How Have Automation and Trade Affected the Taxable Share of Covered Earnings?

Gal Wettstein, Matthew S. Rutledge, and Wenliang Hou
Center for Retirement Research at Boston College
and
Patrick J. Purcell
U.S. Social Security Administration

20th Annual Meeting of the Retirement Research Consortium
Washington, DC
August 2-3, 2018
The taxable share has fallen from 90 percent in 1983 to 83 percent in 2016.

- Behind this decline is the well-documented increase in earnings inequality (Piketty and Saez 2013).

- Inequality matters because earnings above a certain point are exempt from the payroll tax – more earnings growth among very high earners lowers the total share taxed.

- Each year, the cap is adjusted by the Average Wage Index (AWI) and in 2018 stands at $128,400.
Despite not counting for benefits, the share of earnings over the cap affects program finances.

- Program finances are potentially affected in two ways:
 - Earnings above the cap count for the AWI used to inflate benefits for all workers.
 - Holding AWI constant, a lower taxable share means low earners earn less; because benefits are progressive, this could lead to revenues falling by more than benefits.

- A percentage point decline in the taxable share reduces the 75-year actuarial balance by 0.11 percent (Social Security 2018).
The question: how much of the decline in the taxable share is due to automation and trade?

- Skill-biased technical change polarizes the labor market, hurting the very bottom and top of the earnings distribution less than the “middle” (Autor, Katz, and Kearney 2006).

- China’s entry into global trade increased the supply of low-skill labor, decreasing earnings in the bottom of the distribution (Autor, Dorn, and Hansen 2013).
This paper proceeds in three steps to examine the effects of these changes.

• Step 1: Identify measures of exposure to automation and trade that vary across the U.S. and match them to earnings in 1994 and in 2015.

• Step 2: Use the variance in exposure to automation and trade across states to see how the earnings distribution is affected by these factors.

• Step 3: Predict what would have happened to earnings and the taxable share, in the absence of these changes.
Step 1: The paper merges measures of automation and trade with earnings data.

- Automation is measured as industrial robots per 1,000 workers as in Acemoglu and Restrepo (2017).

- Trade is measured through imports from China, as in Autor, Dorn, and Hansen (2013).

- Both measures are calculated at the state level separately in 1994 – the year the tax-max formula was fixed – and 2015.

- Individual wage and salary earnings are taken from the Continuous Work History Sample covering ages 16-70.
Step 2: These measures are placed in a series of quantile earnings regressions.

- Each of the regressions uses the same sample and variables.

- But each one focuses on a different point in the earnings distribution, to estimate the effects of automation and trade on a specific quantile (e.g., the 10th percentile, or the median).

- One such quantile regression is run for each earnings decile up to the 8th, and for each percentile from the 80th to the 99th.
The regressions all have the following form:

- \(Earnings_{q,i,s,t} = \theta_q + \beta_{q,1}Robots_{s,t}^{US} + \beta_{q,2}Imports_{s,t}^{US} + \beta_{q,3}Q_{s,t} + \varepsilon_{q,i,s,t} \)

- \(q \) indicates the quantile, \(i \) the individual, \(s \) the individual’s state, and \(t \) the year of observation (either 1994 or 2015).

- The controls in \(Q \) are:
 - State unionization, share of large firms, and health insurance coverage to capture worker bargaining power;
 - State, year, age, and gender fixed effects.
Step 3: The estimates allow construction of counterfactual earnings distributions.

- For each quantile, the coefficient on automation and trade is multiplied by the change in that factor between 1994 and 2015, $\beta_q \Delta X$.

- This quantity reflects the change in earnings at each point in the distribution due to the change in each factor over time.

- This amount is then subtracted from the 2015 actual earnings distribution to arrive at a counterfactual distribution, $Earnings^F_q - \beta_q \Delta X$.
The estimated effect of automation is most negative for the 8th to 9th deciles.

Source: Authors’ calculations based on the Continuous Work History Sample, 1994 and 2015.
This accords with the fact that the industries most impacted by automation lost more jobs in those deciles.

1994-2015 Change in the Share Employed in Durables and Vehicle Manufacturing by Earnings Decile

In contrast, trade is most harmful to the lowest earners, as imports substitute for low-skill labor.

Source: Authors’ calculations based on the Continuous Work History Sample, 1994 and 2015.
Trade, rather than automation, contributed most to the changes in the top 1-percent share and the taxable share.

Characteristics of Factual and Counterfactual Earnings Distributions

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>25th percentile</th>
<th>50th percentile</th>
<th>75th percentile</th>
<th>99th percentile</th>
<th>Top 1-percent share</th>
<th>Taxable share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual 1994</td>
<td>$36,978</td>
<td>$9,396</td>
<td>$25,522</td>
<td>$48,430</td>
<td>$358,026</td>
<td>9.7%</td>
<td>88.9%</td>
</tr>
<tr>
<td>Factual 2015</td>
<td>45,412</td>
<td>11,482</td>
<td>28,946</td>
<td>55,439</td>
<td>515,065</td>
<td>11.3</td>
<td>85.6</td>
</tr>
<tr>
<td>Only automation at 1994 level</td>
<td>46,993</td>
<td>11,748</td>
<td>29,866</td>
<td>57,428</td>
<td>531,733</td>
<td>11.3</td>
<td>85.6</td>
</tr>
<tr>
<td>Only trade at 1994 level</td>
<td>45,881</td>
<td>12,119</td>
<td>29,712</td>
<td>55,628</td>
<td>509,674</td>
<td>11.1</td>
<td>85.9</td>
</tr>
<tr>
<td>Both factors at 1994 level</td>
<td>47,423</td>
<td>12,399</td>
<td>30,657</td>
<td>57,624</td>
<td>526,167</td>
<td>11.1</td>
<td>85.9</td>
</tr>
</tbody>
</table>

Notes: All numbers are in 2015 dollars. The 1994 taxable share is calculated using a tax-max equal to the actual cap in 1994 adjusted by CPI to 2015 dollars.

Source: Authors’ calculations based on the Continuous Work History Sample, 1994 and 2015.
A limitation is that the results may not capture the full magnitude of the effects.

- The automation measure counts industrial robots, but cannot capture other skill-biased technical change like information technology or artificial intelligence.

- The trade measure uses Chinese imports.
 - These imports’ growth is plausibly exogenous and driven by China’s entry into world trade.
 - But they only represent 1/5 of total imports.

- Thus, the total effect of automation and trade is likely larger.
And other contributors to the top earners’ share increase have been suggested as well.

- Increasing employer concentration (e.g., Azar, Marinescu, and Steinbaum 2017);
- Declining unions (DiNardo, Fortin, and Lemieux 1996);
- And erosion of norms regarding executive pay (Atkinson, Piketty, and Saez 2011).
However, even with these limits, the estimates inform projections of future trends.

- If industrial automation and trade grow at their historic pace, by 2026 the taxable share will decline by another 0.2 percentage points.

- This would result in a taxable share of 82.5 for all earners, consistent with the Trustees’ intermediate projections.

- Given these factors predict only a small part of the decline to date, the true future decline may be even greater.