiva University 80.000 
2972 North Carolina State University at Raleigh 79.533 
2104 University of Maryland at Baltimore 78.037 
X9554 SUNY at Buffalo, All Campuses 76.037 
1776 University of Illinois at Chicago 73.797 
4882 Oregon Health Sciences University 71.054 
11618 University of Texas Health Science Center Houston 70.446 
X8771 Rutgers the State University of NJ, All Campuses 69.829 
X8051 University of Tennessee, All Campuses 69.793 
2627 Princeton University 69.005 
1320 University of California-Santa Barbara 68.408 
X8745 Louisiana State University, All Campuses 67.090 
1314 University of California-Irvine 65.902 
2230 Woods Hole Oceanographic Institution 64.765 
X2515 University of Missouri, All Campuses 63.556 
2219 Tufts University 61.167 
X8744 University of Kentucky, All Campuses 60.760 
X8025 University of Nebraska, All Campuses 58.482 
2329 Wayne State University 57.646 
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Appendix Table A-1 
 The Top 110 U.S. Universities 

 

FICE Code University Name 
 

1998 Federal R & D Expenditures 

(In Millions of $) 

 

 
2978 Wake Forest University 56.705 
8773 New Mexico State University, All Campuses 56.587 
3659 University of Texas Health Science Center San Antonio 55.004 
3677 Utah State University 54.903 
1598 University of Georgia 54.712 
X8718 University of Connecticut, All Campuses 53.189 
2029 Tulane University 52.924 
1869 Iowa State University 51.196 
X9001 University of Kansas, All Campuses 50.567 
1489 Florida State University 50.451 
3735 Virginia Commonwealth University 48.167 
2573 Dartmouth College 45.053 
3800 Washington State University 44.510 
3401 Brown University 44.412 
2807 Rockefeller University 43.845 
1081 Arizona State University Main 41.359 
3604 Rice University 34.772 
1431 University of Delaware 33.688 
X2686 CUNY, All Campuses 32.412 
29094 University of AK Fairbanks, All Campuses 31.505 
3696 University of Vermont 31.460 
1321 University of California-Santa Cruz 29.849 
X8789 Syracuse University, All Campuses 29.200 
2133 Brandeis University 28.098 
3223 University of Oregon 27.041 
2589 University of New Hampshire 25.913 
3827 West Virginia University 24.985 
1316 University of California-Riverside 22.988 
1710 Loyola University of Chicago 17.685 
3289 Lehigh University 13.019 
Notes.  * Includes R&D expense for the Applied Physics Laboratory.  The FICE code is the federal ID for 
U.S. universities as well as university systems. 

 

 
 


